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Abstract RNA modification is a post-transcriptional

process by which certain nucleotides are altered after their

initial incorporation into an RNA chain. Transfer RNAs

(tRNAs) is the most heavily modified class of RNA

molecules. These modifications expand the chemical and

functional diversity of tRNAs and enhance their structural

stability. To date, more than 100 modifications have been

identified, the majority of which are specific from one

domain of life. However, few modifications are extensively

present in the three domains of life. Among those, the m1A

nucleotide, which consists in the methylation at position 1

of the adenine aromatic ring, is found in tRNAs and ribo-

somal RNAs. In tRNAs, the m1A modification occurs at

position 9, 14, 22, 57 and 58. The enzyme TrmK catalyzes

the m1A formation at position 22. Here we report the

backbone 1H, 15N and 13C chemical shift assignments of

TrmK from Bacillus subtilis obtained by heteronuclear

multidimensional NMR spectroscopy as well as its sec-

ondary structure in solution as predicted by TALOS?.

These assignments of TrmK pave the way for interaction

studies with its tRNA substrates.
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Biological context

The biosynthesis of transfer RNAs (tRNAs) is a complex

process composed of several steps leading to the formation

of mature tRNAs with correct structures and functionali-

ties. Apart from the processing of their extremities, the

most salient property of the maturation process consists in

the post-transcriptional incorporation of a large number of

chemical modifications by the so-called modification

enzymes. Among the modification enzymes, the methyl-

transferases (MTases) are the most frequent and diverse

(Hori 2014). They catalyze the transfer of a methyl group

from a methyl donor, mostly the S-adenosyl-L-methionine

(SAM), towards different positions of the nucleotides. The

m1A modification, which consists in the incorporation of a

methyl group at position 1 of adenines, occurs on nucleo-

tides 9, 14, 22 and 58 of tRNAs. This modification brings a

positive charge on the adenine aromatic ring. We focused

our work on the methyltransferase TrmK from Bacillus

subtilis that catalyzes the methylation of adenine 22 of

tRNASer and tRNATyr (Roovers et al. 2008). B. subtilis

TrmK belongs to the COG2384 (Cluster of orthologous

groups). The members of this family are found in Gram-

negative and Gram-positive bacteria. Their sequences are

well-conserved in many bacterial pathogens (L. monocy-

togenes, V. cholerae, S. pneumoniae…). Since TrmK is

essential for cell viability in S. pneumoniae and since no

homologues are found in humans, it was proposed to be a

good target for the discovery of novel antibiotics (Thanassi

et al. 2002). We solved the X-ray structure of B. subtilis
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TrmK (Dégut et al. manuscript in preparation) and used

NMR chemical shift mapping to get insight on the protein-

RNA recognition mode. We report here the backbone

chemical shift assignments of TrmK, assignments that were

necessary to interpret the NMR chemical shift mapping

with its tRNA substrate.

Methods and experiments

Protein expression and purification

Recombinant B. subtilis TrmK was expressed and purified

with a protocol adapted from Roovers et al. (2008). Since

wild-type TrmK is prone to aggregation through cysteine

oxidation, we produced a protein variant with cysteine to

serine mutations (i.e. C35S and C152S), which abolished

protein aggregation and retained full enzymatic activity

(Dégut et al., manuscript in preparation). Mutagenesis was

performed by use of the Quickchange site-directed muta-

genesis kit (Stratagen). The presence of the desired muta-

tions in trmK was checked by sequencing. This variant was

overexpressed in BL21(DE3) E. coli cells, in rich labeled

media or minimum media (see below) supplemented with

kanamycin at 30 lg�mL-1. The cells were grown at 37 �C
to OD600 *0.6, cooled down at 18 �C and induced by

adding isopropyl-b-D-thiogalactopyranoside (IPTG) to a

final concentration of 1 mM. Cells were harvested 24 h

after induction by centrifugation and frozen at -80 �C
until further use. The frozen cells were suspended in 1/50

of the culture volume of a 50 mM Tris-HEPES buffer pH

8.2 containing 500 mM NaCl, 5 % glycerol and 1 mM of

phenylmethanesulfonylfluoride (PMSF). The suspension

was sonicated and the lysate was centrifuged for 30 min at

45,000 g. The resulting supernatant was loaded to a 5 mL

Nickel Sepharose column (HisTrap, GE Healthcare) pre-

viously equilibrated with a 50 mM Tris–HCl buffer pH 8.0

containing 500 mM NaCl and 5 % glycerol (equilibration

buffer). The resin was then washed with 30 mL of buffer

and the protein was eluted with a gradient of the equili-

bration buffer supplemented with 500 mM imidazole pH

8.0. The N-terminal His6-tag of TrmK was removed by

thrombin cleavage (25 U thrombin/mg of protein) per-

formed overnight at 4 �C. PMSF at 250 lM, and EDTA at

1 mM were then added to the protein sample. The sample

was concentrated with Amicon 10,000 MWCO (Millipore)

and injected on a size exclusion chromatography column

(Superdex-75 26/60, GE Healthcare) equilibrated with a

50 mM sodium phosphate buffer pH 7.0 containing

500 mM NaCl and 2 % glycerol.

Doubly labeled (15N/13C) and triply labeled (2H/15N/13C)

TrmK samples were obtained by growing the cells in Spec-

tra-9CN and Spectra-9DCN media, respectively (Spectra

Stable Isotopes, Inc.). Singly labeled (15N) TrmK samples

were obtained by growing the cells in M9 minimum media

supplemented with 15NH4Cl. To achieve high yield of pro-

tein in the fully deuterated medium, a double selection pro-

tocol of the strain was performed as previously described

(Sivashanmugam et al. 2009). Besides, specifically unla-

beled samples were produced in M9 minimum media sup-

plemented with 15NH4Cl and with non-labeled histidine,

arginine, or lysine at a final concentration of 1 mM, 1 h

before induction (Rasia et al. 2012). NMR samples of TrmK

at *0.7 mM were prepared in a 50 mM sodium phosphate

buffer pH 7.0, 500 mM NaCl, 2 % glycerol, 1 mM EDTA,

250 lM PMSF and 10 % D2O. The sample was put in a

3 mm-diameter NMR tube.

NMR experiments

All NMR spectra were recorded at 15 �C on Bruker 600,

800, or 950 MHz spectrometers equipped with cryogenic

probes. Backbone assignment was performed using the

following standard 3D NMR experiments (Salzmann et al.

1998): TROSY-HNCA, TROSY-HNCACB, TROSY-

HN(CO)CACB and [1H–15N] NOESY-HSQC. A 3D

(H)N(COCA)NH experiment was also measured (Bracken

et al. 1997). Internal DSS standard was used for direct

referencing of the 1H chemical shifts, and indirect refer-

encing of 15N and 13C shifts (Wishart et al. 1995). Data

processing was carried out with Topspin 3.2 for standard

acquisition, and with MddNMR (Orekhov and Jaravine

2011) for non-uniform sampling acquisition. Analysis of

spectrum and backbone assignment was performed with the

Sparky suite (Goddard and Kneller). Table 1 summarizes

the NMR experiments used for the assignment.

Table 1 NMR experiment recorded for backbone chemical shift

assignment of TrmK

Spectra Spectrometer

(MHz)

2H Duration

(h)

NUS

HNCA 800 Y 27 Y (65 %)

HNCACB 800 Y 86 Y (62 %)

HN(CO)CACB 600 Y 90 N

(H)N(COCA)NH 600 Y 89 N

HNCO 950 Y 24 Y (35 %)
15N–HSQC–NOESY 950 N 49 N

2H: indicates whether TrmK was deuterated (Y: yes, N: no)

Duration: indicates the experimental time in hours

NUS: indicates whether non-uniform sampling was used for the

acquisition of data (Y: yes, N: no). The percentage in parenthesis

indicates the amount of measured data using sparse sampling com-

pared to conventional acquisitions

254 C. Dégut et al.

123



Resonance assignments and data deposition

Before tackling the assignment of TrmK NMR signals, we

needed to cope with problems of precipitation and prote-

olysis of TrmK. Indeed, TrmK precipitated during con-

centrations steps, needed high concentrations of salt

(500 mM NaCl) and was subjected to intensive proteolysis

within a few days after purification. Numerous conditions

were tested using dialysis buttons. They allowed us to test

the stability of TrmK in various conditions of buffer and

temperature while working at high concentrations of TrmK

(15 mg�mL-1) and low volumes (50 lL). As a result,

TrmK does not precipitate at high concentration

([15 mg�mL-1) in a phosphate buffer whereas we

observed precipitation more rapidly in a Tris–HCl buffer.

A high concentration of salt (400–500 mM NaCl) limited

the precipitation of TrmK and its proteolysis. Anti-pro-

teases (PMSF, Pepstatine A, Leupeptine, EDTA) were

tested. PMSF and EDTA revealed to be efficient to stop

proteolysis. PMSF was added in the lysis buffer and at

different stages of purification and in the NMR tube.

Lastly, glycerol was necessary to prevent precipitation

when concentrating TrmK. 5 % of glycerol was an optimal

concentration during purification steps and for storage of
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Fig. 1 Superimposition of two
1H–15N TROSY spectra of

TrmK in black for TrmK

uniformly 15N-labeled and in

red for TrmK 15N-labeled

except on lysines. Lysines are

thus not observable on the red

spectrum confirming

immediately the assignment of

amide group for each lysine of

the protein
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Fig. 2 Two-dimensional
1H–15N TROSY spectrum of

TrmK measured at 950 MHz

and 15 �C on a protein sample

uniformly deuterated and
15N/13C-labeled. Resonance

assignments are indicated and

reported in BMRB accession

number 26744
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the protein. For the NMR studies, 2 % of glycerol was used

as the best compromise between the stability of the protein

and the linewidth of NMR signals.

The protein sample in this study consists in 238 residues

after the cleavage of the N-terminal His-tag and contains 5

prolines. NMR assignments were based on 3D heteronu-

clear NMR experiments performed on 2H/15N/13C-labeled

TrmK. Interestingly, the use of the (H)N(COCA)NH

experiment (Bracken et al. 1997), which correlates each

NH group to the nitrogen of the amide group of the fol-

lowing residue in the sequence of the protein, revealed to

be very efficient for the achievement and the validation of

the assignments. This experiment is not sensitive and is

commonly used for unfolded protein. However, with a fully

deuterated protein, this experiment turned out to be very

helpful in the assignment procedure. Besides, we used

several specifically unlabeled samples to confirm the

assignment or to provide starting point for the assignment

(Fig. 1). For instance, Fig. 1 shows the unlabeling of all the

lysines of TrmK. In this sample, all the amide groups of

TrmK are 15N-labeled except those of lysines. Conse-

quently, the lysines are not observable in the red spectrum

of Fig. 1. The superimposition with a reference TROSY

spectrum (in black, Fig. 1) allows one to easily localize the

peaks originating from lysine amide groups.

Backbone amide 1H–15N resonance assignment of

TrmK was achieved for 222 of 233 non-proline residues,

corresponding to 96 % of completeness (Fig. 2). Amide

groups from residues M1, S28, H30, A31, L39, N40, H41,

K42, T113, E116 and R117 could not be assigned the

majority of which are found in loop regions. In addition,

98 % of Ca 98 % of Cb and 92 % of CO were assigned.

The backbone chemical shift assignments of TrmK were

deposited in the BioMagResBank (www.bmrb.wisc.edu)

under accession number 26744.

An analysis of the chemical shifts of HN, N, CO, Ca and

Cb atoms was conducted with the TALOS? webserver

(Shen et al. 2009). Figure 3 compares the prediction of

TrmK secondary structure obtained from TALOS? with

the secondary structure observed in the crystal structure of

TrmK (Dégut et al. manuscript in preparation). The only

light differences lie in the prediction from the NMR data of

short a-helical turns (2 or three residues) around residue 68

and 165 that are not observed in the crystal structure.

Therefore, both data are in very good agreement. The

TrmK fold in solution and in the crystal is thus identical.

Subsequently, the NMR footprint of binding of the tRNA

on TrmK will be mapped on the X-ray structure of TrmK.
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