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Resonance assignment of an engineered amino-terminal domain
of a major ampullate spider silk with neutralized charge cluster
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Abstract Spider dragline fibers are predominantly made

out of the major ampullate spidroins (MaSp) 1 and 2. The

assembly of dissolved spidroin into a stable fiber is highly

controlled for example by dimerization of its amino-ter-

minal domain (NRN) upon acidification, as well as removal

of sodium chloride along the spinning duct. Clustered

residues D39, E76 and E81 are the most highly conserved

residues of the five-helix bundle, and they are hypothesized

to be key residues for switching between a monomeric and

a dimeric conformation. Simultaneous replacement of these

residues by their non-titratable analogues results in variant

D39N/E76Q/E81Q, which is supposed to fold into an

intermediate conformation between that of the monomeric

and the dimeric state at neutral pH. Here we report the

resonance assignment of Latrodectus hesperus NRN

variant D39N/E76Q/E81Q at pH 7.2 obtained by high-

resolution triple resonance NMR spectroscopy.
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Biological context

The terminal domains of major ampullate spidroins control

the assembly of dragline spider silks intermolecular protein

contacts (Hinman and Lewis 1992; Xu and Lewis 1990).

Upon lowering the pH and decreasing the sodium chloride

concentration of the protein solution along the spinning

duct, the amino-terminal domain forms a homodimer and,

thereby, initiates spidroin assembly (Gaines et al. 2010;

Hagn et al. 2010; Landreh et al. 2010). The sequence of

NRN is highly conserved between different silk types and

spider species, underlining the crucial role of NRN for

controlling spidroin assembly (Bini et al. 2004; Chen et al.

2012; Garb et al. 2010; Rising et al. 2006). X-ray crystal

and NMR solution structures of Euprosthenops australis

NRN revealed separation of acidic and basic amino acids,

prearranging the dimer in antiparallel (Askarieh et al.

2010). The negative charge cluster is composed of three

highly conserved residues—D39, E76 and E81—that are

hypothesized to control the pH-dependent dimerization and

the simultaneous conversion into a tighter conformation, as

evidenced by NMR and crystals structures. Neutralization

of the acidic charge cluster suppresses the electrostatic

repulsion between helices 2 and 3, which leads to their

rearrangement and subsequent flattening of the dimeriza-

tion interface (Bini et al. 2004; Kronqvist et al. 2014). To

study the role of the acidic cluster during the
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Germany

5 Bayreuther Materialzentrum (BayMat), Universität Bayreuth,
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conformational change, the clustered aspartic and glutamic

acid residues were simultaneously substituted by their non-

titratable analogues asparagine and glutamine, resulting in

the NRN variant D39N/E76Q/E81Q. This variant mimics a

protonated state of NRN at low pH, which reflects condi-

tions as found close to the end of the spider’s spinneret.

The majority of published research was done on E. aus-

tralis MaSp1. For NRN from the black widow spider La-

trodectus hesperus, solely monomeric wild type resonance

assignments, but no structural coordinates or NMR dis-

tance restraints were published [Hagn et al. 2011, Bio-

MagResBank (BMRB) accession code 17131]. Here we

collected three-dimensional NMR data of D39N/E76Q/

E81Q and assigned backbone as well as sidechain

resonances.

Methods and experiments

Protein expression and purification

The variant L.h. MaSp1 NRN D39N/E76/E81Q was

obtained by cloning MaSp1-NRN cDNA—mutated by

using QuikChange� Site-Directed Mutagenesis Kit (Agi-

lent, Santa Clara, CA, US)—together with a His6-SUMO-

tag in vector pET28a (Novagen, Merck, Darmstadt, Ger-

many). Genes were transformed to and expressed in

Escherichia coli BL21 (DE3). Before IPTG induction the

cells were grown to an OD600 = 0.7 in M9 minimal

medium at 37 �C containing kanamycin, 15N-ammonium

sulphate and 13C-glucose as exclusive nitrogen and carbon

source, respectively. After 5 h of protein production, the

cells were harvested by centrifugation for 12 min at

12,100g and 4 �C. Cells were opened using a Microflu-

idizer M-110S (Microfluidics, Westwood, MA, US) at

6.5 bar twice. Proteins were purified by Ni-NTA chro-

matography (HisTrap FF, GE Healthcare, Little Chalfont,

UK) and size exclusion chromatography (HiLoadTM 26/60

SuperdexTM 75 pg, GE Healthcare). After SUMO protease

cleavage another Ni-NTA chromatography was performed

to separate the tag from the protein. The protein was

freeze-dried and stored at -20 �C.

NMR experiments

The NMR samples were prepared by dissolving the freeze-

dried protein in 22 mM sodium phosphate buffer at a con-

centration of 0.6 mM, the addition of 10 % (v/v) D2O and

final pH adjustment to 7.2. All NMR data were recorded on a

Bruker Avance 700 and Avance II? 600 MHz NMR spec-

trometer equipped with a 5 mm TCI cryo and TXI probe

with Z-axis gradients, respectively. For sequential backbone

assignment standard HNCA, HNCACB, CBCA(CO)NH and

15N-resolved NOESY-HSQC spectra were recorded (Sattler

et al. 1999). For side chain assignment 13C-resolved aliphatic

and aromatic NOESY-HSQC, as well as (H)CCH-TOCSY

and NOESY spectra were acquired (Marion et al. 1989;

Zuiderweg and Fesik 1989). Additionally two-dimensional
15N- and 13C-HSQC experiments were recorded regularly to

check for protein stability (Mori et al. 1995). Spectral anal-

ysis, resonance assignment and imaging was done with the

CCPNMR software package (Vranken et al. 2005),

NMRViewJ (One Moon Scientific, Westfield, NJ, US), qti-

plot (IONDEV SRL, Bucarest, Romania) and Adobe Illus-

trator CS3 (Adobe Systems, San Jose, CA, US).

Resonance assignment, secondary structure
prediction and data deposition

The 15N-HSQC spectrum of D39N/E76Q/E81Q showed

well-dispersed signals as typical for a well-folded folded

protein (Fig. 1). TALOS-N was used to perform a sec-

ondary structure estimation that indicated high helix

probability for regions 12–29, 34–42, 44–54, 61–80,

85–103 and 108–125 (Shen and Bax 2013); Fig. 2).

Sequential backbone assignment using standard experi-

ments could be achieved for the majority of the chain. In

sequence regions in helices 2 and 3 (39–78), where signal

intensities were very weak, the assignments turned out to

be more challenging. Additionally Met2, Pro8, Ile43, Pro60

and Ser61 could not be assigned. The dimerization inter-

face could be anticipated by highlighting of region 39–78

on the homologue dimeric NRN from E. australis (PDB

2LTH, (Kronqvist et al. 2014). The modelled dimerization

interface coincides with a sequence region of D39N/E76Q/

E81Q that showed weak signal intensities in the NMR

spectra, probably resulting from an intermediate chemical

exchange of partial dimerization. C-terminal amino acids

134-137 neither showed inter-residual NOE nor sidechain

proton signals. Through examination of all available types

of spectra a total of 90.3 % of the backbone (HN, CA, N,

HA) and 71.5 % of the total sidechain, 83 % of aromatic

and 85.6 % of aliphatic side chain atoms could be assigned.
13Ca chemical shifts were compared to deposited wild type

resonances (BioMagResBank accession code 17131) and

summarized in Fig. 3. For most sequence positions of the

protein 13Ca resonances of both variants were in good

agreement. However some isolated residues showed unu-

sual big shift differences. After careful re-evaluation of the

assigned and deposited resonances with the recorded

spectra and with the BMRB chemical shift statistics, some

unusual chemical shifts could be observed for BMRB entry

17131. However, given that there is no access to the wild

type spectra, a direct comparison of the wild type and

variant three-dimensional data is currently not possible.
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Fig. 1 15N-HSQC spectrum of

NRN variant D39N/E76Q/E81Q

in 20 mM sodium phosphate

buffer with 10 % (v/v) D2O at

pH 7.2 and 298 K. Aliased

signals are boxed
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Fig. 2 a Amino acid sequence of NRN variant D39N/E76Q/E81Q

with predicted secondary structure from a chemical shift index using

assigned HA, HN, CA resonances. b TALOS-N predicted helix

probabilities (black bars) and secondary structure (top bar c = coil,

L = loop, H = helix), estimated from assigned chemical shifts with

associated confidence levels as grey vertical lines (Shen and Bax

2013)
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The resonances and assignments of NRN D39N/E76Q/

E81Q have been deposited in the BioMagResBank (http://

www.bmrb.wisc.edu) under the accession code 25643.
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Fig. 3 Chemical shift differences Dd13Ca of deposited NRN wild

type and variant D39N/E76Q/E81Q as a function of the sequence

position. Unusual chemical shift differences are observed for

individual residues and are addressed in the main text. Unassigned

residues are marked with X
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