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Abstract

The famous CHSH game can be interpreted with Boolean functions while understanding
the success probability in the classical scenario. In this paper, we have exhaustively studied
all the Boolean functions on four variables to express binary input binary output two-party
nonlocal games and explore their performance in both classical and quantum scenarios. Our
analysis finds out some other games (other than the CHSH game) which offers a higher
success probability in the quantum scenario as compared to the classical one. Naturally, our
study also notes that the CHSH game (and the games corresponding to the similar partition)
is the most efficient in terms of separation between quantum and classical techniques.
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1 Introduction

Quantum computation is strikingly more powerful than classical computation and this is
evident from the evaluation of quantum algorithms which can be exponentially faster
[12, 13] as compared to the conventional classical algorithms. Because of this potency of
quantum computation, quantum cryptography [4] offers additional security that is impossible
to replicate in the classical world. This kind of quantum advantage can also be achieved in
the case of nonlocal games.
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Nonlocal games refer to the games played between multiple space-separated players and
a referee where communication between the players is strictly forbidden during the game.
In a binary input binary output two-party nonlocal game, the referee sends an input bit
to each of the players who then respond by sending output bits to the referee. Based on
the winning condition, the players fix some strategies among themselves in the classical
scenario before the game begins. Similarly in the quantum scenario, the players share some
entanglement among themselves before the start of the game to get some advantage in the
winning probability as compared to the classical scenario.

In a binary input binary output two-party nonlocal game, each player has two choices for
the input and two choices for the output. The most well known binary input binary output
two-party nonlocal game is the CHSH game [7], where a referee provides two uniformly
random bits x| and x> to each of the two players. After receiving the inputs, the two parties
send their output bits x3 and x4 to the referee. The function that represents the CHSH game
is of the form f(x1, x2, x3, x4) = (x1 A x2) @ (x3 @ x4). From the winning condition of the
CHSH game, one can easily check that the two parties can win the game whenever the values
of x1, x2, x3, x4 satisfy f(xy, x2, x3, x4) = 0. It is well known that the maximum success
probability of the CHSH game in the classical scenario is 0.75 whereas the maximum success
probability using quantum resources is cos? % (which is approximately 0.85).

There are several known two-party nonlocal games that offer quantum advantages [5, 8].
However, the inputs and the outputs for any of those games are not restricted to bits. To
the best of our knowledge, the CHSH game is the only known binary input binary output
two-party nonlocal game that offers a quantum advantage.

The nonlocal games are interesting because for some of those games, the quantum advan-
tage or a separation (an advantage to the maximum quantum success probability as compared
to the maximum classical one) can be achieved which is often useful to prove the quantumness
of a system and to certify the untrusted devices involved in a scheme in Device Independent
(DI) scenario. In general, the DI certification of quanutm cryptographic schemes have been
done [2, 10, 14] considering the CHSH game. Recently, DI certification has also been done in
Quantum Key Distribution scenario considering the three party pseudo-telepathy game [3].

Although there are several known nonlocal games that offer quantum advantage [5, 6], to
the best of our knowledge, from the class of all possible binary input binary output two-party
nonlocal games, the only known game that offers quantum advantage is the CHSH game. As
the CHSH game can’t be won with certainty in the quantum scenario, it would be interesting
to check whether there exists any other binary input binary output two-party nonlocal game
for which quantum advantage can be achieved and the game can be won with a better quantum
success probability than the CHSH game (because from the analysis of [1], it is clear that if
there exists any such game then it can be used for DI testing instead of the CHSH game to
reduce the overall sample size).

In this article, we have explored the performance of all possible binary input binary output
two-party nonlocal games (having atleast one successful outcome for each possible input)
by considering them as four variable boolean functions.

1.1 Contribution and organization

In the current article, we analyze the performance of all those binary input binary output
two-party nonlocal games (in both classical and quantum scenarios) which have atleast one
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successful outcome for every possible input. In Section 2, we begin with some preliminary
discussions about our notational assumptions and introduces some definitions related to our
analysis. In Section 2.1, we briefly describe different groups of strategies for our classical
analysis and mention the structure of games related to the 2 4 2 partition which can’t be
won with certainty. In the next Section (i.e., in Section 2.2), we derive some basic results
that will be required for the performance analysis of different partitions of games. Next we
mention the strategies to find out the maximum classical and maximum quantum success
probabilities for the games corresponding to each partition. In Section 3, we discuss the
minor errors in the count values of boolean functions mentioned in Table 1 of [9]. Finally
in Section 4, we present the detailed analysis (both in classical and quantum scenarios) for
the games corresponding to each of the partitions. Our main contributions in this paper are
twofold which is enumerated below.

1. The CHSH game is the most well-known game from the class of all possible binary input
binary output two-party nonlocal games that offer quantum advantage. In this direction,
here we have considered all possible binary input binary output two-party nonlocal games
which have at least one successful outcome for every possible input, group them in terms
of partitions of the number of successful outcomes and analyze their performance to
identify whether there exist any such different game which offer quantum advantage.

2. The CHSH game is also used for DI certification. In [1], it is mentioned that the number
of samples required for DI testing is inversely proportional to the success probability
of the underlying nonlocal game and the maximum success probability of the CHSH
game in the quantum scenario is around 0.85. To reduce the overall sample size, we have
explored the performance of all other games to check whether there exists any other game
for which quantum advantage can be achieved.

We conclude the paper in Section 5 with directions for future research. Before proceeding
further, let us first define our notational assumptions and a few definitions that are required
for our analysis.

2 Preliminaries

Every two-party nonlocal game with the input bits (say) x; and x, and the output bits (say)
x3 and x4 can be represented as a 4-variable boolean function (with variables x1, x2, x3 and
X4).

In the classical scenario of a nonlocal game, the players fix some strategies among them-
selves before the game begins. A strategy for a player may be either input-dependent or
input-independent. One can easily check that for every input, a player can have exactly two
input-dependent strategies (i.e., either the input bit itself or the complement of the input bit)
and exactly two input-independent strategies (i.e., either output O or output 1 irrespective of
the input bits). So, it is obvious that the two players can have a maximum of 16 different
strategies in the classical scenario. It is also evident that for a particular value of the input
pair x1x2, there may have atmost four possible values of the output pair x3x4. The players
may not win the game for all four possible values of the output pair x3x4. Without loss of
generality, here we assume that for a particular assignment to the values of x1, x2, x3, x4, if
one can win the game then the corresponding output of the boolean function is 0, otherwise
the output is 1.
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Based on the distribution of the successful outcomes (i.e., the distribution of 0’s) in the
output column of the boolean function, a binary input binary output two-party nonlocal game
can be represented in terms of partitions of the total number of successful outcomes.

Definition 1 (Partition of a nonlocal game): A partition is a representation of a class of n
party nonlocal games depending on the total number of successful outcomes. A partition of
a nonlocal game is generated by splitting up the total number of successful outcomes into 2"
parts depending on the number of successful outcomes for each of the 2"* possible inputs. For
an n-party binary input binary output nonlocal game with d number of successful outcomes
(where 2" < d < 2°"), the corresponding partition will be represented as a summation of
2" non-zero numbers (like ny +no + - - - + non ) such that d = lell n; where each n; is the
number of successful outcomes for the i-th input such that 0 < n; < 2".

For a binary input binary output two-party nonlocal game, there are four possible inputs
and for every input, there can have atmost four possible successful outcomes. So for these
games, the partition representation is of the form p; 4+ p> + p3 + ps where each p; denotes
the total number of successful outcomes for the i-th input such that 0 < p; < 4. For example,
one may consider the CHSH game (which represents a balanced 4-variable boolean function)
for which the partition representation is of the form 2 + 2 + 2 + 2. Similarly every other
binary input binary output two-party nonlocal games can be represented as a summation of
four non-zero numbers.

From these discussions, one can easily understand that many different games have the same
representation of the partition. However, all the games that belong to a particular partition may
not behave similarly. Here in this present effort, we are interested in discovering all those
games which offer quantum advantage (i.e., a better winning probability in the quantum
scenario as compared to the classical one).

Definition 2 (Separation for a nonlocal game): A separation denotes the difference between
the maximum classical and the maximum quantum success probabilities for those games
which offer a quantum advantage.

For the sake of simplicity, from now onwards we use the notation x and y to denote input
bits and the notation @ and b to denote the output bits of the two parties. x, v, a, b denotes
the usual complements (bit complement) of x, y, a, b respectively. Later on, if nothing is
specified explicitly, whenever we use xy as input and ab as output for the two players, we
assume that xy and ab can take any values from the set {00, 01, 10, 11}.

2.1 Inconsistency for the 2 + 2 partition and its subpartitions

It is well known that for a binary input binary output two-party nonlocal game, there are
4 possible inputs and for each input, there can have atmost 4 different outputs. It is also
clear that for a particular input string (i.e., for a particular value of xy), the two players can
have atmost 16 different strategies to generate their outcomes in the classical scenario. Based
on the outcomes, here we classify the 16 different strategies into four groups where each
group has 4 different strategies and each of these strategies leads to a different outcome for a
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particular input. These four groups are as follows.

Group 1 (Constant Strategies): 00, 01, 10, 11

Group 2 (Input-dependent Strategies): xy, Xy, xy, Xy
Group 3 (Mixed Strategies): x0, x1, x0, x1

Group 4 (Mixed Strategies): Oy, 1y, 0y, 1y

Whenever two different inputs are chosen, there are two possibilities for their values.
Either the inputs are complement to each other (i.e., of the form xy, Xy) or they are not
complement to each other (i.e., of the form xy, Xy or xy, xy).

Now if a strategy is applied to these chosen inputs, the generated output pair may match in
all two positions or only in one position or none of the positions. One can easily explore that
for a complement input pair, if the outputs are same then the corresponding strategy must
be constant. Similarly if the outputs are complement to each other (i.e., of the form ab, ab)
for a complement input pair, the corresponding strategy must be an input-dependent strategy
and if the outputs have only one different bit (i.e., of the form ab, ab or ab, ab) then the
corresponding strategy must be a mixed strategy (either from group 3 or from group 4). In
this similar way, one can also explore the strategies for the cases where the inputs are not
complement to each other. For complement input pair and input pair with one bit difference,
the different strategies and corresponding outputs are demonstrated in Table 1.

It is interesting that whenever two different inputs match in exactly one bit position (i.e.,
inputs of the form xy, Xy or xy, xy) but the output bits in that position are different for
different inputs then one can’t get any strategy that satisfies atleast one output for both the
inputs. More formally, whenever the inputs and the corresponding outputs are of the form
mentioned in Table 2, one can’t get any strategy that satisfies atleast one output for both the
inputs.

This leads us to the following result.

Theorem 1 For the two input-output pairs of a game, if one bit of the input pair remains the
same and the corresponding bit of their outputs is different, then no strategy satisfies atleast
one output for both the inputs.

Proof : Without loss of generality, here we assume that the input pair is of the form xy, xy
and the corresponding outputs are of the form ab and ab respectively (i.e., the first bit for
both the inputs are same however the first bit for the two outputs are different).

As the two outputs are different, no constant strategy can satisfy both outputs for this input
pair. One can also check that whenever a mixed strategy either from group 3 or from group 4
is applied to this specified input pair, the first bit of the corresponding outputs always remains

Table 1 The strategies and corresponding outputs for different inputs

Input Strategy Corresponding Output
Complement output Constant Constant
Input dependent Complement output
Mixed One bit difference in two outputs
Input pair Constant Constant
with one Input dependent One bit difference in two outputs
bit difference Mixed Same or one bit difference in two outputs
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Table 2 General form of

. . Input C di tput
inconsistent outputs for 2 4 2 Py orresponding outpt
partition Xy ab. ab

Xy ab, ab

the same. However for the given outputs (as specified in Table 2), the first bits of the outputs
for the two different inputs are complement to each other. This implies that no constant or
mixed strategy can satisfy atleast one output for both inputs.

Similarly one can also explore that whenever an input-dependent strategy is applied to
this specified input pair, the corresponding outputs are of the form ab, ab or ab, ab. This
implies that no strategy from any of the groups can satisfy atleast one output for both the
inputs. Similarly one can also argue for the other possible input-output pairs of this form.

From this result, it is clear that if a game has two inputs of the form xy, xy(xy, Xy) and the
corresponding outputs are of the form ab, ab(ab, ab) and ab, ab(ab, ab) respectively then,
there exist no strategy which satisfies atleast one output for both the inputs xy, xy(xy, Xy).

2.2 Some basic results

In this section, we derive some basic results which are necessary throughout our discussion.
It is clear from the group of strategies that for a particular input, the four different strategies
of a particular group provide four different outputs. However the two different strategies
from two different groups may collide, i. e., may generate the same output for a particular
input. For example, the mixed strategy x0 (belongs to group 3) and the dependent strategy
xy (belongs to group 2) both generate the output 10 for the input 10. But the two strategies
which provide the same output for a particular input may not provide the same output for
any other inputs. For example, the constant strategy 00 and the dependent strategy xy always
provide the same output (i.e., the output 00) for the input 00 however these two strategies
always provide two different outputs for all the other inputs. Some interesting results (which
are required for further analysis) related to these strategies and the groups are mentioned
below.

Theorem 2 [f two different strategies either one from the constant group and the other from
dependent group or one from the first mixed group (i.e., group 3) and the other from the
second mixed group (i.e., group 4) provide same output for a particular input then, these two
strategies must provide two different outputs for all the other inputs.

Proof : Here the two different strategies are either from constant and dependent groups or
from the two mixed groups.

Case 1: For every input, there exists a constant and a dependent strategy that provides the
same output. Whenever the input changes, the constant strategy always provides the same
output as before. However the dependent strategy provides different output than the previous
one as the output of a dependent strategy always depends on the inputs and provides different
outcomes for different inputs.

Case 2: For every input, there exists a strategy from the first mixed group and another
strategy from the second mixed group which provides the same output. In a mixed strategy,
one bit of the output is constant and the other bit of the output is input-dependent. So for the
first mixed group, there are two types of strategies, namely, xc; and X¢; and for the second
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mixed group, there are two types of strategies, namely, ¢y and coy where ¢ and ¢, denote
the constant bits and x and y denote the corresponding dependent bits. This implies that there
can be four different choices for the pair of strategies that provide the same output.

Let us first consider the case where xcj and ¢y are the two strategies which provide same
output for the input xy. Then the corresponding outputs are,

xy — xcy (applyingstrategyxcy)
xy — ¢y (applyingstrategycsy)

This two strategies provides same output for this input i.e., xc1 = ¢2y.
Now whenever these two strategies xc; and ¢y are applied to the input Xy, the corre-
sponding outputs are,

Xy — Xc1 (applyingstrategyxcy)
Xy — c2y (applyingstrategycsy)

As xc1 = 2y, Xc1 # c2y. So the two outputs are different.
Similarly whenever this two strategies are applied to the input x7y, the corresponding
outputs are,

xy — xc1 (applyingstrategyxci)
xy — c2y (applyingstrategycsy)

As xc1 = 2y, 2y # xcj. So the two outputs are different.
Similarly whenever this two strategies are applied to the input xy, the corresponding
outputs are,

Xy — Xxc1 (applyingstrategyxcy)
Xy — c2y (applyingstrategycay)

As xc1 = 2y, Xc1 = 2y # 2. So the two outputs are different.
In this similar way, one can also argue the cases for other pair of strategies.

Theorem 3 [f a pair of strategies from two distinct groups provide the same output for a
particular input xy then this pair of strategies must provide two different outputs for the
complement input Xy.

Proof : Here xy is the input for which two different strategies from two different groups
provide the same output. From the result of Theorem 2, it can be easily argued that if the two
strategies are from constant and dependent groups or from the two mixed groups then, these
two strategies must provide two different outputs for the complement input Xy.

So there are two remaining cases that may occur. The first case is that whenever one
strategy is from the constant group and the other strategy is from any one of the two mixed
groups and the second case is that whenever one strategy is from the dependent group and
the other strategy is from any one of the two mixed groups.

Case 1: In this case, one strategy from the constant group and the other strategy from one
of the two mixed groups provide the same output (say ab) for the input xy. Whenever these
two strategies are applied to the complement input Xy, then one can easily check that the
constant strategy provides the output ab but, the mixed strategy provides the output either
ab or ab.

Case 2: Similarly in this case, if one strategy from the dependent group and the other
strategy is from one of the two mixed groups provide the same output (say ab) for the input
xy, then the dependent strategy provides the output ab and the mixed strategy provides the
output either @b or ab for the complement input xy. This proves the result.
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Corollary 1 From the results of Theorems 2 and 3, one can conclude that whenever there are
two strategies in which one is from the constant (dependent) group and the other is from any
one of the two mixed groups provide the same output for the input xy, then these strategies
may not always provide two different outputs for the input xy and Xy.

For example, the dependent strategy xy and the mixed strategy 0y both provide the output
00 for the input 01 however these two strategies also provide the output 01 for the input 00.
So whenever the inputs are not complement to each other, one can’t conclude anything about
the outcomes.

Theorem 4 For a complement input pair (i.e., for two inputs of the form xy and Xy), if one
input has m many outputs and the other input has n many outputs then there are exactly mn
many strategies such that each of them satisfies an output for both the inputs.

Proof : For a complement input pair, we show that if each input has exactly one valid output,
then there is exactly one strategy that satisfies both inputs. Let us consider that the input xy
has output ab and input Xy has any one of the four outcomes ab, @b, ab and ab.

One can easily check that whenever Xy has output ab then the common strategy is a
constant strategy, whenever xy has output either @b or ab then the common strategy is
a mixed strategy and whenever Xy has output ab then the common strategy is an input-
dependent strategy which satisfies the outputs for both the inputs xy and xy.

This implies that there must be a strategy corresponding to every different output pair for
two complement inputs. So for a complement input pair, if one input has m many outcomes
and the other input has n many outcomes, then there are exactly mn different pair of outcomes.
Moreover for each pair of outcomes, there exist a strategy that satisfies the outcomes for both
the inputs. So, there are exactly mn many strategies which satisfy an output for both the
inputs. O

Theorem 5 Ifan input (say xy) has a complement output pair and the corresponding comple-
ment input (i.e., Xy) also has two outcomes (may not be complement), then the four strategies
corresponding to this input pair xy, Xy must provide four different outcomes for atleast one
of the rest two inputs (i.e., for inputs Xy and xy).

Proof : Whenever each of the inputs of the complement input pair xy, Xy has two outcomes
and the input xy has a complement output pair, the input Xy has two possibilities for output.
Either the outcomes of Xy are complement to each other or they are not complement to each
other.

Case 1: Whenever the input Xy has complement output pair, then also there are two
possibilities. Either Xy has the same complement pair as in xy or the complement pair of Xy
is different from the output of xy.

Whenever xy and Xy have the same complement output pair, one can check that the
common strategies are 2 constant and 2 dependent strategies. We can easily verify that for
the input pairs xy, Xy whenever a constant and a dependent strategy collide for a particular
input, the same constant and dependent strategy must not collide for the other input (rather
the same constant strategy collide with the other dependent strategy for the other input).
From the result of Theorem 2, we can argue that for this case, the four common strategies
must provide four different outputs for all the rest two inputs. Similarly one can conclude
this same result for the case when Xy has a different complement output pair than xy.

Case 2: Whenever the input Xy has non-complement output pair, then the common strate-
gies are one constant, one input-dependent and two mixed strategies for xy, Xy pair. One can
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verify that among two mixed strategies, one collides with the constant strategy and the other
collides with the dependent strategy for input xy. But for input Xy, the two mixed strategies
and the constant and the dependent strategy collide among themselves. Now for any one
of the remaining two inputs, the constant strategy collides with those mixed strategies for
which they provide different outputs for the input xy and similarly for the dependent and
other mixed strategies. So from the result of Theorems 2 and 3, one can conclude that these
four strategies must provide four different outputs for the remaining input. This concludes
the proof. O

Note: If both the inputs xy and Xy have non-complement output pair, then the four different
strategies may not provide four different outputs for any of the remaining two inputs Xy and

xYy.

Lemma 1 :If an input (say xy) has a complement output pair and its complement input
(i.e., Xy) has only one outcome, then the two strategies from xy, Xy pair must provide non-
complement output pairs for each of the rest two inputs.

Proof : Let us consider that the input xy has two complement outputs of the form ab and ab.
Then the complement input Xy has two possibilities, either the output of Xy is same as one
of the outputs of xy or the output of Xy is different from the output of xy.

Case 1: Whenever the output of Xy is same with one of the output of xy, there are one
constant strategy and one input-dependent strategy. Let us assume that the common output
of xy and Xy is ab. Then the constant strategy is ab and the input-dependent strategy is mn
(say) where m € {x, X} and n € {y, y}. This implies that,

xy — ab (applying strategy mn)
Xy — ab (applying strategy mn)

Thus we conclude that
x — a (applying strategy m)
y — b (applying strategy n)

Hence it is clear that the strategy mn provides the output ab for the input Xy and provides
the output ab for input xy. So the two strategies ab and mn provide non-complement output
pair ab and ab for the input Xy and provide non-complement output pair ab and ab for the
input xYy.

Case 2: In a similar way, whenever the output of Xy is different from the outputs of xy,
there are two mixed strategies from two different groups. Let us consider that the outputs of
xy are ab, ab and the output of Xy is either @b or ab. Without loss of generality, we assume
that the output of Xy is ab. Let the two mixed strategies are mc| and can, where m € {x, X}
and n € {y, y} are the dependent bits and ¢y, c» € {0, 1} are the constant bits. If we consider
that the strategy mc provides output ab and con provides output ab for input xy, then one
can easily check that,

x — a (applying strategy m)
y — b (applying strategy n)

It is also clear that ¢; = b and ¢, = a.
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Hence, one can easily check that the strategy mc; and cpn provide outputs @b and ab
respectively for input X'y. Similarly one can also check that the strategy mc and cpn provide
outputs ab and ab respectively for input xy. This implies that the mixed strategies from
two different groups also provide non-complement output pair for the rest of the two inputs.
Similarly one can also check the other cases.

2.3 Analysis of the maximum success probability in classical scenario

In the classical scenario of a nonlocal game, the players have to fix some strategies before
the game begins. After getting the input bits from the referee, the players aren’t allowed to
communicate with each other. For the binary input binary output two-party nonlocal games,
each player has only two possibilities for their input bits (either O or 1) and has two choices
(either O or 1) for the output bits. In this scenario, each player has atmost 4 different strategies
(either output O or 1 or the input bit itself or the complement of the input bit) to generate their
output bits. This implies that for a particular two-bit input string provided by the referee,
there are atmost 16 different strategies for the two players in a classical scenario.

Among these 16 different strategies, the strategy which provides the maximum success
probability for a particular game is the optimal classical strategy and the corresponding
success probability is the maximum classical success probability for this game. All the
possible output strategies (by the two players) for a particular game and their corresponding
success probabilities can be represented in a tabular form as mentioned in Table 3.

In this Table, each p; denotes the fraction of inputs for which the game can be won
using the i-th strategy. Two players can choose any of these 16 different strategies before
the game begins and later can output their bits accordingly. For example, if they choose the

Table 3 Success probabilities of a game for all possible classical strategies

Output for Alice (a) Output for Bob (b)

Output for input Output for input Output for input Output for input Success
x=0 x =1 y=0 y=1 Probability

0 0 0 0 Pl

0 0 0 1 P2

0 0 1 0 3

0 0 1 1 P4

0 1 0 0 rs

0 1 0 1 Pe

0 1 1 0 P7

0 1 1 1 P8

1 0 0 0 P9

1 0 0 1 P10

1 0 1 0 P11

1 0 1 1 P12

1 1 0 0 P13

1 1 0 1 pl4

1 1 1 0 P15

1 1 1 1 P16

@ Springer



Cryptography and Communications (2023) 15:861-890 871

first strategy specified in Table 3, both of them can choose 0 as an output irrespective of their
inputs. Similarly whenever they choose the second strategy, the first player always outputs 0
irrespective of his inputs whereas, the second player outputs his corresponding input bit itself,
i.e., if he receives the input 0, he outputs 0, otherwise he outputs 1. After their output, the
referee checks the fraction of inputs for which the players win the game. The strategy which
generates the winning outcomes for most of the inputs of a particular game is considered
as the optimal strategy corresponding to that game. This implies that from Table 3, one can
obtain the maximum classical success probability (pmax) @S pPmax = max; p;.

As every binary input binary output two-party nonlocal game has 4 possible inputs, one
can easily check that the classical success probability for each of the possible 16 strategies
must belong to the set {0, 0.25, 0.5, 0.75, 1}. From the result of Theorem 4, it is clear that
there must be a classical strategy corresponding to each of the complement input pairs. This
implies that for every binary input binary output two-party nonlocal game, the maximum
classical success probability must be atleast 0.5. Similarly if a game has inconsistent outputs
(as mentioned in Section 2.1) for an input pair, then according to the discussion of Section 2.1,
the maximum classical success probability must be less than 1 (i.e., either 0.5 or 0.75).

2.4 Analysis of the maximum success probability in quantum scenario

In the quantum strategy of a two-party nonlocal game, the two players initially share some
entanglement among themselves (before the game begins) and then during the game, they
perform some specific (unitary) operations on their qubits (based on the inputs) and measure
their qubits to get the output bits.

Let us assume that the two players (say Alice and Bob) share the Bell-state |{)4p =
w among themselves and Alice measures in 6y (67 ) rotated basis for the input O(1) and
Bob measures in yo(y/1) rotated basis for the input 0(1).

Now, it is easy to check that whenever the referee provides the input bit O to both Alice
and Bob (i.e., for the input 00), the shared states between Alice and Bob (after applying their
respective unitary operators) are of the form

% [(cos 6010) + sin 60| 1)) (cos Yo[0) -+ sin o/ 1))]
+% [( sin 60]0) + cos 6o 1))(— sin 0|0} + cos Wo[1))]

1
= E [(cos 6 cos Yo + sin Oy sin ) |00) + (cos Gy sin Yy — sin Oy cos ) |01)]

1
+E [(sin By cos g — cos Oy sin Yp)|10) + (cos By cos Yo + sin Oy sin Yrp)|11)]

L
V2

So for the input 00, the probability of getting each of the outputs 00 and 11 is % cos? (6 —
o) and the probability of getting each of the outputs 01 and 10 is % sin?(8p — o).

Similarly for the input O1, the shared states between Alice and Bob after applying the
specific unitary operations are of the form cos(6y — 11)|00) — sin(8y — 11)|01) + sin(6y —
¥1)[10) + cos(Bg — ¥1)|11). So in this case, the probability of getting each of the outputs
00 and 11 is % cos?(6p — 1) and the probability of getting each of the outputs 01 and 10 is

1 sin(60 — Y1)

[cos(8o — ¥0)|00) — sin(Bp — ¥0)[01) + sin(fy — Y0)[10) + cos(Bp — Yo)[11)]
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In this similar way, one can easily check that for the input 10, the shared states between
Alice and Bob after applying the specific unitaries are of the form cos(61 — ¥)|00) —
sin(01 — ¥9)|01) 4 sin(61 — ¥)|10) + cos(61 — ¥p)|11) and the corresponding probabilities
are % cosZ(6; — Yo) (for each of the outputs 00 and 11) and % sin?(6; — Yo) (for each of the
outputs 01 and 10).

Similarly for the input 11, the shared states between Alice and Bob after applying the
specific unitaries are of the form cos(6; — /1)|00) — sin(6; — ¥1)|01) + sin(0; — ¥1)[10) +
cos(01 — ¥1)|11) and the corresponding probabilities are % cos(0; — Y1) (for each of the
outputs 00 and 11) and % sin?(8; — 1) (for each of the outputs 01 and 10).

From these quantum success probability expressions for different inputs, it is clear that

for a particular input xy, the probability of getting each of the outputs 00 and 11 is % cos® «

and the probability of getting each of the outputs 01 and 10 is % sin? & where @ = (6 — Yy)
(according to our mentioned strategy).

As for every nonlocal game, the referee is supposed to provide the input bits randomly, the
two players calculate the overall success probability considering each of the inputs equally
likely. For any particular game, the expression of the quantum success probability depends on
the distribution of the successful outcomes for all the possible inputs. Depending on this dis-
tribution, the quantum success probability expressions involve the variables 6g, 01, Yo, V1.
After getting the quantum success probability expression for a particular game, one can eas-
ily find the values of 6y, 61, Vo, Y1 for which the success probability becomes maximum.
For demonstration, here we can consider the example of the CHSH Game that corresponds
to the partition 2 + 2 + 2 + 2. From Section 4.1.3, one can conclude that the quantum
success probability (according to the discussion of this section) of the CHSH game is
1 [cos? (B — o) + cos?(By — Y1) + cos? (01 — o) + sin?(6) — ¥1)]. Now, one can vary
different values of 6y, 61, Yo, ¥ to get the corresponding maximum quantum success prob-
ability. From the analysis in Section 4.1.3 (and also from the previously known results), it can
be concluded that one can find some values of 6y, 61, ¥, Y| for which the quantum success
probability will be 0.853, which is maximum for this partition (for a detailed analysis of this
calculation, one may refer to the Section 4.1.3). Similarly for the other partition of games, one
can calculate the maximum quantum success probability by following the strategy discussed
in this subsection.

One can verify that for the games having inconsistent outputs, the quantum success prob-
abilities corresponding to the inconsistent input pair are of the form % cos” a and % sin” .
So, the maximum quantum success probability for these games having inconsistent outputs
is 0.75. This implies that all the nonlocal games having inconsistent outputs may not offer
a quantum advantage (i.e., the maximum quantum success probability is greater than the
maximum classical success probability)!.

3 Analysis of the results in [9]

It is evident from the discussion till now that every binary input binary output two-party
nonlocal game can be represented as a 4-variable boolean function. One can also consider
the inputs and the outputs separately as 2-variable boolean functions for binary input binary
output two-party nonlocal games and compose these two functions to construct 4-variable
functions. For example in the CHSH game, the input function is f(x, y) = x A y and the

! In this context one should remember that every classical strategy is also a quantum one where no entanglement
is shared between the parties
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output function is g(a, b) = a @ b. The actual function that represents the CHSH game is
just the composition of these two (input and output) functions.

Recently some analysis has been done in this direction in [9] (considering all the non-
constant 2-variable boolean functions and composing every possible pairs among them to
construct the corresponding 4-variable boolean functions) to explore the performance of
some 4-variable boolean functions (or binary input binary output two-party nonlocal games)
as distinguishers for the certification of different dimensional quantum states. As the authors
consider only non-constant boolean functions in [9], the total number of 4-variable boolean
functions that they have considered are (222 —2) x (222 —2) = 14 x 14 = 196. However,
there are total 22' = 65536 possible 4-variable boolean functions. So in [9], only a small
fraction of the games are explored from the class of all possible binary input binary output
two-party nonlocal games.

There are some miscalculations in [9, Table 1] regarding the number of different boolean
functions which we would like to point out here. In Table 1 of [9], it is mentioned that the
total number of function pairs (f, g») such that each of f(x, y) and g>(a, b) contains one
0(1) is 32(32). However one can verify that the total number of such function pairs is actually
16. For a detail analysis corresponding to this result, one may refer to Proposition 1.

Proposition 1 Ler g; : Zp x Zp — Zy be a boolean function such that | gi_l(O) =1
where gi_l(O) ={(x,y) € Zy xZy : gi(x,y) =0} fori = 1,2. Let f(x1,x2,x3,Xx4) =
g1(x1, x2) * g2(x3, x4) where x is a binary operation on Z;. Then given a binary operation
*, there are atmost 16 different possibilities for f.

Proof : Since | g;l(O) |= 1, there is (a;, b;) such that g;(a;, b;) = 0 and g;(x,y) = 1
for (x, y) # (a;i, b;j). Now, for each of the two functions g; and g, there are four different
choices that satisfy the above condition namely,

g{l)(O, 0) = 0 and g{l)(x, y) =1 for (x, y) # (0, 0) (1)
220, 1) =0and g?(x, y) = 1 for (x, y) # (0, 1) )
21,00 =0and gP(x, y) = 1 for (x, y) # (1,0) A3)
¢P, 1) =0and g\ (x, y) = 1 for (x, y) # (1, 1). )
Similarly for g», there are also four different choices namely,
23"(0,0) = 0and g3 (x, y) = 1 for (x, y) # (0,0) )
270, 1) = 0 and g (x, y) = 1 for (x, y) # (0, 1) ©)
¢V(1,0) = 0and g (x, y) = 1 for (x, y) # (1,0) (7
&P, 1) =0and g8 (x, y) = 1 for (x, y) # (1, 1). (8)

Thus f(x1, x2, x3, X4) = gii)(xl,xg) * géj)(x3,x4) for some 1 < i, j < 4. As there are
maximum 4 different choices for each of gi') and géj ) for some 1 < i, j < 4, there are

atmost 4 x 4 = 16 different choices for f.

Itis also mentioned (in [9] Table 1) that the total number of function pairs such that f (x, y)
contains one 0 and g»(a, b) contains one 1 are 6. For this case also, similar to the derivation
performed in the proof of Proposition 1, one can verify that the total number of such function
pairs is also 16.
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In [9], the authors have proposed the idea of distinguishing different dimensional quantum
states with the help of some nonlocal games. In their paper, they have explored the perfor-
mance of some two-party nonlocal games in quantum scenario with the intention of finding
those games which provide significant advantage in the quantum winning probability for
different dimensional states. However, the main limitation in their approach is that they have
explored only 196 functions from the set of 65536 possible 4-variable Boolean functions.
Because of this limitation, they might not consider the game which is the most efficient as
the dimensionality distinguisher (i.e., which has the maximum probability difference in the
quantum scenario for different dimensional states) among all possible binary input binary
output two-party nonlocal games. In this article, we have considered all those binary input
binary output two-party nonlocal games which have atleast one successful outcome for every
possible input and evaluate their performance both in classical and quantum scenario (con-
sidering the strategy mentioned in Section 2.4). However, we haven’t analyzed anything
regarding the performance of those games as dimensionality distinguishers.

4 Analysis of the binary input binary output two-party nonlocal games

In the current context, we are interested in finding all those two-party binary input binary
output nonlocal games where one can achieve quantum advantage. So far, CHSH game is the
most well known game that offers a separation around 0.1 between the maximum classical
(which is 0.75) and the maximum quantum (which is around 0.853) success probability.

From the definition of the partition introduced in Definition 1, one can easily check that
the CHSH game can be represented as a 2 + 2 + 2 + 2 partition based on the distribution of
its outputs. As our main intention is to find out all those games that offer quantum advantage
(with maximum quantum success probability greater than the existing maximum for the two
party scenario, i.e., 0.853), here we consider only those games for which the number of
valid outputs corresponding to each possible input is non-zero (so that there is a chance of
achieving the maximum quantum success probability greater than 0.853 for random inputs).

For every number of successful outcomes (i.e., the number of 0's in the output column of a
boolean function), we first find out all possible partitions of that outcome and then explore the
performance of the games corresponding to each of those partitions to derive the maximum
classical and the maximum quantum success probabilities. For example, the games having
8 successful outcomes (i.e., 8 number of 0's in the output column of the boolean function
representation of those games), there are four possible partitions such that each input has
atleast one successful outcome. In this section, we first find out all those partitions for every
possible number of successful outcomes and then analyze the performance of the games
corresponding to each of those partitions according to the techniques mentioned in Sections
2.3 and 2.4.

4.1 Games corresponding to 8 successful outcomes

In this subsection, we analyze (in details) the performance of the games corresponding to all
possible partitions for 8 successful outcomes in both classical and quantum scenario.

@ Springer



Cryptography and Communications (2023) 15:861-890 875

4.1.1 Analysis for partition

4 +2+ 1+ 1: For this partition of games, there must be a complement input pair (i.e., of the
form xy and Xy) either both the inputs have 1 outcome or one input has 1 outcome and the
other input has 2 outcomes. Whenever the two 1 outcomes have a complement input pair, the
strategy corresponding to this input pair must satisfy one output for the input corresponding
to 4 outcomes. Similarly if the 2 outcome and a 1 outcome has a complement input pair,
then the two strategies corresponding to this complement input pair must satisfy atleast one
output for the input having 4 outcomes.

So the minimum classical success probability for all the games of this partition is 0.75.
From the discussion in Section 2.4, one can easily check that the maximum quantum success
probability corresponding to each of the inputs having 4 and 2 outcomes is 1 and for inputs
having 1 outcome is 0.5. So, the maximum quantum success probability for any game of
this partition is %[1 + 14 0.5 4+ 0.5] = 0.75. This implies that for this partition of games,
one can’t achieve any advantage in quantum scenario. For example, here we consider the
following game corresponding to this partition.

Input Corresponding output
00 00, 01, 10, 11

01 00, 11

10 01

11 10

For this game, one can easily check that for the strategy a = x and b = 0, the players can
win the game with probability 0.75 in classical scenario whereas in quantum scenario, the
maximum quantum success probability is 0.75. This implies that for this partition of games,
there is no chance of getting a quantum advantage.

4.1.2 Analysis for partition3 +3 4+ 1+ 1

For this partition of games, there must be a complement input pair either they have 3 outcomes
or one input has 3 and the other has 1 outcome. Let us consider that the input xy has 3
outcomes. Then for the complement input Xy, there are two possibilities, either Xy has 3
outcomes or xy has 1 outcome.

Case 1: Whenever xy has 3 outcomes, one can get nine strategies for xy, Xy pair. As
each of the inputs xy and Xy must have a complement output pair, according to the result of
Theorem 5, these four strategies corresponding to these two complement output pairs must
provide four different outputs for each of the rest two inputs. So one of these four strategies
must satisfy atleast one output for atleast one of the rest of two inputs. Hence, the minimum
classical success probability for all these games is 0.75. This implies that for this partition of
games, one can’t achieve any advantage in quantum scenario. For example, here we consider
the following game corresponding to this partition.

For this game, one can easily check that for the strategya = 0,b =0ora =1,b =1
ora = x,b =7, the players can win the game with probability 0.75 in classical scenario
whereas in quantum scenario, the maximum quantum success probability is 0.75. This implies
that for this partition of games, there is no chance of getting a quantum advantage.
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Input Corresponding output
00 00, 10, 11

01 00

10 11

11 00, 10, 11

Case 2: Similarly whenever Xy has 1 valid outcome, for xy, Xy pair one can get three
strategies. Among these three strategies, the two strategies that correspond to the complement
output pair of xy must provide 2 different outputs for each of the rest two inputs (as mentioned
in Theorem 5). So one of these two strategies must satisfy atleast one output for the rest input
having 3 outcomes. Hence, the minimum classical success probability for this form of game
is also 0.75. This implies that for this partition of games, one can’t achieve any advantage in
quantum scenario. For example, here we consider the following game corresponding to this
partition.

Input Corresponding output
00 00,01, 11

01 00, 10, 11

10 01

11 11

For this game, one can easily check that for the strategya = 1,b = 1lora =x,b =Y,
the players can win the game with probability 0.75 in classical scenario.

From the discussion of Section 2.4, one can easily verify that the maximum quantum
success probability for each of the inputs having 3 outcomes is 1 and for each of the inputs
having 1 outcome is 0.5. So, the maximum quantum success probability for any game of this
partition (for equiprobable outcomes) is 4l[1 +140.5+0.5] =0.75.

It is clear from the analysis that for this partition of games, there is no chance of getting
any advantage in quantum success probability as compared to the classical one.

4.1.3 A Game for partition 2 + 2 + 2 + 2 having quantum advantage

For this partition of games, each of the four inputs has 2 outcomes. According to the discus-
sion of Sections 2.3 and 2.4, one can easily check that if none of the inputs have complement
output pair, the maximum quantum success probability is 0.5. Whenever 1 or 2 inputs have
complement output pair (like the discussions of the previous two partitions), one can easily
check that there is no advantage in quantum success probability. So to achieve quantum
advantage, the games must have complement output for atleast three inputs. For the games
having complement output for three inputs, one can verify that although the maximum quan-
tum success probability is greater than 0.75, the maximum classical success probability is
always 1. A well-known game of this partition having complement output pair for all the
inputs is the CHSH game which offers quantum advantage. Here we consider this game and
analyze its performance in both classical and quantum scenarios.
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Input Corresponding output
00 00, 11
01 00, 11
10 00, 11
11 01, 10

From the strategies mentioned in Section 2.3, one can easily check that the maximum
classical success probability for this game is 0.75 and one of the strategies to get this success
probability isa = 0 and b = 0.

Similarly from the discussion of Section 2.4, one can easily check that the expression for
quantum success probability of this game is of the form

%km%%—¢m+wm%%—¢n+wm%a—¢w+a¥wr—wﬂ

1 1
=3 + 3 [cos 2a + cos 28 + cos 2y — cos 23]

where o = (60 — ¥0), B = (6o — Y1), ¥ = (61 — Yo) and § = (61 — ¥1).
Now the cosines can be written as an inner product between two unit vectors. Suppose,

ugp = cosp|0) + sin Gy|1)
u1 = cos1|0) + sin 011)
v = cos Yo|0) + sin Y1)
v1 = cos ¥110) + sin ¥ 1)

Then one can easily check that for all 7, j, u;v; = cos2(6; — ;). So one can rewrite the
above expression as

1 1
3 + g[uovo + uovy +ujvg — ugvy]

11

R g[uo(vo +v1) +ur(vo — v1)]
1 1

=5+ g(llvo + il + [lvo — vill)

Let us assume, (vg, vi) = a +ib and (v, v9) = a —ib. Then ||vg + v1|| = v/2 + 2a and
[lvo — v1]| = /2 — 2a. It is easy to check that the expression /2 + 2a + +/2 — 2a attains
maximum value for @ = 0 and the corresponding maximum value is 22 1e., (Jlvg + vil] +
[lvo — vil]) < 24/2. So, the maximum quantum success probability for this form of games
o (10242 1 L~
18 (7 + T) =3 + m 0.853.

This implies that one can find some values of 6, 61, Yo and v for which the game
can be won with probability 0.853 in quantum scenario. Similarly one can show the same
upper bound for some other games of this group for which the maximum classical success
probability is 0.75. Therefore, the maximum separation for this partition of games is (0.853 —
0.75) =~ 0.103.

4.1.4 A Game for partition 3 + 2 + 2 4+ 1 having quantum advantage

From the theoretical analysis (similar to the analysis of partition 4 +2 4+ 1 4 1 and 3 +
3+ 1+ 1), one can easily check that not all games for this partition can be won with
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probability 1 in classical scenario and there are some games for which the maximum classical
success probability is 0.75. From the expressions of quantum success probabilities of these
games, one can easily check that for some of those games, maximum quantum success
probability is greater than the classical one. Here we consider one of these games and analyze
its performance in both classical and quantum scenarios.

Input Corresponding output
00 00,01, 11

01 00, 11

10 01

11 00, 11

From the strategies mentioned in Section 2.3, one can easily check that the maximum
classical success probability for this game is 0.75 and one of the strategies to get this success
probability isa = 0 and b = 0.

Similarly from the discussion of Section 2.4, one can easily check that the expression for
quantum success probability of this game is of the form

1[1 1
f|:f—|—fcosz

ot—l—coszﬁ—i—lsinzy—l—coszé
412 2 2

1 1
= E+Z[1+0052a+2+20052ﬁ+1—c052y+2+2c0528]

where o = (60 — Yo0), B = (6o — Y1), ¥ = (61 — Yo) and § = (61 — ¥1).
One can think of the cosines as the inner products between unit vectors. In that case, one
can rewrite the above as

1 1
1[2 + Z(uovo + 2ugvy — u1vp + 2u1v1)]

1 1
=7 |:2+Z[||U0+2U1||+|| —U0+2v1||]]

Let us assume, (vg, v1) = a 4+ ib and (v, v9) = a — ib. Then ||vg + 2v1|| = V5 + 4a
and || — vg 4 2v1|| = +/5 — 4a. It is easy to check that the expression /5 + 4a + /5 — 4a
attains maximum value for @ = 0 and the corresponding maximum value is 2+/5 i.e., (||vo +
2u1]| + || — vo + 2v1]) < 2V5.

Hence the maximum winning probability < }—1 [2 + i X 2«6] ~ (.78.

This implies that one can find some values of 6y, 61, Yo and v for which the game can be
won with probability 0.78 in quantum scenario. Similarly one can show the same upper bound
for some other games of this group for which the maximum classical success probability is
0.75. Therefore the maximum separation for this class of games is (0.78 — 0.75) ~ 0.03.

From this discussion, itis clear that for all the games corresponding to partitions 4+2+1+1
and 3 4+ 3 + 1 + 1, there are no chances of getting quantum advantage. But for the partition
2+4242+42and3+2+2+ 1, there are some games which provide quantum advantage with
a separation around 0.103 and 0.03 respectively. A summary of these results are mentioned
in Table 4.
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Table 4 Analysis of partitions for 8 successful outcomes

Partitions Max. classical Max. quantum Corresponding
success prob success prob Separation
442+1+1 0.75 0.75 NA
1.0 1.0 NA
343+1+1 0.75 0.75 NA
1.0 1.0 NA
2424242 0.75 0.853 0.103
1.0 1.0 NA
34+242+1 0.75 0.78 0.03
1.0 1.0 NA

4.2 Games corresponding to 9 successful outcomes

Proceeding to the similar way as the analysis of the 8 successful outcomes, the maximum
classical and quantum success probabilities that one can achieve for each of the partitions of
the 9 successful outcomes are mentioned in the Table 5. From these results, one can easily
check that quantum advantage can be achieved (with a separation around 0.042) only for
some of the games corresponding to the partition 3 4+ 3 4+ 2 + 1. For simplicity, here we only
consider a game (having quantum advantage) from the partition 3 + 3 + 2 4 1 and analyze
the performance.

4.2.1 A Game for partition 3 + 3 + 2 + 1 having quantum advantage

From the results of Table 5, it is clear that for the games having 9 successful outcomes,
quantum advantage can be achieved only for some of the games having partition 3+3+2-+1.
Here we consider the following game which can’t be won with certainty in classical scenario.

From the strategies mentioned in Section 2.3, one can easily check that the maximum
classical success probability for this game is 0.75 and one of the strategies to get this success
probability isa = 0 and b = 0.

Table 5 Analysis of partitions for 9 successful outcomes

Partitions Max. classical Max. quantum Corresponding
success prob success prob Separation
443+1+1 0.75 0.75 NA
1.0 1.0 NA
4+42+2+1 1.0 1.0 NA
3+24242 1.0 1.0 NA
34+3+2+1 0.75 0.792 0.042
1.0 1.0 NA
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Input Corresponding output
00 00, 11

01 00, 01, 10

10 11

11 00,01, 11

Similarly from the discussion of Section 2.4, one can easily check that the expression for
quantum success probability of this mentioned game is of the form

Deotas o b pa b Loty 4 Leosts)
—|COS™ X — — Sin - — COS — COS
4 272 2 TR YTy

1 1 1
= 1[2 + I + Z(ZCOSZO! —cos2B + cos2y + cos28)]

where o = (6 — ¥0), B = (6o — ¥1), ¥ = (61 — Yo) and § = (61 — ¥1).
One can think of the cosines as the inner products between unit vectors. In that case, one
can rewrite the above as

11
24+ -+ =02 -
12+ 7+ 7 Quovo — uovi + urvo + 1)

< % [2+ % + %(H“OHHZUO — vl + lur[lllvo + U1||):|

Let us assume that (vg, vi) = (a@ + ib) and (v, vo) = (@ — ib). Then one can easily
check that ||2vg — vi|| = +/5 —4a and ||vg 4 v1|| = +/2 4 2a. From these expressions,
one can easily calculate that the expression /2 + 2a 4+ /5 — 4a attains maximum value for
a = —% and the corresponding maximum value is +/6 + +/1.5. From this, the maximum
winning probability in quantum scenario can be written as,

1 1 1
|:2+ i Z(I|M0||||2vo — vl + ||u1||||Uo+v1||)}

4
<1[2+1x(«@+\/ﬁ)}
444

~ 0.792

This implies that one can find some values of 6y, 61, ¥ and 1| for which the game can
be won with a probability of 0.792 in the quantum scenario. Similarly one can show the
same upper bound for some other games of this group for which the maximum classical
success probability is 0.75. Therefore the maximum separation for this class of games is
(0.792 — 0.75) ~ 0.042.

From this discussion, it is clear that for all the games corresponding to partitions 4 + 3 +
1+1,44+2+2+ 1and 3+ 2+ 2+ 2, there are no chances of getting quantum advantage.
But for the partition 3 + 3 4 2 + 1, there are some games which provide quantum advantage
with a separation around 0.042.

4.3 Games corresponding to 10 successful outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maximum classical
and quantum success probabilities that one can achieve for each of the partitions of the 10
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Table 6 Analysis of partitions for 10 successful outcomes

Partitions Max. classical Max. quantum Corresponding
success prob success prob Separation
4+4+1+1 1.0 1.0 NA
4424242 1.0 1.0 NA
3434242 1.0 1.0 NA
443+2+1 1.0 1.0 NA
3+3+3+1 0.75 0.8 0.05
1.0 1.0 NA

successful outcomes are mentioned in Table 6. From this result, one can easily check that the
quantum advantage can be achieved only for some of the games corresponding to partition
3 4+ 3 4 3 + 1 with a separation around 0.05. For simplicity, here we consider one of these
games having quantum advantage and analyze its performance in both classical and quantum
scenarios.

4.3.1 A game for partition 3 + 3 + 3 + 1 having quantum advantage

From the results of Table 6, it is clear that for the games having 10 successful outcomes,
quantum advantage can be achieved only for some of the games having partition 34+3+3+1.
Here we consider the following game which can’t be won with certainty in classical scenario.

Input Corresponding output
00 00

01 00, 10, 11

10 00,01, 11

11 01, 10, 11

From the strategies mentioned in Section 2.3, one can easily check that the maximum
classical success probability for this game is 0.75 and one of the strategies to get this success
probability isa = 0 and b = 0.

Similarly from the discussion of Section 2.4, one can easily check that the expression for
quantum success probability of this mentioned game is of the form

L ocas by Lo pa b e Leowy o Lo Lans
— | = COS - — COS — — COS — — SIn
412 %33 2 TR YTy TS

1[5 1
=1 |:§ + Z(cos 200 + cos2f 4+ cos2y — cos 25)]

where o = (6p — Vo), B = (6o — Y1), ¥ = (61 — o) and § = (61 — Y1).
One can easily think of the cosines as the inner products between unit vectors. In that
case, one can rewrite the above expression as

1

5 1
1 |:§ + Z(uovo + uovy +uvg — ”lvl)]
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115 1
=7 |:§ + Z(||M0||||U0+U1|| + lurllllvo — Ulll)]

Now, [[uollllvo + vill + llu1llllvo — vill < llvo + vl + [lvo — v1l] < 2v/2.

Hence the winning probability in quantum scenario < % [% + % X Zﬁ] ~ 0.80.

This implies that one can find some values of 6y, 61, ¥ and 1| for which the game can
be won with a probability of 0.80 in the quantum scenario. Similarly one can show the
same upper bound for some other games of this group for which the maximum classical
success probability is 0.75. Therefore the maximum separation for this class of games is
(0.80 — 0.75) ~ 0.05.

From this discussion, it is clear that for all the games corresponding to partitions 4 + 4 +
1+1,442+2+2,3+2+2+2and 4+ 342+ 1, there are no chances of getting quantum
advantage. But for the partition 3 4+ 3 + 3 4 1, there are some games which provide quantum
advantage with a separation around 0.05.

4.4 Games corresponding to 11 successful outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maximum classical
and quantum success probabilities that one can achieve for each of the partitions of the 11
successful outcomes are mentioned in the Table 7. From this result, one can easily check that
there are no games corresponding to 11 successful outcomes for which quantum advantage
can be achieved.

So for all the games corresponding to 11 successful outcomes, there are no chances of
getting any advantage in quantum success probability as compared to the classical one.

4.5 Games corresponding to 12 or more successful outcomes

One can easily verify that each of the partitions for 12 successful outcomes is an extension
of some partitions corresponding to 11 successful outcomes. As all the games corresponding
to 11 successful outcomes can be won classically with certainty, there is no chance of getting
quantum advantage for any of the games having 12 successful outcomes. Similarly one can
also argue the same statement for 13 or more successful outcomes.

For this reason, the games having 12 or more successful outcomes can’t achieve quantum
advantage.

Table 7 Analysis of partitions for 11 successful outcomes

Partitions Max. classical Max. quantum Corresponding
success prob success prob Separation

4+4+2+1 1.0 1.0 NA

4+3+3+1 1.0 1.0 NA

4434242 1.0 1.0 NA

3434342 1.0 1.0 NA
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Table 8 Analysis of partitions for 7 successful outcomes

Partitions Max. classical Max. quantum Corresponding
success prob success prob Separation
342+1+1 0.75 0.75 NA
1.0 1.0 NA
242+42+1 0.75 0.762 0.012
1.0 1.0 NA

4.6 Games corresponding to 7 successful outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maximum classical
and quantum success probabilities that one can achieve for each of the partitions of the 7
successful outcomes are mentioned in the Table 8. From these results, one can easily check
that quantum advantage can be achieved only for some of the games corresponding to partition
2 4+ 2 + 2 + 1 with a separation around 0.012. For simplicity, here we consider one of these
games having quantum advantage and analyze its performance.

4.6.1 A game for partition 2 + 2 + 2 + 1 having quantum advantage

From the results of Table 8, it is clear that for the games having 7 successful outcomes,
quantum advantage can be achieved only for some of the games having partition 24242+ 1.
Here we consider the following game which can’t be won with certainty in the classical
scenario.

Input Corresponding output
00 00, 11

01 01, 10

10 11

11 00, 11

From the strategies mentioned in Section 2.3, one can easily check that the maximum
classical success probability for this game is 0.75 and one of the strategies to get this success
probability isa = 1 and b = 1.

Similarly from the discussion of Section 2.4, one can easily check that the expression for
quantum success probability of this mentioned game is of the form

1 1
7 |:cos2 o + sin? B+ 5 cos? y + cos’ 8:|
177 1
=37 Z+Z(ZcosZ(x—200s2ﬂ+cos2y+2cos28)
where o = (60 — ¥0), B = (6o — Y1), ¥ = (61 — Yo) and § = (61 — ¥1).
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One can easily think of the cosines as the inner products between unit vectors. In that
case, one can rewrite the above expression as

177 1
- =-+-=2 -2 2
1 |:4 +4( ugvo upv] + uivg + ulvl)]

177 1
=7 [Z + 7 UluolllfZvo — 2ui]] + ||u1||||vo+2v1||)}

Let us assume that (vg, vi) = (a@ + ib) and (v, vo) = (@ — ib). Then one can easily
check that ||2vg — 2v1]|| = 2||vg — v1|| = 24/2 — 2a and ||vg + 2vi|| = +/5 + 4a. From
these expressions, one can easily calculate that the expression 24/2 — 2a + /5 + 4a attains
maximum value for a = —% and the corresponding maximum value is 34/3. From this, the
maximum winning probability in quantum scenario can be written as,

7
[* = (luolll12vo — 2v1|[ + |Iu1|||Ivo+2v1||)}

[i-4o]

N

=3
0.7

%

This implies that one can find some values of 6, 61, ¥ and ¥; for which the game can be
won with a probability of 0.762 in the quantum scenario. Similarly one can explore that the
same upper bound can be achieved for all the other games of this group for which quantum
advantage can be achieved and the maximum classical success probability is 0.75. Therefore
the maximum separation for this class of games is (0.762 — 0.75) ~ 0.012.

From this discussion, itis clear that for all the games corresponding to partition 34+2+1-+1,
there are no chances of getting quantum advantage. But for the partition 2 + 2 + 2 + 1, there
are some games which provide quantum advantage with a separation around 0.012.

4.7 Games corresponding to 6 successful outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maximum classical
and quantum success probabilities that one can achieve for each of the partitions of the 6
successful outcomes are mentioned in the Table 9. From these results, one can easily check
that quantum advantage can be achieved only for some of the games corresponding to partition
3+ 14 1+ 1 with a separation around 0.05. Here we consider one of these games having
quantum advantage and analyze its performance in both classical and quantum scenarios.

Table 9 Analysis of partitions for 6 successful outcomes

Partitions Max. classical Max. quantum Corresponding
success prob success prob Separation
3+1+1+1 0.5 0.55 0.05
0.75 0.75 NA
1.0 1.0 NA
242+1+1 0.75 0.75 NA
1.0 1.0 NA
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4.7.1 A game for partition 3 + 1 + 1 + 1 having quantum advantage

From the results of Table 9, it is clear that for the games having 6 successful outcomes,
quantum advantage can be achieved only for some of the games having partition 34+ 1+ 1+1.
Here we consider the following game which can’t be won with certainty in the classical
scenario.

Input Corresponding output
00 00, 01, 10

01 11

10 01

11 10

From the strategies mentioned in Section 2.3, one can easily check that the maximum
classical success probability for this game is 0.5 and one of the strategies to get this success
probabilityisa =0and b = 1.

Similarly from the discussion of Section 2.4, one can easily check that the expression for
quantum success probability of this mentioned game is of the form

N D PSS D SN SRS P
- | - —Sin- o — COS — Sin — Sin
40272 2 YTy

113 1
=—|z+ —(—cos2 2B —cos2y —cos2$
4|:2+4( cos2a + cos 28 — cos 2y — cos ):|

where & = (6o — Vo), B = (6o — V1), ¥ = (61 — o) and § = (01 — Y1).
One can easily think of the cosines as the inner products between two unit vectors. In that
case, one can rewrite the above expression as

113 1
Z |:§ + Z(_Movo + ugvy —ujvg — Mlvl)]

= B + 5 ol — vil1+ lla oo + v1||)}
Now, [[uol|llvo — vill + llu1lllvo + vill < [lvo — vl + [lvo + v1l] < 2v/2.

Hence the winning probability < % [% + i X 2\/5] ~ (0.55.

This implies that one can find some values of 6y, 61, ¥ and 1| for which the game can
be won with a probability of 0.55 in the quantum scenario. Similarly one can explore that the
same upper bound can be achieved for all the other games of this group for which quantum
advantage can be achieved and the maximum classical success probability is 0.5. Therefore
the maximum separation for this class of games is (0.55 — 0.5) =~ 0.05.

From this discussion, itis clear that for all the games corresponding to partition 2+2+1-+1,
there are no chances of getting quantum advantage. But for the partition 3+ 1+ 1 + 1, there
are some games which provide quantum advantage with a separation around 0.05.
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Table 10 Analysis of partitions for 5 successful outcomes

Partitions Max. classical Max. quantum Corresponding
success prob success prob Separation
2+1+1+1 0.5 0.542 0.042
0.75 0.75 NA
1.0 1.0 NA

4.8 Games corresponding to 5 successful outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maximum classical
and quantum success probabilities that one can achieve for each of the partitions of the
5 successful outcomes are mentioned in the Table 10. From these results, one can easily
check that quantum advantage can be achieved for the games corresponding to partition
24+ 1+ 1+ 1 with a separation around 0.042. Here we consider one of these games having
quantum advantage and analyze its performance in both classical and quantum scenarios.

4.8.1 A game for partition 2 + 1 + 1 + 1 having quantum advantage

From the results of Table 10, it is clear that for the games having 5 successful outcomes,
quantum advantage can be achieved only for some of the games having partition241+41+41.
Here we consider the following game which can’t be won with certainty in the classical
scenario.

Input Corresponding output
00 01, 10

01 11

10 01

11 10

From the strategies mentioned in Section 2.3, one can easily check that the maximum
classical success probability for this game is 0.5 and one of the strategies to get this success
probability isa = 0 and b = 1.

Similarly from the discussion of Section 2.4, one can easily check that the expression for
quantum success probability of this mentioned game is of the form

1 1 1 1
1 |:sin2a + 5 coszﬂ + 5 sin? Yy + > sin’ 8:|

i
where @ = (6 — ¥0), B = (6o — ¥1), ¥y = (61 — ¥o) and § = (61 — ¥1). As one can
think of the cosines as the inner products between unit vectors, the above expression can be
rewritten as,

1[5 1
= - [ (—2cos2a + cos2pB — cos2y — cos 28)j|

1[5 1
2124+ Z(=2 — —
4[4+4( uovo + U1 — UV MIU])]
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< % [% + % (Il = 2vo + vill + [lvo + Ul||)]

Let us assume that (vg, v1) = (a + ib) and (v1, v9) = (a — ib). Then one can easily check
that || — 2vp + v || = /5 — 4a and ||vg + v1 || = +/2 + 2a. From these expressions, one can
easily calculate that the expression /2 + 2a + /5 — 4a attains maximum value fora = —%
and the corresponding maximum value is /6 + +/1.5. From this, the maximum winning
probability in quantum scenario can be written as,

i[%#‘i(ll —2v0+v1||+||vo+v1||)i|
<1[§+1 x(\/5+«/ﬁ)]

— 414 4

~ (0.542

This implies that one can find some values of 6, 61, ¥ and ¥; for which the game can be
won with a probability of 0.542 in the quantum scenario. Similarly one can explore that the
same upper bound can be achieved for all the other games of this group for which quantum
advantage can be achieved and the maximum classical success probability is 0.5. Therefore
the maximum separation for this class of games is (0.542 — 0.5) ~ 0.042.

From this discussion, itis clear that for all the games corresponding to partition 2+1+1-+1,
there are some games which provide quantum advantage with a separation around 0.042.

4.9 Games corresponding to 4 successful outcomes

Proceeding in similar way as the analysis of the 8 successful outcomes, the maximum classical
and quantum success probabilities that one can achieve for the partition of the 4 successful
outcomes are mentioned in the Table 11. From these results, one can easily check that there
are no games corresponding to 4 successful outcomes for which quantum advantage can be
achieved.

So for all the games corresponding to 4 successful outcomes, there are no chances of
getting any advantage in quantum success probability as compared to the classical one.

4.10 Games corresponding to 3 or less successful outcomes

One cannot divide 3 or less number of successful outcomes into four parts such that each
part has atleast one outcome. Hence for these class of games, one can easily argue from the
discussion in Section 2.4 that the maximum quantum success probability is always less than
0.5 and there is no chance of getting quantum advantage.

Table 11 Analysis of partition for 4 successful outcomes

Partitions Max. classical Max. quantum Corresponding
success prob success prob Separation
I+1+1+1 0.5 0.5 NA
0.75 0.75 NA
1.0 1.0 NA
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5 Conclusion

In our analysis, we found only seven partitions (over all possible games having at least one
successful outcome for each possible input) such that the games corresponding to those
partitions offer a quantum advantage. The maximum classical and the maximum quantum
success probabilities for the games corresponding to each of those partitions are mentioned
in Table 12. We also mention an example of such a game (in Algebraic Normal Form) for
each of those partitions. It is well known that the CHSH game is used to certify untrusted
devices in the device-independent scenario. It is also known that the required sample size
for device-independent testing is inversely proportional to the success probability of the
corresponding nonlocal game. Although the maximum success probability for the CHSH
game using quantum resources is less than 1 (around 0.85), so far no other two-party nonlocal
game is used for device-independent testing. To the best of our knowledge, it was also
unknown whether there exists any other binary input binary output two-party nonlocal game
which offers a quantum advantage. To answer all these questions, in this article, we explore
the performance of all possible binary input binary output two-party nonlocal games in terms
of partitions of the total number of successful outcomes to check whether there exist any
such games which offer a quantum advantage with maximum quantum success probability
greater than 0.85. From our analysis, we found that there are some binary input binary output
two-party nonlocal games (other than the CHSH game) that offer quantum advantage but the
CHSH game has the maximum quantum success probability (also with a maximum separation
of around 0.1) among all these games. Further study for three (or more) party nonlocal games
will be an interesting research work in this direction.
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