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Abstract
When analyzing the security of block ciphers and stream ciphers, the r−th order nonlinearity
of a Boolean function is crucial. They also have a prominent place in coding theory because
the r − th order nonlinearity of Boolean functions is connected to the covering radius of
RM(r ,m), i.e., Reed-Muller code. In this study, we determine the lower bound for the
higher-order nonlinearity of the two classes of Boolean functions listed below.

1. fα(u) = trm1 (αud), where d is the Niho exponent constructed by Dobbertin et al. (J.
Comb. Theory Ser. A 113:779–798, 2006).

2. gα(u) = trm1 (αud), where d = 2p − 2. For all u ∈ F2m , α ∈ F
∗
2m and m = 2p.

Keywords Nonlinearity · Walsh Hadamard transform · Boolean functions ·
Niho power functions

Mathematics Subject Classification (2010) 94A60 · 94C10 · 06E30

1 Introduction

In cryptography, Boolean functions are used extensively (block ciphers and stream ciphers).
They are also elementary units of error-correcting codes. Let h : F2m → F2 be a
Boolean function in m-variable. An essential cryptographic technique that significantly con-
tributes to the security of symmetric cryptosystems is the nonlinearity of Boolean functions
[2, 5, 7]. They are also crucial in preventing Best Affine Approximation Attacks as well
as Fast Correlation Attacks. In coding theory, nonlinearity and its property are vital as the
covering radius of Reed-Muller code having length 2m and order r is equal to the maximum
value of the r − th order nonlinearity of Boolean functions inm-variable [8]. Recently Wang
et al. [25] showed that the covering radius of RM(2, 7) is at most 42. Also, RM(3, 7), i.e.,
the covering radius of third order Reed-Muller has been discussed by Gao et al. [13]. They
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corroborate that for a function f ∈ B7,2, the third order nonlinearity nl3( f ) > 20 does not
hold.

In 1976, Rothaus [23] was the first to established the concept of nonlinearity. A few known
results exist about r − th order nonlinearity of a Boolean function h, i.e., nlr (h), for r > 1.
In 2006, Carlet et al. [6] provided the best asymptotic upper bound, which is given as:

nlr (h) = 2m−1 −
√
15

2
(1 + √

2)r−2 · 2m/2 + O(mr−2).

Boolean functions with algebraic degrees strictly greater than r exhibit r − th order non-
linearity, which is difficult to compute. A lot of research has been done so far to compute
the nlr (h) for r > 1, as there is a relation between the nonlinearity and the Walsh Hadamard
transform (WHT) of Boolean functions and the Walsh-Hadamard transform is easily com-
puted by FFT (fast Fourier transform ). In [10, 21] Kabatiansky and Tavernier proposed an
algorithm later enhanced and resolved by Fourquet et al. [11] for r = 2 and m ≤ 11. It is
also applicable for m ≤ 13 (in some cases). A special algorithm is still missing in the liter-
ature for the computation of nlr (h) when r ≥ 3. Iwata et al. [20] proposed a bent function
with nonlinearity of r − th order having lower bound 2m−r−3(r + 4), for r ≤ m − 3. In
this area of research, Carlet had a great contribution. He developed the recursive approach
to get a lower bound on the nonlinearity of the r − th order of a Boolean function [3]. To
analyze the lower bounds of second as well as third order nonlinearity many authors con-
tributed their work to distinct classes of Boolean functions [12, 14, 15, 18, 19, 24]. In this
article, for m = 2p, we analyze the lower bounds on higher order nonlinearity of a Boolean
function fα(u) = trm1 (αu(2p−1)3+1), for all u ∈ F2m , α ∈ F

∗
2m and a Boolean function

gα(u) = trm1 (αu2
p−2), for all u ∈ F2m , α ∈ F

∗
2m .

2 Preliminaries

Assuming that F2 is the finite field and F
m
2 is the vector space of all m−tuples over F2.

Bm,2 represents the set of all m−variable Boolean functions and is the function from F
m
2 to

F2. Since Fm
2 is isomorphic to the finite field F2m therefore, a Boolean function can also be

considered as a function from F2m to F2. The support of a Boolean function h is given by
Sh = {u ∈ F

m
2 : h(u) �= 0}, whose cardinality | Sh | is known as the Hamming weight of h.

Boolean functions are represented by their truth table representation in which all the 2m

elements of Fm
2 are in lexicographically increasing order that is

[h(0, 0, ..., 0), h(0, 0, ..., 1), ..., h(1, 1, ..., 1)].
If the truth table of a Boolean function has the same number of 0′s and 1′s, then the

Boolean function is known as a balanced Boolean function. The balancedness of a Boolean
function can also be defined with the help of its Hamming weight. That is, for a Boolean
function h ∈ Bm,2, if wt(h) = 2m−1, then it is considered to be balanced . To study the
cryptographic properties of Boolean functions it is not always favorable to represent Boolean
functions by their truth table, so we study an another representation of Boolean functions
which is known as Algebraic Normal Form (ANF).

The Algebraic Normal Form of a Boolean function h can be defined as

h(u1, u2, ..., um) =
∑

a=(a1,a2,...,am )∈Fm2
μa

( m∏

i=1

uaii

)
,
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where μa ∈ F2. The number of variables in the highest order term of the Algebraic Normal
Form of a Boolean function h for which μa �= 0 is known as the algebraic degree of h and
is denoted by deg(h).The trace function trms : F2m → F2s , where m = qs for some integer
q can be defined as

trms (u) = u + u2
s + u2

2s + ... + u2
m−s

,

for all u ∈ F2m . When s = 1, the trace function trm1 : F2m → F2 is known as the absolute
trace function. The absolute trace function trm1 : F2m → F2 has some properties which are
as follows:

1. trm1 is a linear transformation from F2m into F2.

2. trm1 (u2
i
) = trm1 (u), for all u ∈ F2m and i is any positive integer.

Suppose u, v ∈ F
m
2 . Let us define 〈u, v〉 = u1v1 + u2v2 + ... + umvm which is known

as the inner product of u and v. Also, 〈u, v〉 = trm1 (uv), for all u, v ∈ F2m is known as the
trace of the product of u and v.

Let h1, h2 ∈ Bm,2, then the Hamming distance d(h1, h2) is defined by

d(h1, h2) =| {u ∈ F2m : h1(u) �= h2(u)} | .

The r − th order nonlinearity of h1 is the least hamming distance between h1 and all the
Boolean functions having algebraic degree at most r i.e.,

nlr (h1) = minh2∈Bm,2, deg(h2)≤r d(h1, h2).

When r = 1, it is simply denoted by nl(h1).
Let h ∈ Bm,2 and α ∈ F

m
2 then the Walsh-Hadamard transform of h at α is defined as

Wh(α) =
∑

u∈Fm2
(−1)h(u)+〈u,v〉.

In terms of trm1 (αu), for all α, u ∈ F2m , the Walsh-Hadamard transform of a Boolean
function h ∈ Bm,2 can also be defined as

Wh(α) =
∑

u∈F2m
(−1)h(u)+trm1 (αu).

The multiset [Wh(α) : α ∈ F
m
2 ] is known as the Walsh spectrum of h. For a Boolean

function h ∈ Bm,2, the nonlinearity and the Walsh-Hadamard transform are correlated as
follows:

nl(h) = 2m−1 − 1

2
max
α∈Fm2

| Wh(α) | .

A Boolean function h ∈ Bm,2 is known as bent function if h has maximum nonlinearity
with r = 1 i.e., nl(h) = 2m−1 − 2

m
2 −1.

The derivative of a Boolean function h ∈ Bm,2 with respect to x ∈ F
m
2 is defined as

Dxh(u) = h(u) + h(u + x),

for all u ∈ F
m
2 . The higher-order derivative can be obtained by extending the definition of

the derivative of a Boolean function. Let Wj be a j−dimensional subspace of Fm
2 having

x1, x2, ..., x j as a basis. Then the j−th order derivative of h with respect to Wj is defined as

DWj h(u) = Dx1Dx2 ...Dx j h(u) =
∑

w∈F j
2

h

⎛

⎝u +
j∑

i=1

wi xi

⎞

⎠ ,
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for all u ∈ F
m
2 .

Let the set of all invertible matrices of orderm ×m is denoted by GL(m,F2). The entries
of matrices of GL(m,F2) are either 0 or 1. Let g, h ∈ Bm,2 are two Boolean functions. For
a matrix M ∈ GL(m,F2), y, α ∈ F

m
2 and ε ∈ F2 if

h(u) = g(Mu + y) + 〈α, u〉 + ε,

for all u ∈ F
m
2 , then g and h are known as affine equivalent.

Let d ∈ {1, 2, ..., 2m − 2} be any integer. Then d is known as Niho exponent and if
ud is restricted to F2p linearly, it is known as Niho power function or we can say that if
d ≡ 2i (mod 2p − 1).

For any prime power k, a polynomial

P(u) =
m∑

i=0

ζi u
ki ,

where each ζi ∈ Fks (an extension field of Fk) is known as a linearized polynomial over Fks .

Proposition 2.1 [3] Let h ∈ Bm,2 and r < m be any positive integer. Then for all 0 < j < r ,

nlr (h) ≥ 1

2 j
max

x1,x2,...,x j∈F2m
nlr− j (Dx1Dx2 ...Dx j h).

We shall use the notation [l, x1, x2, ..., xm] for any collection of integers with the afore-
mentioned characteristics:

1.
∑m

j=1 x j = l.
2. x j > 0, for all j = 1, 2, ...,m.
3. x j ∧ xk = 0, for all 1 ≤ j < k ≤ m, where ∧ is the bitwise AND operation.

It indicates that m non-empty disjoint groups are formed from one bit of the binary
representation of l.

Lemma 2.2 [16] Let u, v ∈ F2m and l > 0 then

(u + v)l =
∑

[l, j,k]
u jvk + ul + vl .

Lemma 2.3 [16] Let t, l and x j > 0 are positive integers then for all j = 1, 2, ..., t

Dx1Dx2 ...Dxt u
l =

∑

[l,β0,β1,...,βt ]
uβ0 xβ1

1 ...xβt
t + constant .

Let us assume a quadratic Boolean function h ∈ Bm,2. It is said that the bilinear form
B(a, b) associated with h is B(a, b) = h(0)+h(a)+h(b)+h(a+b). The kernel of B(a, b)
[1] is the subspace of F2m and is defined by

εh = {a ∈ F2m : B(a, b) = 0, f or all b ∈ F2m }.

Lemma 2.4 [1] Let Fq be the field of characteristic 2 and W be the vector space of Fq . If
Q : W → Fq is a quadratic form on W then the parity of the dimensions of W and the kernel
of B(u, v) is the same.
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Lemma 2.5 [1, 22] Let h : F2m → F2 be the Boolean quadratic form and the bilinear form
associated with h is B(u, v). Let b be the dimension of the kernel of B(u, v). The Walsh
spectrum of h depends only on the dimension b. Also the Walsh spectrum of h is given by:

Wh(α) Number of α

0 2m − 2m−b

2(m+b)/2 2(m−b−1)/2 + (−1)h(0)2(m−b−2)/2

−2(m+b)/2 2(m−b−1)/2 − (−1)h(0)2(m−b−2)/2

3 Main result

In the below given results, we contributed our work to find the general lower bounds on the
higher order nonlinearity of some classes of Boolean functions. In Theorem 3.1, we study
the nonlinearity of Boolean function with higher order by using the Niho power function,
which was given by Dobbertin et al. [9]. In Theorem 3.2, we compute the lower bound on
higher order nonlinearity of the inverse Boolean function.

Theorem 3.1 Let m = 2p, where p > 0 and a Boolean function fα ∈ Bm,2 of the form

fα(u) = trm1 (αud),

where d = (2p − 1)3 + 1, for all u ∈ F2m , α ∈ F
∗
2m . Then

nl(r=p−1) fα(u) ≥ 2p+1 − 2
p+1
2 .

Proof The Boolean function fα(u) is of algebraic degree p [9]. By applying Proposition 2.1,
we obtain

nl(r=p−1) fα(u) ≥ 1

2p−2 max
x1,x2,...,xp−2

nl(Dx1Dx2 ...Dxp−2( fα(u))). (3.1)

Let x1, x2, ..., xp−2 ∈ F2m , then observe that

Dx1Dx2 ...Dxp−2( fα(u)) = Dx1Dx2 ...Dxp−2(tr
m
1 (αud)).

Hence,

Dx1Dx2 ...Dxp−2( fα(u)) = trm1

(
α

(
Dx1Dx2 ...Dxp−2(u

d)
))

. (3.2)

Now by applying Lemma 2.3, we get

Dx1Dx2 ...Dxp−2(u
d) =

∑

[d,γ0,γ1,...,γp−2]
uγ0 xγ1

1 ...x
γp−2
p−2 + constant . (3.3)

From Eqs. (3.2) and (3.3), we have

Dx1Dx2 ...Dxp−2( fα(u)) = trm1 (α
∑

[d,γ0,γ1,...,γp−2]
uγ0 xγ1

1 ...x
γp−2
p−2 + constant).

Also, it is very well known that in the binary form of d = (2p − 1)3 + 1 there exist p ones
and each γi > 0, for all i , must possess at least one of them. Again, in the binary form of
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γ0 there are p − (p − 2) = 2 ones. Therefore, the above Boolean function is a quadratic
Boolean function. Let us assume that gα(u) be an affine equivalent Boolean function to
Dx1Dx2 ...Dxp−2( fα(u)) which can be obtained from the above expression by eliminating all
the terms with wt(γ0) = 1 and the constant terms in the sum. Since Dx1Dx2 ...Dxp−2( fα(u))

and gα(u) are affine equivalent, therefore they both have the same nonlinearity. The bilinear
form B(u, v) associated with gα(u) is

B(u, v) = gα(0) + gα(u) + gα(v) + gα(u + v).

Then by applying Lemma 2.2, we have

B(u, v) = trm1

⎛

⎝
p∑

i=1

vβi

⎛

⎝
∑

[d,λ,βi ,γ1,...,γp−2]
αuλxγ1

1 ...x
γp−2
p−2

⎞

⎠

⎞

⎠ .

Then,

B(u, v) = trm1 (

p∑

i=1

vβi Qi (u)),

where,
Qi (u) =

∑

[d,λ,βi ,γ1,...,γp−2]
αuλxγ1

1 ...x
γp−2
p−2 .

Since in the binary form of d there are p ones and λ, βi , γi , ..., γp−2 are p in number for
i = 1, 2, ..., p. Consequently, they are all powers of 2. By applying the properties of linearity
v2

m = v and the property of trace function, trm1 (u2
i
) = trm1 (u), for all u ∈ F2m , B(u, v)

becomes to

B(u, v) =
p∑

i=1

trm1 (vQi (u)
2m
βi ),

or

B(u, v) = trm1 (v

p∑

i=1

Qi (u)
2m
βi ).

Therefore,
B(u, v) = trm1 (vQ(u)),

where, Q(u) = ∑p
i=1 Qi (u)

2m
βi .

By the definition, the kernel of B(u, v) is ε f = {u ∈ F2m : B(u, v) = 0, f or all v ∈ F2m }.
So, ε f has equal number of zeros of the polynomial Q(u), where

Q(u) =
p∑

i=1

∑

[d,λ,βi ,γ1,...,γp−2]
α

2m
βi u

2mλ
βi x

2mγ1
βi

1 ...x
2mγp−2

βi
p−2 ,

or

Q(u) =
p∑

i=1

∑

[d,λ,βi ,γ1,...,γp−2]
α

1
βi u

λ
βi x

γ1
βi
1 ...x

γp−2
βi

p−2 .
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Since, there are same number of zeroes in Q(u) and Q(u)2
p−1

. Therefore, the number of
elements in ε f and the number of zeroes of the polynomial Q(u)2

p−1
are also same. Hence,

we have,

Q(u)2
p−1 =

p∑

i=1

∑

[d,λ,βi ,γ1,...,γp−2]
α

2p−1
βi u

2p−1λ
βi x

2p−1γ1
βi

1 ...x
2p−1γp−2

βi
p−2 ,

a linearized polynomial in u whose degree is at most 2p−1. Also, the kernel ε f has at most
2p−1 number of elements. Let the kernel of B(u, v) has dimension k, by applying Lemma
2.4, k ≤ p − 1, since m is even. Therefore, by using Lemma 2.5, for all u ∈ F2m , we obtain,

WDx1 Dx2 ...Dxp−2 fα (u) ≤ 2
2m+k

2 ≤ 2
3p−1
2 .

So,

nlDx1 Dx2 ...Dxp−2 fα (u) ≥ 22p−1 − 2
3p−3
2 . (3.4)

From Eqs. (3.1) and (3.4), we have,

nl(r=p−1) fα(u) ≥ 2p+1 − 2
p+1
2 .

��
Theorem 3.2 Let m = 2p, where p > 0 and let gα be a Boolean function of the form

gα(u) = trm1 (αud),

where d = (2p − 2), for all u ∈ F2m , α ∈ F
∗
2m . Then

nl(r=p−2)gα(u) ≥ 2p+2 − 2
p+3
2 .

Table 1 Comparison of the lower bounds of the higher order nonlinearity

r,p,m 3,4,8 4,5,10 5,6,12 6,7,14 7,8,16 8,9,18 9,10,20 10,11,22

Lower bounds
acquired in [4]

0 0 0 0 0 0 0 0

Lower bounds
acquired in [17]

16 32 64 128 256 512 1024 2048

Lower bounds
acquired in
Theorem 3.1

26.343 56 116.686 240 489.373 992 2002.745 4032
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Proof For any positive integer p, we know that 2p − 2 = 2p−1 + 2p−2 + ... + 22 + 2.
Therefore, the binary expansion of 2p − 2 has p − 1 ones. Hence the algebraic degree of
gα(u) is p − 1. By Proposition 2.1, we obtain

nl(r=p−2)gα(u) ≥ 1

2p−3 max
x1,x2,...,xp−3

nl(Dx1Dx2 ...Dxp−3(gα(u))). (3.5)

Let x1, x2, ..., xp−3 ∈ F2m , then observe that

Dx1Dx2 ...Dxp−3(gα(u)) = Dx1Dx2 ...Dxp−3(tr
m
1 (αud)).

Hence,

Dx1Dx2 ...Dxp−3(gα(u)) = trm1

(
α

(
Dx1Dx2 ...Dxp−3(u

d)
))

. (3.6)

Now by applying Lemma 2.3, we get

Dx1Dx2 ...Dxp−3(u
d) =

∑

[d,γ0,γ1,...,γp−3]
uγ0 xγ1

1 ...x
γp−3
p−3 + constant . (3.7)

From Eqs. (3.6) and (3.7), we have

Dx1Dx2 ...Dxp−3(gα(u)) = trm1 (α
∑

[d,γ0,γ1,...,γp−3]
uγ0 xγ1

1 ...x
γp−3
p−3 + constant).

Since in the binary form of d = (2p − 2) there exist p − 1 ones and each γi > 0, for all i ,
must have at least one of them. Also, in the binary form of γ0 there are 2 ones. Therefore,
the Boolean function gα(u)is quadratic. Let us assume that hα(u) be an affine equivalent
Boolean function to Dx1Dx2 ...Dxp−3(gα(u))which canbeobtained from the above expression
by eliminating all the terms with wt(γ0) = 1 and the constant terms in the sum. Since
Dx1Dx2 ...Dxp−3(gα(u)) and hα(u) are affine equivalent, therefore they both have the same
nonlinearity. The bilinear form B(u, v) associated with hα(u) is

B(u, v) = hα(0) + hα(u) + hα(v) + hα(u + v).

Also, we have
B(u, v) = trm1 (vQ′(u)),

where, Q′(u) = ∑p−1
i=1 Q′

i (u)
2m
βi .

Now on proceeding as Theorem 3.1, we can get

nl(r=p−2)gα(u) ≥ 2p+2 − 2
p+3
2 .

��

4 Comparison

Carlet [4] has given the lower bounds of the higher order nonlinearity of the Dillon bent
function. Also Garg [17] has computed lower bounds of the higher order nonlinearity of the
monomial partial spread Boolean function. In the below Table 1, a comparison of the lower
bounds acquired in Theorem 3.1 with those gained by Carlet and Garg is given.
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5 Conclusion

The lower bounds on the higher order nonlinearity of Boolean function with Niho exponent
and inverse Boolean function have been discussed in the article. Also, after the comparison,
it has been discovered that the lower bounds obtained in this paper are better than the lower
bounds obtained by Carlet and Garg. Hence, after analyzing the other properties of cryp-
tography of these Boolean functions, they can be used in ciphers (block cipher and stream
cipher) as combiners or filters. The future aspect of this paper is to study and compute the
lower bounds of higher order nonlinearity of some other classes of Boolean functions.
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