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Abstract
We completely characterize all permutation trinomials of the form f (x) = x3(1+ axq−1 +
bx2(q−1)) over Fq2 , where a, b ∈ F

∗
q and all permutation trinomials of the form f (x) =

x3(1 + bx2(q−1) + cx3(q−1)) over Fq2 , where b, c ∈ F
∗
q in both even and odd characteristic

cases.
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Mathematics Subject Classification (2010) 11T06 · 11T71 · 12E10

1 Introduction

Let q be a power of a prime, Fq be a finite field with q elements and F
∗
q = Fq \ {0}. A

polynomial is called a permutation polynomial if it induces a bijection on Fq . Permutation
polynomials over finite fields have been studied by many researchers for a rather long time.
The main interest is to obtain permutation polynomials that look simple, having some addi-
tional properties which are required in some applications in some areas such as coding theory,
crptography and combinatorial designs etc. In general permutation polynomials having such
properties are hard to obtain.

To the best of our knowledge permutation polynomials were first studied by Dickson and
Hermite (see, [11, 15]). For the interested readers, we believe that the books on finite fields
(see, [28] and Chapter 8 in [30]) will be a good beginning to get into the topic, and moreover
the survey papers (see, [17, 19, 32, 40]) will be very useful to go over many of the recent
results on permutation polynomials. For some more results on permutation polynomials over
finite fields we refer the interested reader to [5, 6, 13, 18, 26, 27] and the references therein.
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In recent years there has been a great interest on determining permutation properties of
polynomials of the form

f (x) = xr (1 + axs1(q−1) + bxs2(q−1)) ∈ Fq2 [x], (1)

where r , s1, s2 are positive integers and a, b ∈ Fq2 (see for instance [4, 7, 21, 22, 25, 31, 36]).
In this paper we work on some types of permutation trinomials of the form as in (1) over

the finite field Fq2 . We develop a method to characterize certain permutation polynomials
completely. Our method starts with a clever choice of polar coordinate transformation as an
important technical step. Then we use an algorithmic method to decide whether the resulting
polynomial in two variables is irreducible or not. This algorithmic method allows us to obtain
all permutation polynomials in our classes as follows: The ones which lead to factorizations
are easy to decide whether they are permutations or not. The ones which are irreducible turn
out not to be permutations by using the well known Hasse-Weil inequality. We apply our
method to some classes of polynomials of the form xr (1+ axs1(q−1) + bxs2(q−1)) over Fq2 .
In particular, we obtain not only new permutation polynomials over Fq2 analogous to the
ones in [18] and [42] but we also obtain a complete characterization.

The paper is organized as follows: In the preliminaries section we explain the ideas that
we use throughout the paper in details. In [18] Hou determined all necessary and sufficient
conditions for which the polynomial g(x) = x(a + bxq−1 + x2(q−1)) permutes Fq2 for both
even and odd characteristic finite fields. Inspired by this result, in Section 3, we study the
permutation properties of the polynomial f (x) = x3(1+axq−1+bx2(q−1)) over Fq2 , where
a, b ∈ F

∗
q and we find all necessary and sufficient conditions on a, b such that f (x) is a

permutation trinomial of Fq2 in both even and odd characteristic cases.
In Zha et al. [42] determined that the polynomials of the form x3 + x2q+1 + x3q = x3(1 +
x2(q−1) + x3(q−1)) are permutation polynomials over Fq2 , where q = 2m iff m is odd (see
[42, Theorem 4.1]). In Section 4 we completely classify all permutation trinomials of a more
general form f (x) = x3 + bx2q+1 + cx3q = x3(1 + bx2(q−1) + cx3(q−1)) over Fq2 , where
b, c ∈ F

∗
q in both even and odd characteristic cases.

We explain our contributions in each section via Remarks 1, 2. Finally in Section 5 we
compare the results of our paper with the existing permutation trinomials in the literature
under the quasi-multiplicative equivalence.

2 Preliminaries

There is a well known criterion due to Wan and Lidl [38], Park and Lee [34], Akbary and
Wang [3], Wang [39] and Zieve [43] which is very useful for deciding whether a polynomial
of the form f (x) = xr h

(
x (qn−1)/d

)
permutes Fqn or not, which is given in the following

lemma.

Lemma 1 [3, 34, 38, 39, 43] Let h (x) ∈ Fqn [x] and d, r be positive integers with d dividing
qn − 1. Then f (x) = xr h

(
x (qn−1)/d

)
permutes Fqn if and only if the following conditions

hold:

(i) gcd (r , (qn − 1) /d) = 1,
(ii) xr h (x)(q

n−1)/d permutes μd , where μd = {a ∈ F
∗
qn | ad = 1}.

In all cases we study in this paper we plan to apply Lemma 1 over the finite field Fq2 with
d = q+1, but instead of trying to find the conditions for which f (x) = xr h(x)q−1 permutes
μq+1 we use the following idea throughout the paper:
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Let z be an arbitrary element in Fq2 \ Fq . We define the map φ (x) = x + z

x + zq
, for any

x ∈ Fq with φ (∞) = 1. We first observe that φ is one to one from Fq ∪ {∞} to μq+1 by the
following discussion:
Assume that φ(x) = φ(y) for some x, y ∈ Fq , that is,

x + z

x + zq
= y + z

y + zq

which implies that (x − y)zq = (x − y)z. Whenever x �= y we obtain zq = z which gives
a contradiction since z ∈ Fq2 \ Fq . Thus φ is one to one. Moreover φ is also onto since we

have the same number of elements on both sides. Then one obtains that φ−1 (x) = xzq − z

1 − x
,

for any x �= 1 with φ−1 (1) = ∞. In this setting, f (x) = xr h(x)q−1 is one to one on μq+1

and thus permutes μq+1 if and only if the map
(
φ−1 ◦ f ◦ φ

)
is one to one on Fq ∪ {∞}.

The situation can be easily followed in the diagram below:

An important further technique we use is that we choose z ∈ Fq2 \Fq suitably so that the
computations become simpler.

3 Permutation trinomials of the form x3 + axq+2 + bx2q+1 over Fq2 ,
where a,b ∈ F

∗
q

In this section, aiming both necessity and sufficiency, we study the permutation properties of
the polynomial f (x) = x3(1+ axq−1 + bx2(q−1)) over Fq2 , where a, b ∈ F

∗
q (see Remark 1

below).
We first observe that,

f (x) = x3(1 + axq−1 + bx2(q−1)) = x3h(xq−1),

where h(x) = 1+ax +bx2 with a, b ∈ F
∗
q . As we plan to apply Lemma 1, we must first find

out a, b ∈ F
∗
q for which the polynomial h(x) = 1 + ax + bx2 ∈ Fq [x] does not have any

roots in μq+1. If h(1) = 0 or h(−1) = 0, then h(x) has a root in μq+1 trivially, therefore we
characterize all such polynomials in the next proposition under the assumptions h(1) �= 0
and h(−1) �= 0.

Proposition 1 Let Fq be a finite field and h(x) = 1 + ax + bx2 ∈ Fq [x] where a, b ∈ F
∗
q .

Assume that h(1) = 1 + a + b �= 0, h(−1) = 1 − a + b �= 0. Then h(x) has no roots in
μq+1 if and only if one of the following conditions hold:

i) b �= 1,
ii) b = 1 and

⎧
⎪⎪⎨

⎪⎪⎩

Tr

(
1

a

)
= 0, if char(Fq) is even,

a2 − 4 is a nonzero square in Fq , if char(Fq) is odd.
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Proof Let x ∈ μq+1 such that h(x) = 0, that is, xq = 1/x and 1 + ax + bx2 = 0. Taking
the q-th power of the equation 1 + ax + bx2 = 0 and inserting xq = 1/x we obtain

x2 + ax + b = 0.

Hence there exists x ∈ μq+1 such that h(x) = 0 if and only if the following system

bx2 + ax + 1 = 0
bx2 + abx + b2 = 0

}
(2)

holds. Subtracting the equations in the above system (2) we get:

a(1 − b)x + 1 − b2 = 0. (3)

Assuming that b �= 1we get x = −(1+b)
a ∈ Fq∩μq+1 = {−1, 1} but this gives a contradiction

since h(1) �= 0 and h(−1) �= 0. Thus h(x) has no roots in μq+1 if b �= 1. Now, assume
that b = 1, then h(x) = x2 + ax + 1. Assume that x ∈ μq+1 is a root of h(x), that is,
x2 + ax + 1 = 0. First, assume that char(Fq) = 2, then we obtain

x2 + ax = 1 ⇐⇒ x2

a2
+ 1

a
x = 1

a2
⇐⇒ y2 + y = 1

a2
,

where y = x/a. If Tr

(
1

a2

)
= Tr

(
1

a

)
= 0 then x/a ∈ Fq which implies that x ∈

Fq ∩μq+1 = {−1, 1} but this is not possible since h(1) �= 0 and h(−1) �= 0. Therefore h(x)

has no roots in μq+1 iff Tr

(
1

a

)
= 0 in the even characteristic case.

Next, assume that char(Fq) is odd. Then we have

0 = x2 + ax + 1 = x2 + ax + a2

4
+ 1 − a2

4
⇐⇒

(
x + a

2

)2 = a2 − 4

4
.

Thus, h(x) has no roots in μq+1 iff a2 − 4 is a nonzero square in Fq in the odd characteristic
case. ��

Now, suppose that h(x) has no roots inμq+1, then for any x ∈ μq+1 we have the following

x3h(x)q−1 = x3(bx2q + axq + 1)

bx2 + ax + 1
= x3(bx−2 + ax−1 + 1)

bx2 + ax + 1
= x3 + ax2 + bx

bx2 + ax + 1
.

Let g(x) = x3 + ax2 + bx

bx2 + ax + 1
, φ (x) = x + z

x + zq
and thus φ−1 (x) = xzq − z

1 − x
, where z ∈

Fq2 \ Fq .
We define �(z; x) := (x + z)3 + a(x + z)2(x + zq) + b(x + z)(x + zq)2. Then we have the
following

(g ◦ φ)(x) = �(z; x)
�(zq ; x) = (x + z)3 + a(x + z)2(x + zq) + b(x + z)(x + zq)2

b(x + z)2(x + zq) + a(x + z)(x + zq)2 + (x + zq)3

and thus

(φ−1 ◦ g ◦ φ)(x) =
�(z; x)
�(zq ; x) z

q − z

1 − �(z; x)
�(zq ; x)

= �(z; x)zq − z�(zq ; x)
�(zq ; x) − �(z; x) .
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Hereafter, in this section we deal with odd characteristic and even characteristic cases seper-
ately.

First, assume that Fq is a finite field of odd characteristic and let zq = −z, then we get
the following

�(z; x)zq − z�(zq ; x) = −2z
(
(1 + a + b)x3 + (3 − a − b)z2x

)

and
�(zq ; x) − �(z; x) = −2z

(
(3 + a − b)x2 + (1 + b − a)z2

)
.

Thus,

(φ−1 ◦ g ◦ φ)(x) = �(z; x)zq − z�(zq ; x)
�(zq ; x) − �(z; x) = (1 + a + b)x3 + (3 − a − b)z2x

(3 + a − b)x2 + (1 + b − a)z2
. (4)

First, we deal with the case where 3 + a − b = 0 in the following proposition.

Proposition 2 Let Fq be a finite field of odd characteristic, where gcd(3, q − 1) = 1. Let
h(x) = bx2 + ax + 1, with a, b ∈ F

∗
q . Assume that h(x) has no roots in μq+1, that is, h(x)

satisfies the conditions in Proposition 1, and 3+ a − b = 0. If char(Fq) �= 3 then there are
no permutation polynomials of the form f (x) = x3h(xq−1) of Fq2 . If char(Fq) = 3 then

f (x) = x3h(xq−1) is a permutation polynomial of Fq2 iff a = b and b
b−1 is a square in Fq .

Proof In this case, after computing

(φ−1 ◦ g ◦ φ)(x) − (φ−1 ◦ g ◦ φ)(y)

x − y

using the equation in (4) and simplifying we obtain the following

C(x, y) := x2 + xy + y2 + A, where A = (3 − b)

b − 1
z2. (5)

Note that, if b−1 = 0 then 3+a−b = 0 implies that a = −2 and thus f is not a permutation
polynomial since h(x) has a root (i.e., h(1) = 1 + a + b = 0) in μq+1. Hence we assume
that b �= 1. We also have A �= 0 otherwise b = 3 and this implies a = 0 but a ∈ F

∗
q .

First, assume that C(x, y) in (5) is not absolutely irreducible over the algebraic closure Fq of
Fq and it can be decomposed in the form:

(x + αy + lot)(β1x + β2y + lot) = β1x
2 + (β2 + β1α)xy + β2αy

2 + lot (6)

Later in this proof we determine exactly in which extensions of Fq α, β1, β2 lie. Here and
throughout the paper we use “lot” as the abbreviated form of the so called “lower order
terms”. Comparing the coefficients of degree 2 terms in (6) with the ones in C(x, y) in (5) we
obtain: β1 = 1, β2 +α = 1 and β2α = 1 which implies that α(1−α) = 1. Now, substituting
β1 = 1, β2 = 1 − α and α(1 − α) = 1 in (6) we get:

(x + αy + α1)(x + (1 − α)y + α2) (7)

= x2 + xy + y2 + (α2 + α1)x + (αα2 + α1(1 − α))y + α1α2

Comparing the coefficients of degree 1 terms in (6) with the ones in C(x, y) in (5) we obtain:
α1+α2 = 0 sowehaveα2 = −α1 andαα2+α1(1−α) = 0which implies thatα1(1−2α) = 0.
Note that α1 �= 0 as A = −α2

1 and A �= 0. Thus wemust have α = 1/2. Substituting α = 1/2
in α(1 − α) = 1 we obtain that 4 = 1 which is only possible if char(Fq) = 3. Therefore,
C(x, y) is absolutely irreducible in the case where char(Fq) �= 3. Homogenizing C(x, y) in
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(5) with x = X
Z and y = Y

Z we obtain a homogeneous polynomial of degree d = 2. Then by
the Hasse-Weil bound (see [20, Theorem 5.28]) we have the following:

c(d) = 1
2d(d − 1)2 + 1, note that c(d) = 2 as d = 2, hence

| N − q |≤ (d − 1)(d − 2)q1/2 + c(d) = 2,

where N is the number of affine Fq -rational points of C(x, y). This implies that if q − 2 > 2
then C(x, y) in (5) has an affine Fq -rational point off the line x = y and thus f (x) is not a
permutation polynomial of Fq2 .

Next, if char(Fq) = 3 then α = 1/2, A = −α2
1 = −b

b − 1
z2 and by 3 + a − b = 0 we

have a = b. Assume that x + 1
2 y + α1 = 0 for some x, y ∈ Fq . Taking its q-th power we

obtain x + 1
2 y+α

q
1 = 0. Subtracting these two equations we get that αq

1 = α1, thus α1 ∈ Fq .
On the other hand α2

1 = b
b−1 z

2, where z ∈ Fq2 \Fq . Thus, α1 /∈ Fq iff b
b−1 is a square in Fq .

��
Next, assume that 3 + a − b �= 0. Note also that 1 + b + a �= 0, 1 + b − a �= 0 since

h(−1) �= 0, h(1) �= 0. Then by (4) we have:

x3 + (3 − b − a)

(1 + b + a)
z2x

x2 + (1 + b − a)

(3 − b + a)
z2

= x3 + Ax

x2 + B
, (8)

where A = z2
(3 − b − a)

1 + b + a
and B = z2

(1 + b − a)

3 − b + a
�= 0 since h(−1) = 1 + b − a �= 0.

First, we consider the case where −B is a square in Fq . In this case there exists x ∈ Fq such
that the denominator of the fraction in (8), that is, x2 + B becomes zero which implies that
∞ has at least three distinct preimages under the map (φ−1 ◦ g ◦ φ)(x) and therefore g(x)
is not a permutation polynomial. Thus, from here on assume that −B is not a square in Fq ,

that is,
−(1 + b − a)

3 − b + a
is a square in Fq since z ∈ Fq2 \ Fq .

Computing

x3 + Ax

x2 + B
− y3 + Ay

y2 + B
x − y

one gets the following

C(x, y) := x2y2 + (B − A)xy + B(x2 + y2) + AB. (9)

In this setting, (φ−1 ◦ g ◦ φ) permutes Fq if and only C(x, y) defined in (9) is not zero for
any x, y ∈ Fq with x �= y. The following theorem completes the problem in the remaining
case for finite fields of odd characteristic, where 3 + a − b �= 0.

Theorem 3 Let Fq be a finite field of odd characteristic, where gcd(3, q − 1) = 1. Let
h(x) = bx2 + ax + 1, with a, b ∈ F

∗
q . Assume that 3+ a − b �= 0. Then f (x) = x3h(xq−1)

is a permutation polynomial of Fq2 iff one of the following conditions hold

i b = 1, a �= ±2 and a2 − 4 is a square in Fq ,

ii b �= 1, b2+3b−a2 = 0,
−(1 + b − a)

3 + a − b
is a square inFq , 1+a+b �= 0 and 1+b−a �= 0.

Proof We need to check all decompositions of the bivariate polynomial C(x, y) in (9) into
absolutely irreducible factors in Fq , where Fq stands for an algebraic closure of the finite
field Fq . Since the degree of the bivariate polynomial in (9) is 4, the possibilities are: 3 + 1
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decomposition and 2+ 2 decomposition according to the degrees of the possible factors and
finally the case where the bivariate polynomial C(x, y) in (9) is absolutely irreducible. We
first fix a monomial ordering by taking x ≥ y without loss of generality.
We begin the discussion with 3+1 decomposition. Let C(x, y) defined in (9) be decomposed
in the following form

(x + α1y + lot)(β1x3 + γ1x2y + δ1xy2 + η1y3 + lot) (10)

= β1x4 + (γ1 + α1β1)x3y + (δ1 + α1γ1)x2y2 + (η1 + α1δ1)xy3 + α1η1y4 + lot .

By comparing the coefficients of the degree 4 terms in (10) with the ones in C(x, y) defined
in (9), we obtain that: β1 = 0, γ1 = 0, δ1 = 1, α1 = 0 and η1 = 0. Substituting these in (10)
we have

(x + lot)(xy2 + lot),

that is, writing down the possible lower order terms, the decomposition is as follows:

(x + α)(xy2 + α2x2 + β2xy + γ2y2 + lot) (11)

= x2y2 + α2x3 + β2x2y + (γ2 + α)xy2 + lot .

Now, by comparing the coefficients of the degree 3 terms in (11) with the ones in C(x, y)
defined in (9), we observe that α2 = 0, β2 = 0, γ2 = −α. Thus we have

(x + α)(xy2 − αy2 + α3x + β3y + lot) (12)

= x2y2 + α3x2 + β3xy − α2y2 + lot .

By comparing the coefficients of the degree 2 terms in (12) with the ones in C(x, y) defined
in (9), we observe that α3 = −α2 = B, β3 = B − A. That is, we have

(x + α)(xy2 − αy2 + Bx + (B − A)y + β) (13)

= x2y2 + (B − A)xy + B(x2 + y2) + (β + αB)x + α(B − A)y + αβ.

By comparing the coefficients of the degree 1 terms in (13) with the ones in C(x, y) defined
in (9), we observe that β = −αB and α(B − A) = 0 which implies that B = A since α �= 0
(as −α2 = B �= 0). Finally, comparing the constant term in (13) with the one in C(x, y) we
get αβ = AB and substituting β = −αB in αβ = AB, we obtain that A = B = −α2. Thus
we have

(x + α)(xy2 − αy2 − α2x + α3) = (x + α)(x − α)(y + α)(y − α), (14)

so we end up with the 1+1+1+1 decomposition of C(x, y). Now, we have

A = B �⇒ z2
(3 − b − a)

1 + b + a
= z2

(1 + b − a)

3 − b + a
, that is,

(3 − b − a)(3 − b + a) = (1 + b − a)(1 + b + a)

which implies that b = 1.Note that−α2 = B, soα /∈ Fq sincewe have that−B = z2
(a − 2)

a + 2

is not a square in Fq (that is,
a − 2

a + 2
is a square in Fq ) and thus none of the factors in the

decomposition (14) can have a root in Fq . Therefore, in this case, f (x) is a permutation

poynomial iff b = 1, a �= ±2 and
a − 2

a + 2
is a square in Fq , that is, a2 − 4 is a square in Fq .
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Next, we deal with the possible 2+2 decompositions of C(x, y). Here, there are two
possibilities: C(x, y) defined in (9) is either decomposed in the form

(x2 + α1xy + β1y
2 + lot)(α2x

2 + β2xy + γ2y
2 + lot) (15)

or

(xy + α1x + β1y + lot)(xy + α2x + β2y + lot). (16)

First, assume that C(x, y) is decomposed in the form (15).

(x2 + α1xy + β1y2 + lot)(α2x2 + β2xy + γ2y2 + lot) (17)

= α2x4 + (β2 + α1α2)x3y + (γ2 + α1β2 + α2β1)x2y2

+(α1γ2 + β1β2)xy3 + β1γ2y4 + lot .

After comparing the coefficients of degree 4 terms of (15) with the ones in C(x, y) defined
in (9) we get: α1 = 0, α2 = 0, β1 = 0, β2 = 0, γ2 = 1, so we end up with the following
decomposition

(x2 + α3x + β3y + lot)(y2 + α4x + β4y + lot) (18)

= x2y2 + α4x3 + β4x2y + α3xy2 + β3y3 + lot .

Comparing the coefficients of degree 3 terms of (18) with the ones in C(x, y) defined in (9)
we get: α4 = 0, β4 = 0, α3 = 0, β3 = 0. Thus we have

(x2 + η)(y2 + ζ ) = x2y2 + ζ x2 + ηy2 + ηζ. (19)

Comparing the coefficients of (19) with the ones in C(x, y) defined in (9) we obtain that
B − A = 0, that is, A = B (implying b = 1) and η = ζ = B. Now, if x2 + η = 0 for
some x ∈ Fq then we have x2 = −η = −B, that is, −B is a square in Fq which gives a
contradiction. Thus x2 + η �= 0 and similarly y2 + ζ �= 0 for any x, y ∈ Fq . Therefore in

this case, f (x) is a permutation poynomial iff b = 1, a �= ±2 and
a − 2

a + 2
is a square in Fq ,

that is, a2 − 4 is a square in Fq .
Next, assume that C(x, y) is decomposed in the form (16).

(xy + α1x + β1y + lot)(xy + α2x + β2y + lot) (20)

= x2y2 + (α1 + α2)x2y + (β1 + β2)xy2 + lot .

After comparing the coefficients of degree 3 terms of (16) with the ones in C(x, y)we obtain:
α2 = −α1 and β2 = −β1 and so we end up with the following decomposition

(xy + α1x + β1y + α)(xy − α1x − β1y + β) (21)

= x2y2 − α2
1x

2 + (β + α − 2α1β1)xy − β2
1 y

2 + lot .

Comparing the coefficients of degree 2 terms in (21) with the ones in C(x, y) we obtain
−α2

1 = −β2
1 = B and β + α − 2α1β1 = B − A. By −α2

1 = −β2
1 = B we deduce that

α1, β1 /∈ Fq sincewe have that−B is not a square inFq , which further implies thatαq
1 = −α1

and β
q
1 = −β1 (as −α2

1 = −β2
1 = B ∈ Fq ). Thus, we have α2

1 = β2
1 which implies that

either α1 = β1 or α1 = −β1.
Now, assume that α1 = β1, then substituting α1 = β1 and −α2

1 = −β2
1 = B in β + α −

2α1β1 = B − A we obtain β = −(A + B + α). Then the decomposition in (21) becomes
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the following:

(xy + α1x + α1y + α)(xy − α1x − α1y − (A + B + α)) (22)

= x2y2 − α2
1(x

2 + y2) + (B − A)xy − α1(A + B + 2α)(x + y) − α(A + B + α).

Comparing the coefficients of degree 1 terms and the constant terms in (22) with the ones

in C(x, y), we obtain A + B + 2α = 0 as α1 �= 0 and so α = −(A + B)

2
. Comparing the

constant term in (22) with the one in C(x, y), we obtain −α(A+ B +α) = AB. Substituting

α = −(A + B)

2
in −α(A + B + α) = AB we obtain AB = (A + B)2

4
which implies that

(A − B)2 = 0 then A = B and so b = 1.
Assume that there exists x, y ∈ Fq such that xy+α1x +α1y+α = 0. Taking its q-th power
we get xy −α1x −α1y +α = 0. Subtracting these two equations we obtain 2α1(x + y) = 0
which implies that x = −y since α1 �= 0 (as −α2

1 = B �= 0). Substituting x = −y in the
equation xy + α1x + α1y + α = 0 we get −x2 + α = −x2 − B = 0 which contradicts
with the fact that −B is not a square in Fq . Thus, we conclude that none of the factors in
the decomposition (22) can have roots in Fq . Therefore, in this case, f (x) is a permutation

poynomial iff b = 1, a �= ±2 and
a − 2

a + 2
is a square in Fq , that is, a2 − 4 is a square in Fq .

Finally, assume that α1 = −β1. Then by (21) we have the following decomposition:

(xy + α1x − α1y + α)(xy − α1x + α1y − (A − 3B + α)). (23)

Comparing the coefficients of degree 1 terms and the constant terms in (23) with the ones

in C(x, y) we obtain α = β, AB = α2 and α = 3B − A

2
. Substituting α = 3B − A

2
in

AB = α2 we get (9B − A)(B − A) = 0 implying that either A = B or A = 9B.
If A = B then b = 1 and we obtain that f (x) is a permutation poynomial iff b = 1, a �= ±2

and
a − 2

a + 2
is a square in Fq , that is, a2 − 4 is a square in Fq . If 9B = A then we obtain

b2 + 3b − a2 = 0.
Assume that there exists x, y ∈ Fq such that xy+α1x −α1y+α = 0. Taking its q-th power
we get xy −α1x +α1y +α = 0. Subtracting these two equations we obtain 2α1(x − y) = 0
implying that x = y since α1 �= 0. Therefore, in this case f (x) is a permutation poynomial

iff b2 + 3b − a2 = 0,
−(1 + b − a)

3 + a − b
is a square in Fq , 1 − a + b �= 0, 1 + a + b �= 0 and

b �= 1 (otherwise, if b = 1, b2 + 3b − a2 = 0 implies that a = ±2 which contradicts with
1 − a + b �= 0 or 1 + a + b �= 0).

As the last step, we deal with the absolutely irreducible case. Assume that C(x, y) defined
in (9) is absolutely irreducible. Homogenizing C(x, y) in (9) with x = X

Z and y = Y
Z we

obtain a homogeneous polynomial of degree d = 4. Then by the Hasse-Weil bound (see [20,
Theorem 5.28]) we have the following:
c(d) = 1

2d(d − 1)2 + 1, note that c(d) = 19 as d = 4, hence

| N − q |≤ (d − 1)(d − 2)q1/2 + c(d) ≤ 6q1/2 + 19,

where N is the number of affine Fq -rational points of C(x, y). This implies that if q−6q1/2−
19 > 4 then C(x, y) has an affine Fq -rational point off the line x = y. As q is a prime power,
we note that q −6q1/2 −19 > 4 for any such q provided that q ≥ 79. As a result, we deduce
that f (x) is not a permutation polynomial of Fq2 if C(x, y) is absolutely irreducible and
q ≥ 79. It remains to consider q < 79. Now, since characteristic of Fq is odd and 3 does not
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Table 1 List of all pairs of coefficients (a, b) of permutation polynomials of F81 of the form f (x) =
x3h(xq−1), where h(x) = bx2 + ax + 1, with a, b ∈ F

∗
9 and x

2 + 2x + 2 ∈ F3[x] is the minimal polynomial
of α obtained by Proposition 2

(a, b) (α, α) (α3, α3) (2, 2)

divide q − 1 we need to consider only q ∈ {3, 5, 9, 11, 17, 23, 27, 29, 41, 47, 53, 59, 71}.
Using MAGMA [29], we observe that there are no other permutation polynomials of the
form f (x) other than the ones obtained by Proposition 2 and Theorem 1. ��

Next, assume that Fq is a finite field of even characteristic. Note that if char(Fq) is even
then in order to have gcd(3, q − 1) = 1, q must be of the form q = 22k+1, for some k ∈ N.
Let z ∈ Fq2 \ Fq satisfying z2 + z + 1 = 0. Note that z ∈ Fq2 \ Fq satisfying zq + z = 1.
Then we get the following

�(z; x)zq − z�(zq ; x) = (1 + a + b)x3 + ax2 + (a + 1)x + b + 1

and
�(zq ; x) − �(z; x) = (1 + a + b)x2 + (1 + a + b)x + a + b.

Thus, we get

(φ−1 ◦ f ◦ φ)(x) = �(z; x)zq − z�(zq ; x)
�(zq ; x) − �(z; x) (24)

= (1 + a + b)x3 + ax2 + (a + 1)x + b + 1

(1 + a + b)x2 + (1 + a + b)x + a + b
.

Let A2 = a

1 + a + b
, A1 = a + 1

1 + a + b
, A0 = b + 1

1 + a + b
and B0 = a + b

1 + a + b
, so we

have B0 = A1 + A0.

Computing

x3 + A2x2 + A1x + A0

x2 + x + B0
− y3 + A2y2 + A1y + A0

y2 + y + B0

x − y
one gets the following

C(x, y) := x2y2+x2y+xy2+B0(x
2+ y2)+xy+(A2B0+ A0)(x+ y)+ A1B0+ A0. (25)

In this setting, (φ−1 ◦ f ◦ φ) permutes Fq if and only C(x, y) defined in (25) is not zero for
any x, y ∈ Fq with x �= y. Our second main result in this section is given in the following
theorem.

Theorem 4 Let Fq be a finite field of even characteristic, where q = 22k+1, for some k ∈ N.
Let h(x) = bx2 + ax + 1, with a, b ∈ F

∗
q . Then f (x) = x3h(xq−1) is a permutation

polynomial of Fq2 iff one of the following conditions hold

i) b = 1 and Tr

(
1

a

)
= 0,

ii) b �= 1, 1 + a + b �= 0 and a2 = b(1 + b).

Proof The proof can be done in an analogous way to Theorem 1 therefore we omit the proof
in order not to repeat the similar long discussions on all possible decompositions. ��
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Example 1 In the following tables we explicitly give the coefficients over the finite field F9

of all permutation polynomials obtained from Proposition 2 and Theorem 1. Here, F9 is
the smallest nontrivial finite field containing coefficients a, b which give rise to permutation
polynomials of the form f (x) = x3h(xq−1) of F81, where h(x) = bx2 + ax + 1. Let
x2 + 2x + 2 ∈ F3[x] be the minimal polynomial of α, that is F∗

9 =< α >. In Tables 1 and 2
below we list all pairs of coefficients (a, b) of permutation polynomials of F81 of the form
f (x) = x3h(xq−1), where h(x) = bx2 + ax + 1, with a, b ∈ F

∗
9 obtained by Proposition 2

and Theorem 1 respectively .

Example 2 In the following table we explicitly give the coefficients over the finite field F8

of all permutation polynomials obtained from Theorem 2. Here, F8 is the smallest nontrivial
finite field containing coefficients a, b which give rise to permutation polynomials of the
form f (x) = x3h(xq−1) of F64, where h(x) = bx2 + ax + 1. Let x3 + x + 1 ∈ F2[x]
be the minimal polynomial of α, that is F∗

8 =< α >. In Table 3 below we list all pairs of
coefficients (a, b) of permutation polynomials of F64 of the form f (x) = x3h(xq−1), where
h(x) = bx2 + ax + 1, with a, b ∈ F

∗
8 and x3 + x + 1 ∈ F2[x] is the minimal polynomial of

α, obtained by Theorem 2.

Remark 1 In recent years, there have been many attempts to find new classes of permutation
trinomials of the form f (x) = xr (1 + axs1(q−1) + bxs2(q−1)) ∈ Fq2 [x], where r , s1, s2
are positive integers and a, b ∈ Fq2 . In Hou [18] determined all necessary and sufficient
conditions for which the polynomial g(x) = x(a + bxq−1 + x2(q−1)) permutes Fq2 for both
even and odd characteristic finite fields. Inspired by this result, in this section, we studied
on the permutation properties of the polynomial f (x) = x3(1 + axq−1 + bx2(q−1)) over
Fq2 , where a, b ∈ F

∗
q and we completely determined all necessary and sufficient conditions

on a, b such that f (x) is a permutation trinomial of Fq2 in both even and odd characteristic
cases.

4 Permutation trinomials of the form x3 + bx2q+1 + cx3q over Fq2 ,
where b, c ∈ F

∗
q

InZha et al. [42] determined that the polynomials of the form x3+x2q+1+x3q are permutation
polynomials over Fq2 , where q = 2m iff m is odd (see [42, Theorem 4.1]). Inspired by this
result, in this section we study the permutation properties of the more general polynomial
f (x) = x3 + bx2q+1 + cx3q over Fq2 , where b, c ∈ F

∗
q in both odd and even characteristic

cases (see Remark 2 below).
We first observe that,

f (x) = x3 + bx2q+1 + cx3q = x3(1 + bx2q−2 + cx3q−3) = x3h(xq−1),

Table 2 List of all pairs of coefficients (a, b) of permutation polynomials of F81 of the form f (x) =
x3h(xq−1), where h(x) = bx2 + ax + 1, with a, b ∈ F

∗
9 and x

2 + 2x + 2 ∈ F3[x] is the minimal polynomial
of α obtained by Theorem 1

(a, b) (α2, 1) (α5, α) (α6, 1) (α7, α3) (1, 2)
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Table 3 List of all pairs of coefficients (a, b) of permutation polynomials of F64 of the form f (x) =
x3h(xq−1), where h(x) = bx2 + ax + 1, with a, b ∈ F

∗
8 and x3 + x + 1 ∈ F2[x] is the minimal poly-

nomial of α, obtained by Theorem 2

(a, b) (α, α4) ,(α2, α) (α3, 1) (α4, α2) (α5, 1) (α6, 1)

where h(x) = 1 + bx2 + cx3 with b, c ∈ F
∗
q . As we plan to apply Lemma 1, we must first

find out b, c ∈ F
∗
q for which the polynomial h(x) = 1 + bx2 + cx3 ∈ F

∗
q [x] have roots in

μq+1.

Proposition 5 Let h(x) = 1 + bx2 + cx3 ∈ Fq [x] where b, c ∈ F
∗
q . Assume that h(1) =

1 + b + c �= 0, h(−1) = 1 + b − c �= 0. Then there exists x ∈ μq+1 such that h(x) = 0
if and only if one the following conditions hold according to the characteristic of the finite
field Fq :

(i) b = 1 − c2 and Tr(1/c) = 1 if char(Fq) is even.
(ii) b = 1 − c2 and c2 − 4 is a nonsquare in Fq if char(Fq) is odd.

Proof We first claim that if h(x) has a root in μq+1 then it must be in Fq2 \ Fq . Assume
that there exists x ∈ μq+1 ∩ Fq such that h(x) = 0, then we have x = xq = 1/x implying
x2 = 1, that is, x = 1 or x = −1 both of which contradict with the assumptions h(1) �= 0
and h(−1) �= 0. Now, let x ∈ μq+1 such that h(x) = 0, that is, xq = 1/x and

1 + bx2 + cx3 = 0 ⇔ x3 + b

c
x2 + 1

c
= 0.

Taking the q-th power of the equation 1+ bx2 + cx3 = 0 and inserting xq = 1/x we obtain

1 + bx2q + cx3q = 1 + b
1

x2
+ c

1

x3
= 0 ⇔ x3 + bx + c = 0. (26)

Hence, there exists x ∈ μq+1 such that h(x) = 0 if and only if the following system

x3 + bx + c = 0

x3 + b

c
x2 + 1

c
= 0

}

(27)

holds. Subtracting the equations in the above system (27) we get:

b

c
x2 − bx + 1

c
− c = 0 (28)

and then multiplying the equation in (28) by
c

b
we have:

x2 − cx + 1

b
− c2

b
= 0. (29)

Letting δ = 1 − c2

b
, the equation in (29) becomes

x2 − cx + δ = 0. (30)

Here, we note that δ �= 0, because otherwise the equation in (30) implies that either x = 0
or x = c, which contradicts with the claim as 0, c ∈ Fq . Note also that δ ∈ Fq . Taking the
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q-th power of the equation in (30) and substituting xq = 1/x , we obtain

1

x2
− c

x
+ δ = 0 ⇔ δx2 − cx + 1 = 0 ⇔ x2 − c

δ
x + 1

δ
= 0. (31)

Now, subtracting the equations in (30) and (31) we have

− cx + c

δ
x + δ − 1

δ
= 0, (32)

which is equivalent to

c

(
1

δ
− 1

)
x + δ2 − 1

δ
= 0 ⇔ c(1 − δ)x + (δ2 − 1) = 0. (33)

If δ �= 1, then by the equation in (33) we get

cx − (δ + 1) = 0 ⇔ x = δ + 1

c
,

which contradicts with the claim, since
δ + 1

c
= 1 − c2 + b

bc
∈ Fq . Thus, δ = 1, that is,

b = 1 − c2, so the proof of the first condition in both cases is complete. First, assume that
char(Fq) = 2. Using the equation in (30) and that δ = 1, we obtain

x2 + cx = 1 ⇐⇒ x2

c2
+ x

c
= 1

c2
⇐⇒ y2 + y = 1

c2
(34)

where y = x/c. Note that, if Tr(1/c2) = Tr(1/c) = 0 then y = x/c ∈ Fq , so x ∈
Fq ∩ μq+1 = {1} which is not possible by the assumption h(1) �= 0, therefore Tr(1/c) = 1.
Next, assume that char(Fq) is odd. Using the equation in (30) and that δ = 1, we obtain

x2 − cx + 1 = x2 − cx + c2

4
+ 1 − c2

4
= 0 ⇔ x2 − cx + c2

4
= c2 − 4

4
,

which holds if and only if
(
x − c

2

)2 = c2 − 4

4
. (35)

Using the equation in (35) and the claim, we obtain that
c2 − 4

4
must be a nonsquare in Fq ,

or equivalently c2 − 4 must be a nonsquare in Fq and this completes the proof of the secod
condition. ��

Now, suppose that h(x) has no roots in μq+1, then for any x ∈ μq+1 we have:

x3h(x)q−1 = x3(1 + bx2q + cx3q)

1 + bx2 + cx3
= x3(1 + bx−2 + cx−3)

1 + bx2 + cx3
= x3 + bx + c

cx3 + bx2 + 1
.

Let g(x) = x3 + bx + c

cx3 + bx2 + 1
, φ (x) = x + z

x + zq
and thus φ−1 (x) = xzq − z

1 − x
, where z ∈

Fq2 \ Fq . Let Fq be a finite field of odd characteristic and zq = −z, z ∈ Fq2 \ Fq . We
define �(z; x) := (x + z)3 + b(x + z)(x + zq)2 + c(x + zq)3 and so we obtain �(zq ; x) =
c(x + z)3 + b(x + z)2(x + zq) + (x + zq)3. Then we have

(g ◦ φ)(x) = �(z; x)
�(zq ; x) = (x + z)3 + b(x + z)(x + zq)2 + c(x + zq)3

c(x + z)3 + b(x + z)2(x + zq) + (x + zq)3
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and thus

(φ−1 ◦ g ◦ φ)(x) =
�(z; x)
�(zq ; x) z

q − z

1 − �(z; x)
�(zq ; x)

= �(z; x)zq − z�(zq ; x)
�(zq ; x) − �(z; x) ,

where
�(z; x)zq − z�(zq ; x) = −2z

(
(1 + b + c)x3 + z2(3 − b + 3c)x

)

and
�(zq ; x) − �(z; x) = 2z

(
(3c + b − 3)x2 + z2(c − 1 − b)

)
.

Thus,

(φ−1 ◦ g ◦ φ)(x) = �(z; x)zq − z�(zq ; x)
�(zq ; x) − �(z; x) = − (1 + b + c)x3 + z2(3 + 3c − b)x

(3c + b − 3)x2 + z2(c − 1 − b)
.

First we deal with the case where 3 − b − 3c = 0 in the following proposition.

Proposition 6 Let Fq be finite field of odd characteristic, where gcd(3, q − 1) = 1. Let
h(x) = 1+bx2 +cx3 with b, c ∈ F

∗
q . Assume that 3−b−3c = 0. There are no permutation

polynomials of the form f (x) = x3h(xq−1) of Fq2 in this case.

Proof The proof can be done in an analogous way to Proposition 2 therefore we omit the
proof in order not to repeat the similar long discussions. ��
Next, assume that 3 − b − 3c �= 0. Note also that 1 + b − c �= 0, 1 + b + c �= 0 since
h(−1) �= 0, h(1) �= 0. Then we have:

x3 + z2
(3 − b + 3c)

(1 + b + c)x

x2 + (1 + b − c)

(3 − b − 3c)
z2

= x3 + Ax

x2 + B
, (36)

where A = z2
(3 − b + 3c)

1 + b + c
and B = z2

(1 + b − c)

3 − b − 3c
. First, we consider the case where −B

is a square in Fq . In this case there exists x ∈ Fq such that the denominator of the fraction in
(36), that is x2 + B, becomes zero which implies that ∞ has at least three distinct preimages
under the map (φ−1 ◦ f ◦ φ)(x) and therefore f (x) is not a permutation polynomial. Thus,
from here on assume that −B is not a square in Fq , that is,

(1+b−c)
3c+b−3 is a square in Fq since

z ∈ Fq2 \ Fq . Computing

x3 + Ax

x2 + B
− y3 + Ay

y2 + B
x − y

and simplifying one gets:

C(x, y) := x2y2 + (B − A)xy + B(x2 + y2) + AB. (37)

That is, (φ−1 ◦ g ◦ φ) permutes Fq if and only C(x, y) defined in (37) is not zero for any
x, y ∈ Fq with x �= y.

The following theorem completes the problem in the remaining case for finite fields of
odd characteristic, where 3 − b − 3c �= 0.

Theorem 7 Let Fq be a finite field of odd characteristic, where gcd(3, q − 1) = 1. Let
h(x) = 1 + bx2 + cx3 with b, c ∈ F

∗
q . Assume that 3 − b − 3c �= 0. Then x3h(xq−1) is a

permutation polynomial of Fq2 iff one of the following conditions hold:
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Table 4 List of all pairs of coefficients (b, c) of permutation polynomials of F25 of the form f (x) =
x3h(xq−1), where h(x) = 1 + bx2 + cx3, with b, c ∈ F

∗
5, obtained by Theorem 3

(b, c) (2, 4) (2, 1)

(i) b = 1 − c2 and c2 − 4 is a nonzero square in Fq ,

(ii) char(Fq) �= 3, b = −3, c �= −2, 2 and
4 − c2

3
is a nonzero square in Fq .

Proof The proof can be done in an analogous way to Theorem 1 therefore we omit the proof
in order not to repeat the similar long discussions on all possible decompositions. ��
Now, let Fq be a finte field with even characteristic. The following theorem is the main result
of this section in even characteristic case.

Theorem 8 Let Fq be a finite field of even characteristic, where q = 22k+1, k ∈ N. Let
h(x) = 1 + bx2 + cx3 with b, c ∈ F

∗
q . Then x3h(xq−1) is a permutation polynomial of Fq2

iff one of the following conditions hold:

(i) b = 1 + c2 and Tr(1/c) = 0,
(ii) b = 1 and Tr(1/c) = 1.

Proof The proof can be done in an analogous way to Theorem 2 therefore we omit the proof
in order not to repeat the similar long discussions on all possible decompositions. ��
Example 3 In the following tables we explicitly give the coefficients over the finite fields
F5,F7,F9 and F11 of all permutation polynomials obtained from Theorem 3. Here, F5 is
the smallest nontrivial finite field containing coefficients b, c which give rise to permutation
polynomials of the form f (x) = x3h(xq−1) of F25, where h(x) = 1 + bx2 + cx3 with
b, c ∈ F

∗
5. In Tables 4, 5, 6 and 7 below we list all pairs of coefficients (b, c) of permutation

polynomials of Fq2 of the form f (x) = x3h(xq−1), where h(x) = 1 + bx2 + cx3 with
b, c ∈ F

∗
q , obtained by Theorem 3 for q = 5, 7, 9, 11 respectively. Note that, in Table 6,

x2 + 2x + 2 ∈ F3[x] is the minimal polynomial of α, that is F∗
9 =< α >.

Example 4 In the following table we explicitly give the coefficients over the finite field F8

of all permutation polynomials of F64 obtained from Theorem 2. Let x3 + x + 1 ∈ F2[x]
be the minimal polynomial of α, that is F∗

8 =< α >. In Table 8 below we list all pairs of
coefficients (b, c) of permutation polynomials of F64 of the form f (x) = x3h(xq−1), where
h(x) = 1 + bx2 + cx3, with b, c ∈ F

∗
8 obtained by Theorem 2.

Remark 2 In [42] Zha,Hu andFan found out that the polynomials of the form x3+x2q+1+x3q

are permutation polynomials over Fq2 , where q = 2m iff m is odd (see [42, Theorem 4.1]).

Table 5 List of all pairs of
coefficients (b, c) of permutation
polynomials of F49 of the form
f (x) = x3h(xq−1), where
h(x) = 1 + bx2 + cx3, with
b, c ∈ F

∗
7, obtained by Theorem 3

(b, c) (4, 6) (4, 1)
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Table 6 List of all pairs of coefficients (b, c) of permutation polynomials of F81 of the form f (x) =
x3h(xq−1), where h(x) = 1 + bx2 + cx3, with b, c ∈ F

∗
9, obtained by Theorem 7

(b, c) (2, α2) (2, α6)

In this section we worked on the more general polynomial f (x) = x3 + bx2q+1 + cx3q

over Fq2 , where b, c ∈ F
∗
q for both odd and even characteristic cases and we completely

determined all necessary and sufficient conditions for f (x) to be a permutation polynomial
of Fq2 .

5 A comparison with known permutation trinomials

Definition 1 [36] Two permutation polynomials f (x), g(x) ∈ Fq [x] are called quasi-
multiplicative equivalent (abbreviated asQMequivalent), if there exists d ∈ Z, 1 ≤ d ≤ q−1
with gcd(d, q − 1) = 1 and f (x) = ag(cxd), where a, c ∈ F

∗
q .

The above definition which was introduced by Wu, Yuan, Ding and Ma [41], is being used
in the literature (see for instance [12, 33, 36]) in order to decide whether permutations which
are proposed to be new are really new or not. In general it is nontrivial to determine the QM
equivalence of two permutation polynomials theoretically.

In this section we prove that the classses of permutation trinomials obtained in this paper
are not QM equivalent to known classes. We first observe that two QM equivalent permuta-
tions must have exactly the same number of terms. Therefore, we only need to compare the
permuation trinomials found in this paper with known permutation trinomials over Fq2 . We
use the method in [36] for this purpose.

In order to determine whether the permutation polynomials f (x) = x3(1 + axq−1 +
bx2(q−1)) and f (x) = x3(1 + bx2q−2 + cx3q−3) over Fq2 , where a, b, c ∈ F

∗
q are QM

equivalent to any permutation trinomial of the form g(x) = a1xk1 + a2xk2 + a3xk3 ∈ Fq [x]
we will use the following strategy:

Step 1: Determining whether there exists an integer k, 1 ≤ k ≤ q2 − 1, such that
gcd(k, q2 − 1) = 1 and {k1, k2, k3 mod (q2 − 1)} = {3k, (q + 2)k, (2q + 1)k}.
Step 2: Comparison of the coefficients of b2 f (b1xk) and g(x).

In the above strategy, if Step 1 is not satisfied then f (x) and g(x) will not be QM equivalent,
otherwise we will go on with Step 2 and compare the coefficients of b2 f (b1xk) and g(x).
In Step 1 we observe that in any permutation polynomial which is QM equivalent to our
classes of permutation polynomials, at least one of the ki ’s must be a multiple of 3. For this
purpose we constructed Table 9 by collecting all known permutation trinomials of this form
over finite fields of both even and odd characteristic.

Let f (x) = x3(1+axq−1+bx2(q−1))whichwe considered in Section 3. First we compare
f (x) with the polynomial g1(x) = x3 + x3.2

m + x2
m+2−1 ∈ F22m [x] in [14, Theorem 3.5] in

Table 7 List of all pairs of coefficients (b, c) of permutation polynomials of F121 of the form f (x) =
x3h(xq−1), where h(x) = 1 + bx2 + cx3, with b, c ∈ F

∗
11, obtained by Theorem 7

(b, c) (8, 5) (8, 10) (8, 6) (8, 1) (7, 4) (7, 7) (3, 8) (2, 3)
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Table 8 List of all pairs of coefficients (b, c) of permutation polynomials of F64 of the form f (x) =
x3h(xq−1), where h(x) = 1 + bx2 + cx3, with b, c ∈ F

∗
8, obtained by Theorem 8

(b, c) (α, α5) (α2, α3) (1, α) (1, α2) (1, α4) (1, 1) (α4, α6)

Table 9. Note that 3 | q2−1, where q = 2m . Let (a1, a2, a3) = (3, 3+ (q−1), 3+2(q−1))
and (b1, b2, b3) = (3, 3q, 4q − 1). Note that {a1, a2, a3} is the set of the exponents of
f (x) and {b1, b2, b3} is the set of exponents of g1(x). Assume that there exists an integer
k, 1 ≤ k ≤ q2 − 1 with gcd(k, q2 − 1) = 1 such that {ka1 (mod q2 − 1), ka2 (mod q2 −
1), ka3 (mod q2 − 1)} = {b1, b2, b3}. As 3 | q2 − 1, b1 ≡ 0 (mod 3) and b2 ≡ 0 (mod 3)
then it is necessary that there are at least two elements a ∈ {a1, a2, a3} such that a ≡
0 (mod 3). However a2 �≡ 0 (mod 3) and a3 �≡ 0 (mod 3). This proves that f (x) can not
be QM equivalent to g1(x). Let gi (x) be the corresponding polynomial in the i-th row of
Table 9 for i = 1, 2, 3, 4, 5. The same argument we used above works for gi (x) for 1 ≤ i ≤ 3
and hence f (x) is not QM equivalent to gi (x) for 1 ≤ i ≤ 3. Next we consider gi (x) for
i = 4, 5. Note that gcd(3, q − 1) = 1 for f (x). Hence, if char(Fq) �= 3 then 3 | q2 − 1. The
same argument we used above works for gi (x) for i = 4, 5when char(Fq) �= 3. Assume that
char(Fq) = 3. Then 8 | q2 − 1. In this case q − 1 ≡ 0 or 2 (mod 8). Let (a1, a2, a3) be the
exponents as above and let (b1, b2, b3) = 3(q − 1, q − 1, 3) be the exponents of gi (x). Note
that a j �≡ 0 (mod 8) for 1 ≤ j ≤ 3. However b1 ≡ 0 or 6 (mod 8). Hence it is impossible
to choose 1 ≤ k ≤ q2 − 1 such that gcd(k, q2 − 1) = 1 and ka j ≡ b (mod q2 − 1).
This completes the proof of the fact that f (x) can not be QM equivalent to any gi (x) in
Table 9 for each 1 ≤ i ≤ 5. Let f (x) = x3(1 + bx2q−2 + cx3q−3) that we considered in
Section 4. Assume that f (x) is QM equivalent to g1(x) in Table 9. This implies that there
exists α, β ∈ Fq2 and 1 ≤ k ≤ q2 − 1 with gcd(k, q2 − 1) = 1 such that αg1(βxk) = f (x).
Consequently we obtain that either

αβ3 = 1, αβ4q−1 = b, αβ3q = c (38)

or
αβ3 = c, αβ3q = 1, αβ4q−1 = b. (39)

If (38) and (26) hold, then b = c = 1. This completes the proof of the fact that f (x) in
Section 4 is not QM equivalent to g1(x) if (b, c) �= (1, 1). The argument above also show
that f (x) in Section 4 is not QM equivalent to gi (x) with 1 ≤ i ≤ 3 if (b, c) �= (1, 1).

Table 9 List of all known classes of permutation trinomials of the form ax3r + bxs + cxt over Fq2

i gi (x) condition(s) on m Reference

1 x3 + x3.2
m + x2

m+2−1 ∈ F22m [x] m is odd [14, Theorem 3.5]

2 x3 + x2
m+1+1 + x3.2

m ∈ F22m [x] m is odd [42, Theorem 4.1]

3 x3 + x2
m+2 + x3.2

m ∈ F22m [x] m is odd [42, Theorem 4.2]

4 x3(q−1) + bxq−1 + cx3 ∈ F22m [x] [31, Theorem 4]

5 x3(q−1) + bxq−1 + cx3 ∈ Fq2 [x], q odd [31, Theorem 8]
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Similarly we observe that the polynomial f (x) in Section 4 is not QM equivalent to g4(x)
and g5(x). Thus the classes of permutation polynomials obtained in this paper are completely
new except the case (b, c) = (1, 1) for the polynomial f (x) = x3(1 + bx2q−2 + cx3q−3).
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