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Abstract
Let n > 1 be an odd integer, κ(n) be the product of all distinct prime divisors of n, and let
q be a prime power such that the multiplicative order of q modulo n is a divisor of 3n

κ(n)
. In

this paper, we obtain weight enumerators of all irreducible cyclic codes of length n over Fq

with the help of their generator polynomials.
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1 Introduction

Let n be a positive integer and q be an odd prime such that gcd(n, q) = 1. Let Fq be the

finite field with q elements. A cyclic code C of length n over Fq is an ideal of Fq [x]
〈xn−1〉 . The

weight enumerator of C is defined as A0+ A1z+· · ·+ Anzn , where Ai denotes the number of
codewords with weight i , and the sequence (A0, A1, . . . , An) is called the weight distribution
of C (see [8, Chapters 4 and 7] ).

Further, a minimal ideal in Fq [x]
〈xn−1〉 is called an irreducible cyclic code of length n over Fq .

For any non-negative integer s less than n, the q-cyclotomic coset modulo n containing s is
defined by

C(n)
s = {s, sq, . . . , sq fs−1},
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where fs is the least positive integer such that sq fs ≡ s (mod n). It iswell known thatM(n)
s =

〈 xn−1
m(n)
s (x)

〉 is an irreducible cyclic code of length n over Fq , wherem
(n)
s (x) =

∏

i∈C(n)
s

(x−λi ) and

λ denotes a primitive nth root of unity in some extension of Fq . The distinct q-cyclotomic
cosets modulo n determine not only the total number of distinct irreducible cyclic codes of
length n over Fq but also the generator polynomials of all such irreducible cyclic codes. For
more details, see [13, Chapters 7 and 8].

Cyclic codes have efficient encoding anddecoding algorithms (see [2, 6, 14]). This attribute
of cyclic codes makes them useful in data transmission technologies, consumer electronics,
and communication systems. Note that the weight distribution of a code decides its capability
to detect and correct errors. Since cyclic codes constitute a significant subclass of linear
codes, thus, finding their weight distributions is a research topic of much interest in Coding
Theory. Many researchers have determined the weight distributions of irreducible cyclic
codes by adopting different techniques (see [1, 4, 9–11, 17, 21, 22, 24]). However, the weight
distributions of irreducible cyclic codes of arbitrary length are quite difficult to obtain [4]
and are not known in general. In fact, the problem of finding the weight distribution of an
irreducible cyclic code is an open problem in many cases [3].

Consequently, many researchers obtained the weight distributions of various families
of irreducible cyclic codes by imposing conditions on the choices of n and q . Impres-
sive progress has been made in this direction in the last few decades. For instance, Sharma
et al. [20] computed the weight distributions of all 2m length irreducible cyclic codes over
Fq , and in [19], the authors have determined the weight distributions of all irreducible cyclic
codes of length pm over Fq in three cases: when (i) ordpm (q) = φ(pm), (ii) ordpm (q) is
a power of p, and (iii) ordpm (q) is twice a power of p. Vega [23] generalized the results
of [19]. Recently, Riddhi et al. [15] computed the weight distributions of all irreducible
cyclic codes of length n = pα1

1 pα2
2 . . . pαr

r over Fl for the case when ordpαi
i

(l) = 2pαi−1
i

for each αi ≥ 1. For more information on the work in this direction, we refer the reader
to [5, 7, 12, 16, 18, 25].

Inspired by the earlier work, in this paper, we compute the weight enumerators of irre-
ducible cyclic codes of arbitrary odd length n over Fq , where the multiplicative order of
q modulo n, denoted by ordn(q), is a divisor of 3n

κ(n)
. Here, κ(n) denotes the product of

all distinct prime divisors of n. By our choice of ordn(q), any irreducible cyclic code of
length n over Fq is either m-dimensional or 3m-dimensional, where m is a divisor of n

κ(n)
.

Further, we observe that for computing the weight distributions of irreducible cyclic codes
of length n, we need weight distributions of 1-dimensional and 3-dimensional irreducible
cyclic codes of length u, where u | n. The weight enumerator of the 1-dimensional cyclic
code of length u over Fq is trivial and is given by the expression: 1+ (q − 1)zu . Moreover, if
a 3-dimensional irreducible cyclic code is semi-primitive, then its weight distribution can be
obtained from Theorem 3 of [23] (see [23, Example 3]). However, the weight distributions
of 3-dimensional irreducible cyclic codes are not known in general. Therefore, in Section 3,
we compute the weight distributions of all 3-dimensional irreducible cyclic codes of length u
over Fq from their generator matrices.We find that the weight distribution of a 3-dimensional
irreducible cyclic code depends on gcd(u, q − 1), and thus, we have two cases: when (i)
gcd(u, q − 1) = 1 and (ii) 1 < gcd(u, q − 1) < u.

In Section 4, we prove some general results for determining weight enumerators of m-
dimensional and p∗m-dimensional irreducible cyclic codes of length n over Fq , where m
is a divisor of n

κ(n)
and p∗ is an odd prime. We prove that the computation of the weight
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distribution of M( n
v
)

1 is enough to determine the weight distribution of M(n)
v , where v is a

divisor of n. By writing n = n1n2, where n1 is such that ordpi (q) = p∗ for every prime
divisor pi of n1 and n2 is such that ordp′

i
(q) = 1 for every prime divisor p′

i of n2, we observe

that the weight distribution ofM(n)
v depends on the relation between n1, n2, and v. Therefore,

we have three cases: when (i) n1 | v, (ii) n2 | v, and (iii) neither n1 | v nor n2 | v. The
above three cases are dealt with in Theorems 15, 16 and 17, respectively. The results obtained
in this section are sufficient to compute the weight enumerators of all m-dimensional and
3m-dimensional irreducible cyclic codes of length n over Fq by choosing p∗ = 3.

2 Preliminaries

Throughout this paper, n > 1 is an odd integer, κ(n) denotes the product of all distinct prime
divisors of n, and q is a prime power such that the multiplicative order of q modulo n is a
divisor of 3n

κ(n)
. Further,M(k)

s represents an irreducible cyclic code of length k corresponding
to the q-cyclotomic coset containing s (see [13, Chapter 7]).

Letu be a positive integer such thatordu(q) = 3.Thenm(u)
1 (x) = (x−λ)(x−λq)(x−λq

2
),

where λ is a fixed primitive uth root of unity in some extension of Fq . Clearly, M(u)
1 =

〈 xu−1
m(u)
1 (x)

〉 = 〈g(x)〉 is a 3-dimensional irreducible cyclic code of length u over Fq , where

g(x) is its generator polynomial. Let g(x) = α0 +α1x +α2x2 +· · ·+αu−3xu−3. Therefore,
the generator matrix of M(u)

1 is

G =
⎛

⎝
α0 α1 α2 . . . αu−4 αu−3 0 0
0 α0 α1 α2 . . . αu−4 αu−3 0
0 0 α0 α1 . . . αu−5 αu−4 αu−3

⎞

⎠ .

Definition 1 (Cyclic shift of a matrix) Let T =
⎛

⎝
a11 a12 . . . a1,u−1 a1u
a21 a22 . . . a2,u−1 a2u
a31 a32 . . . a3,u−1 a3u

⎞

⎠

3×u

. Rewrite

T=[C1 C2 C3 . . . Cu], where Ci is the i th column of T . For i = 1, 2, . . . , u− 1, define

T (1) = [Cu C1 C2 . . . Cu−1]
T (2) = [Cu−1 Cu C1 . . . Cu−2]

...

T (u−1) = [C2 C3 . . . Cu C1],
and call T (i) as the i th cyclic shift of T . It can be easily seen that T (u) = T .

Definition 2 (Cyclicmatrix)Amatrix T3×u overFq is called a cyclicmatrix if [a1 b1 c1]T3×u

= [a b c]T (i)
3×u

for some 1 ≤ i ≤ u − 1, where [a1 b1 c1] and [a b c] are row matrices over
Fq .

Theorem 1 The generator matrix G of M(u)
1 = 〈g(x)〉 is always a cyclic matrix.

Proof Let [a b c] be a nonzero row matrix over Fq . Clearly,

[a b c]G = ([a b c]C1, [a b c]C2, . . . , [a b c]Cu)
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is a codeword in M(u)
1 . By the definition of a cyclic code,

([a b c]Cu−i+1, [a b c]Cu−i+2, . . . , [a b c]Cu−i ) = [a b c]G(i)

is also a codeword in M(u)
1 . Since every codeword in M(u)

1 is of the form [a′ b′ c′]G,
therefore, there exists some [a′ b′ c′] over Fq such that [a′ b′ c′]G = [a b c]G(i). Hence,
G is a cyclic matrix. 
�

3 Weight distributions of 3-dimensional irreducible cyclic codes
of length u over Fq

Let u be any positive integer such that ordu(q) = 3. In this section, we obtain the weight
distributions of 3-dimensional irreducible cyclic codes of length u over Fq . The weight
distributions of such codes depend on gcd(u, q − 1).

Let λ be a fixed primitive uth root of unity in some extension of Fq . Clearly, M(u)
1 =

〈 xu−1
m(u)
1 (x)

〉 = 〈g(x)〉 is a 3-dimensional irreducible cyclic code of length u over Fq , where

m(u)
1 (x) = (x−λ)(x−λq)(x−λq

2
). By synthetic division, g(x) = α0+α1x+α2x2+· · ·+

αu−3xu−3, where αu−3 = 1, αi = βi+1 + λq
2
αi+1 for 0 ≤ i ≤ u − 4, βu−2 = 1, and β j =

λ(u−2− j)
(
λ(q−1)(u−1− j)−1

)

λq−1−1
for 0 ≤ j ≤ u − 3. For αu−2 = αu−1 = 0, the generator matrix of

M(u)
1 can be written as

G =
⎛

⎝
α0 α1 α2 α3 . . . αu−4 αu−3 αu−2 αu−1

αu−1 α0 α1 α2 . . . αu−5 αu−4 αu−3 αu−2

αu−2 αu−1 α0 α1 . . . αu−6 αu−5 αu−4 αu−3

⎞

⎠ .

Since every codeword inM(u)
1 is a linear combination of the rows ofG over Fq , therefore,

the weight distribution ofM(u)
1 depends on the columns of G. For this, we discuss the nature

of columns of G. In the following discussion, Ci denotes the i th column of G, where C1 =⎛

⎝
α0

αu−1

αu−2

⎞

⎠, C2 =
⎛

⎝
α1

α0

αu−1

⎞

⎠, and for 3 ≤ i ≤ u, Ci =
⎛

⎝
αi−1

αi−2

αi−3

⎞

⎠. Note that for 1 ≤ i, j ≤ u

and η ∈ Fq \ {0}, Ci = ηC j if and only if αi−1
α j−1

= αi−2
α j−2

= αi−3
α j−3

. Since αi−1
α j−1

= αi−2
α j−2

gives
αi−1
α j−1

= βi−1
β j−1

, and αi−2
α j−2

= αi−3
α j−3

gives αi−2
α j−2

= βi−2
β j−2

. This implies Ci = ηC j if and only if
βi−1
β j−1

= βi−2
β j−2

. Further, βi−1
β j−1

= βi−2
β j−2

if and only if λ(q−1)(i− j) = 1. Therefore, Ci = ηC j if

and only if λ(q−1)(i− j) = 1.
Depending on gcd(u, q − 1), we have the following two theorems:

Theorem 2 Let u be a positive integer such that ordu(q) = 3 and gcd(u, q − 1) = 1. If
G is the generator matrix of M(u)

1 over Fq , then the columns of G are pairwise linearly
independent.

Proof From the above discussion, for 1 ≤ i, j ≤ u and η ∈ Fq \ {0}, Ci=η C j if and
only if λ(q−1)(i− j) = 1. Since gcd(u, q − 1) = 1, therefore, λ(q−1)(i− j) = 1 if and only if
(i − j) ≡ 0 (mod u). Consequently, the columns of G are pairwise linearly independent. 
�

123



Cryptography and Communications (2023) 15:795–809 799

Theorem 3 Let u be a positive integer such that ordu(q) = 3 and 1 < gcd(u, q − 1) < u.
If G is the generator matrix of M(u)

1 over Fq , then for each i with 1 ≤ i ≤ u
gcd(u,q−1) , the

columns Ci and Ci+k∗ u
gcd(u,q−1)

are linearly dependent, where 1 ≤ k∗ < gcd(u, q − 1).

Proof Since Ci=ηC j if and only if λ(q−1)(i− j) = 1 and 1 < gcd(u, q − 1) < u, therefore,
λ(q−1)(i− j) = 1 if and only if (i − j)(q − 1) ≡ 0 (mod u). This implies Ci = ηC j if and
only if j = i + k∗ u

gcd(u,q−1) , where 1 ≤ k∗ < gcd(u, q − 1). Therefore, the columns Ci

and Ci+k∗ u
gcd(u,q−1)

of G are linearly dependent for 1 ≤ k∗ < gcd(u, q − 1). 
�

Now, we obtain the weight distributions of 3-dimensional irreducible cyclic codes of
length u over Fq for the above two cases.

Case I Let gcd(u, q − 1) = 1. For the generator matrix G of M(u)
1 , we define X =

{Ci , 1 ≤ i ≤ u : Ci is a column ofG}. By Theorem 2, all Ci ’s are linearly independent.
Let vik be any non-zero vector orthogonal toCi . Define a subset of X corresponding to vik

as: X (Ci )
vik = {C j : vikC j = 0}. Clearly, X (Ci )

vik �= ∅, and X (Ci )
ηvik = X (Ci )

vik for all η ∈ Fq \ {0}.
If X (C1)

v11 = {C1,C j1 ,C j2 , . . . ,C jd }, then v11C je = 0 for all C je ∈ X (C1)
v11 . Clearly, v11 =

(0, x, y), where x, y ∈ Fq . Consequently, the following system of equations has a common
non-trivial solution:

xα j1−2 + yα j1−3 = 0

xα j2−2 + yα j2−3 = 0

...

xα jd−2 + yα jd−3 = 0

To have a common solution, we must have

α j1−2

α j1−3
= α j2−2

α j2−3
= · · · = α jd−2

α jd−3
.

Hence, we conclude that if a ratio of elements of the 2nd and 3rd rows of G repeats r − 1
times, we get a subset X (C1)

v1k of X such that | X (C1)
v1k |= r . Therefore, we can write X as:

X = X (C1)
v11

∪ X (C1)
v12

∪ · · · ∪ X (C1)
v1 f

∪ · · · ∪ X (C1)
v1(q2−1)

. (1)

Here, f is the number of different ratios of elements of the 2nd and 3rd rows ofG except for
0
0 . Clearly, | X (C1)

v1k |≥ 2 for all 1 ≤ k ≤ f and X (C1)
v1k = {C1} for all f + 1 ≤ k ≤ (q2 − 1).

Consequently, we have the following result.

Theorem 4 If a ratio of elements of the 2nd and 3rd rows of G repeats r − 1 times, then the
ratio corresponds to a subset of X in (1) of order r .

By Theorem 1, we can always find a vector orthogonal to Ci corresponding to a vector
orthogonal to C1. Therefore, the representation of X shown in (1) can be rewritten as:

X = X (Ci )
vi1

∪ X (Ci )
vi2

∪ · · · ∪ X (Ci )
vi f

∪ · · · ∪ X (Ci )
vi(q2−1)

, (2)
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As 1 ≤ i ≤ u, therefore, u different representations of X are as follows:

X = X (C1)
v11

∪ X (C1)
v12

∪ · · · ∪ X (C1)
v1 f

∪ · · · ∪ X (C1)
v1(q2−1)

X = X (C2)
v21

∪ X (C2)
v22

∪ · · · ∪ X (C2)
v2 f

∪ · · · ∪ X (C2)
v2(q2−1)

...

X = X (Cu )
vu1

∪ X (Cu )
vu2

∪ · · · ∪ X (Cu)
vu f

∪ · · · ∪ X (Cu )
vu(q2−1)

.

Clearly, these u representations of X are such that | X (C1)
v1 j |=| X (Ci )

vik | for some 1 ≤ j, k ≤ f .

Theorem 5 If X = X (C1)
v11 ∪ X (C1)

v12 ∪ · · · ∪ X (C1)
v1 f ∪ · · · ∪ X (C1)

v1(q2−1)
has k different subsets of

order r each, then k is a multiple of r .

Proof Let X (C1)
v11 be a subset of order r in

X = X (C1)
v11

∪ X (C1)
v12

∪ · · · ∪ X (C1)
v1 f

∪ · · · ∪ X (C1)
v1(q2−1)

(3)

By Theorem 1, X (C1)
v11 produces r different subsets of order r each in (3). Without loss of

generality, let these subsets be X (C1)
v11 , X (C1)

v12 , . . . , X (C1)
v1r such that | X (C1)

v11 |=| X (C1)
v12 |= · · · =|

X (C1)
v1r |= r . Further, let X (C1)

v1,r+1 be another subset in (3) of order r . Again, by Theorem 1,

there will be another r different subsets, X (C1)
v1,r+1 , X

(C1)
v1,r+2 , . . . , X

(C1)
v1,2r (say) of order r each in

(3). Continuing in this manner, the total number of different subsets of order r in (3) is a
multiple of r . 
�
In the following result, we count the total number of different subsets of order r in all u
representations of X .

Theorem 6 If X = X (C1)
v11 ∪ X (C1)

v12 ∪ · · · ∪ X (C1)
v1 f ∪ · · · ∪ X (C1)

v1(q2−1)
has k different subsets of

order r each, then the number of different subsets of order r in all u representations of X is
uk
r .

Proof Let | X (C1)
v11 |=r . By Theorem 1, X (C1)

v11 produces r different subsets in (3),

X (C1)
v11 , X (C1)

v12 , . . . , X (C1)
v1r (say) such that each has order r . Again by Theorem 1, for each

i with 1 ≤ i ≤ r , X (C1)
v1i produces u different subsets of order r each in all u representations

of X . Therefore, X (C1)
v11 , X (C1)

v12 , . . . , X (C1)
v1r collectively produce ur subsets of order r each.

This collection of ur subsets includes X (C1)
v11 , X (C2)

v21 , . . . , X (Cu )
vu1 . By Theorem 1, each X

(C j )
v j1 ,

1 ≤ j ≤ u, repeats r times in this collection. Hence, X (C1)
v11 , X (C1)

v12 , . . . , X (C1)
v1r collectively

produce u different subsets of order r each in all u representations of X . In other words, a
collection of r subsets of (3) produces u different subsets of order r each. Therefore, if there
are k different subsets of order r in (3), then these k subsets will produce uk

r different subsets
of order r . By Theorem 5, it will always be an integer. 
�
Note that a subset of order r in (3) produces codewords of weight u − r . The total number of
different subsets of order r in (3) can be counted by Theorem 4. Therefore, the total number
of codewords in M(u)

1 of weight u − r , is given by the following theorem.

Theorem 7 Let gcd(u, q − 1) = 1. If there are k distinct ratios of elements of the 2nd and
3rd rows of G, each repeating r − 1 times, then Au−r = u(q−1)k

r .
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Table 1 Weight distribution of

M(u)
1 when gcd(u, q − 1) = 1

Weight Frequency

0 1

u − r1
u(q−1)k1

r1

u − r2
u(q−1)k2

r2

.

.

.
.
.
.

u − rt
u(q−1)kt

rt

u − 1 (q + 1 −
t∑

i=1
ki )u(q − 1)

u q3 − 1 − u(q − 1)

(
t∑

i=1

ki
ri

+ (q + 1 −
t∑

i=1
ki )

)

Proof Since gcd(u, q − 1) = 1, by Theorem 2, columns of G are pairwise linearly indepen-
dent. Clearly, by the fact X (Ci )

ηvik = X (Ci )
vik , Theorems 4 and 6, Au−r = u(q−1)k

r . 
�

Consequently, we have the following result to compute the weight distribution of M(u)
1 .

Theorem 8 Let M(u)
1 = 〈g(x)〉 be an irreducible cyclic code of length u and dimension 3

over Fq such that gcd(u, q − 1) = 1. Let there be k1 distinct ratios each repeating r1 − 1
times, k2 distinct ratios each repeating r2 − 1 times, …, kt distinct ratios each repeating
rt −1 times in ratios of elements of the 2nd and 3rd rows of G (except for 0

0 ). Then the weight

distribution of M(u)
1 is given in Table 1.

Case II Let 1 < gcd(u, q − 1) < u and let the generator matrix of M(u)
1 be

G =
⎛

⎝
α0 α1 α2 . . . αu−4 αu−3 0 0
0 α0 α1 α2 . . . αu−4 αu−3 0
0 0 α0 α1 . . . αu−5 αu−4 αu−3

⎞

⎠

3×u

.

Then by Theorem 3, we write G as

G = (
B1 B2 · · · Bgcd(u,q−1)

)
3×u ,

where Bi is a submatrix of order 3 × u
gcd(u,q−1) and for every j , 2 ≤ j ≤ gcd(u, q − 1),

there exists some y ∈ Fq \ {0} such that Bj = yB1, where

B1 =
⎛

⎝
α0 α1 α2 . . . α(u/gcd(u,q−1))−3 0 0
0 α0 α1 . . . α(u/gcd(u,q−1))−4 α(u/gcd(u,q−1))−3 0
0 0 α0 . . . α(u/gcd(u,q−1))−5 α(u/gcd(u,q−1))−4 α(u/gcd(u,q−1))−3

⎞

⎠

3× u
gcd(u,q−1)

and the columns of B1 are pairwise linearly independent. To compute the weight distribution
of M(u)

1 , we need to count the number of zeros in [a b c]B1, where [a b c] is a non-zero
row vector over Fq . Since the columns of B1 are pairwise linearly independent, therefore,
we proceed as in Case I to count the number of zeros in [a b c]B1. For this we consider
X = {Ci : Ci is a column of B1}. By Theorem 4, to count the number of subsets of order r
in (1), we need to count the ratios of elements of the 2nd and 3rd rows of B1. Furthermore, by
Theorem 3, any subset of order r in (1), produces codewords of weight u − gcd(u, q − 1)r
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in M(u)
1 . Therefore, the following theorem gives the total number of codewords of weight

u − gcd(u, q − 1)r in M(u)
1 .

Theorem 9 Let 1 < gcd(u, q − 1) < u. If there are k distinct ratios of elements of the 2nd
and 3rd rows of B1 each repeating r − 1 times, then Au−gcd(u,q−1)r = u(q−1)k

gcd(u,q−1)r .

Proof Clearly, by the fact X (Ci )
ηvik = X (Ci )

vik , Theorems 3, 4 and 5, Au−gcd(u,q−1)r = u(q−1)k
gcd(u,q−1)r .
�

By Theorem 9, we have the following result to compute the weight distribution of M(u)
1 .

Theorem 10 Let M(u)
1 = 〈g(x)〉 be an irreducible cyclic code of length u and dimension 3

over Fq such that 1 < gcd(u, q − 1) < u. In the ratios of elements of the 2nd and 3rd rows
of B1 (except for 0

0 ), let there be k1 distinct ratios each repeating r1 − 1 times, k2 distinct
ratios each repeating r2 − 1 times, …, kt distinct ratios each repeating rt − 1 times. Then
the weight distribution of M(u)

1 is given in Table 2.

Note 1 It should be noted that if u = 3k and ordu(q) = 3, then by Lemmas 4 and 6 of
[19], ordu/3(q) = 1. Therefore, weight enumerator ofM(u)

1 is: (1+ (q − 1)zu/3)3 (see [23,
Theorem 1 (B)]).

4 Weight enumerators ofm-dimensional and 3m-dimensional
irreducible cyclic codes of length n over Fq

In this section, we prove some results for any irreducible cyclic code of length n over Fq ,

where ordn(q) is a divisor of p∗n
κ(n)

for any odd prime p∗. Recall that κ(n) is the product of all
distinct prime divisors of n. In Theorems 11 and 13, we prove that the weight enumerators of
p∗m-dimensional andm-dimensional irreducible cyclic codes of length n can be determined

Table 2 Weight distribution of

M(u)
1 when

1 < gcd(u, q − 1) < u

Weight Frequency

0 1

u − gcd(u, q − 1)r1
u(q−1)k1

gcd(u,q−1)r1

u − gcd(u, q − 1)r2
u(q−1)k2

gcd(u,q−1)r2

.

.

.
.
.
.

u − gcd(u, q − 1)rt
u(q−1)kt

gcd(u,q−1)rt

u − gcd(u, q − 1)

⎛

⎝q+1−
t∑

i=1

ki

⎞

⎠u(q−1)

gcd(u,q−1)

u q3 − 1 − u(q−1)
gcd(u,q−1)

( t∑

i=1

ki
ri

+(q + 1 − ∑t
i=1 ki )

)
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with the help of p∗-dimensional and 1-dimensional irreducible cyclic codes, respectively,
wherem is a divisor of n

κ(n)
. However, the weight distributions of p∗-dimensional irreducible

cyclic codes are not known in general (see [3, 4]). Note that in Section 3 of this paper, we
have obtained the weight distributions of 3-dimensional irreducible cyclic codes. Thus, by
choosing p∗ = 3 in the following results, we can compute the weight enumerators of all
m-dimensional and 3m-dimensional irreducible cyclic codes of length n over Fq .

Theorem 11 Let gcd(n, p∗) = 1 and m be a divisor of n
κ(n)

. If ordn(q) = p∗m, then

M(n)
1 = C1 ⊕ C2 ⊕ · · · ⊕ Cm, where C1, C2, …, Cm are equivalent irreducible cyclic codes

such that the weight distribution of each Ci is the same as the weight distribution ofM(n/m)
1

over Fq .

Proof Sinceordn(q)= p∗m, therefore, theq-cyclotomic cosetC(n)
1 ={1, q, q2, . . . , q p∗m−1}.

LetM(n)
1 = 〈g1(x)〉. Then g1(x) = xn−1

(x−λ)(x−λq )(x−λq
2
)...(x−λq

p∗m−1
)
, where λ is a fixed prim-

itive nth root of unity in some extension of Fq . Note that (x − λ)(x − λq)(x − λq
2
) . . . (x −

λq
p∗m−1

) = (xm − λm)(xm − λmq) . . . (xm − λmq p∗−1
), therefore,

g1(x) = xn − 1

(xm − λm)(xm − λmq) . . . (xm − λmq p∗−1
)

= yn/m − 1

(y − γ )(y − γ q) . . . (y − γ q p∗−1
)
,

(4)
where xm = y and λm = γ is a primitive (n/m)th root of unity. By our choice, ordn/m(q) =
p∗, therefore by (4), C = 〈g(y)〉 is a p∗-dimensional cyclic code of length n/m, where

g(y) = yn/m−1

(y−γ )(y−γ q )...(y−γ q p
∗−1

)
= α0 + α1y + · · · + α(n/m)−p∗ y(n/m)−p∗

. Consequently,

g1(x) = g(xm) = α0 +α1xm +· · ·+α(n/m)−p∗xn−p∗m . Thus, the generator matrix ofM(n)
1

is

G =

⎛

⎜⎜⎜⎝

α0 0 . . . 0 α1 0 . . . 0 α2 . . . α(n/m)−p∗ 0 0 . . . 0
0 α0 0 . . . 0 α1 0 . . . 0 α2 . . . α(n/m)−p∗ 0 . . . 0
...

...
...

...
...

...
...

0 0 . . . 0 α0 0 . . . 0 α1 0 . . . 0 α2 . . . α(n/m)−p∗

⎞

⎟⎟⎟⎠

p∗m×n

From G, it is clear that
M(n)

1 = C1 ⊕ C2 ⊕ · · · ⊕ Cm,

where Ci = 〈xi−1g(xm), xm+i−1g(xm), . . . , x (p∗−1)m+i−1g(xm)〉. Clearly, C1, C2, …, Cm
are equivalent irreducible cyclic codes and have the same weight distribution. From above,
C1 = 〈g(xm), xmg(xm), . . . , x (p∗−1)mg(xm)〉. Therefore, the weight distribution of C1 is the
same as the weight distribution of the code M(n/m)

1 = 〈g(x)〉 over Fq . 
�

By our choice of ordn(q) in the above theorem, M(n)
1 is a p∗m-dimensional irreducible

cyclic code, and the following corollary provides the weight enumerator of any such code.

Corollary 12 If ordn(q) = p∗m, then the weight enumerator ofM(n)
1 is (A(z))m, where A(z)

is the weight enumerator of M(n/m)
1 .

Theorem 13 Let m be a divisor of n
κ(n)

. If ordn(q) = m, then M(n)
1 = C1 ⊕ C2 ⊕ · · · ⊕ Cm,

where each Ci is equivalent to a 1-dimensional irreducible cyclic code of length n/m over
Fq .
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Proof Since ordn(q) = m, therefore, the q-cyclotomic coset C(n)
1 = {1, q, q2, . . . , qm−1}.

Let M(n)
1 = 〈g1(x)〉. Then g1(x) = xn−1

(x−λ)(x−λq )(x−λq
2
)...(x−λq

m−1
)
, where λ is a fixed primi-

tive nth root of unity in some extension of Fq . Note that (x − λ)(x − λq)(x − λq
2
) . . . (x −

λq
m−1

) = (xm − λm), therefore,

g1(x) = xn − 1

(xm − λm)
= yn/m − 1

(y − γ )
,

where xm = y and λm = γ is a primitive (n/m)th root of unity. Let g(y) = yn/m−1
y−γ

=
γ (n/m)−1 + γ (n/m)−2y + · · · + γ 2y(n/m)−3 + γ y(n/m)−2 + y(n/m)−1. Therefore, g1(x) =
γ (n/m)−1 + γ (n/m)−2xm + · · · + γ xn−2m + xn−m . Clearly, M(n)

1 = C1 ⊕ C2 ⊕ · · · ⊕ Cm,

where each Ci is a block code such that Ci=〈xi−1g(xm)〉 and is equivalent to a 1-dimensional
irreducible cyclic code C′=〈g(x)〉. 
�

In the above theorem, ordn(q) = m suggests that M(n)
1 is an m-dimensional irreducible

cyclic code. The following corollary gives the weight enumerator of any such code.

Corollary 14 If ordn(q) = m, then the weight enumerator of M(n)
1 is (1 + (q − 1)zn/m)m.

Note that if ordn(q) = (p∗)tm and gcd(n, (p∗)t ) = (p∗)t such that ordn/(p∗)tm(q) = 1,
then the weight enumerator of (p∗)tm-dimensional codes can also be obtained by Corollary
14 (see Example 1).

Further, let gcd(n, s) = v, where 1 ≤ s ≤ n. ThenM(n)
s andM(n)

v are equivalent codes.
We write n = n1n2, where n1 is such that ordpi (q) = p∗ for every prime divisor pi of n1
and n2 is such that ordp′

i
(q) = 1 for every prime divisor p′

i of n2. Depending on n1, n2, and
v, we have three cases: when (i) n1 | v, (ii) n2 | v, and (iii) neither n1 | v nor n2 | v.

Now, we compute the weight enumerators of M(n)
v for the above three cases:

Theorem 15 If n1 | v, then the weight enumerator of M(n)
v is (1 + (q − 1)zn/h)h, where

h = ordn/v(q).

Proof Let h be the smallest positive integer such that vqh ≡ v (mod n). This implies that
qh ≡ 1 (mod n

v
). Clearly, h = ordn/v(q). Consequently, M(n)

v is an h-dimensional irre-

ducible cyclic code of length n. Further, C(n)
v = {v, vq, . . . , vqh−1} implies g(n)

v (x) =
xn−1
m(n)

v (x)
= (xn/v−1)(1+xn/v+···+xn(v−1)/v)

m(n)
v (x)

, wherem(n)
v (x) is the minimal polynomial correspond-

ing to the cyclotomic coset C(n)
v .

Let C = 〈 xn/v−1
m(n)

v (x)
〉. Clearly, the dimension of C is h, and by Theorem 13, C = C1 ⊕ C2 ⊕

· · · ⊕ Ch , where Ci ’s are equivalent 1-dimensional irreducible cyclic codes. By Corollary 14,
the weight enumerator of C is (1+ (q −1)zn/vh)h . Hence, the weight enumerator ofM(n)

v =
〈g(n)

v (x)〉 is (1 + (q − 1)zn/h)h . 
�
Theorem 16 If n2 | v, then the weight enumerator ofM(n)

v is (A(zv))h/p∗
, where A(z) is the

weight enumerator of M(p∗n/vh)
1 and h = ordn/v(q).

Proof Let h be the smallest positive integer such that vqh ≡ v (mod n). This implies that
qh ≡ 1 (mod n

v
). Clearly, h = ordn/v(q). Consequently, M(n)

v is an h-dimensional irre-

ducible cyclic code of length n. Further, C(n)
v = {v, vq, . . . , vqh−1} implies g(n)

v (x) =
xn−1
m(n)

v (x)
= (xn/v−1)(1+xn/v+···+xn(v−1)/v)

m(n)
v (x)

, wherem(n)
v (x) is the minimal polynomial correspond-

ing to the cyclotomic coset C(n)
v .
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Let C = 〈 xn/v−1
m(n)

v (x)
〉. Clearly, the dimension of C is h. By Theorem 11, C = C1 ⊕ C2 ⊕ · · · ⊕

Ch/p∗ , where Ci ’s are equivalent irreducible cyclic codes and the weight distribution of each
Ci is the same as the weight distribution of M(p∗n/vh)

1 over Fq . Evidently, M(p∗n/vh)
1 is a

p∗-dimensional irreducible cyclic code and gcd(p∗n/vh, q−1) = 1. Let A(z) be the weight

enumerator of M(p∗n/vh)
1 , then by Corollary 12, the weight enumerator of C is (A(z))h/p∗

.

Hence, the weight enumerator of M(n)
v = 〈g(n)

v (x)〉 is (A(zv))h/p∗
. 
�

Theorem 17 If v is such that neither n1 | v nor n2 | v, then the weight enumerator of M(n)
v

is (A(zv))h/p∗
, where A(z) is the weight enumerator of M(p∗n/vh)

1 and h = ordn/v(q).

Proof The proof is similar to that of Theorem 16 and is thus omitted. 
�
Clearly, if we choose p∗ = 3, then A(z), as mentioned in Theorems 16 and 17, can be

obtained from Tables 1 and 2, respectively. The reason we choose p∗ = 3 is as follows:
One can easily observe from the properties of linear codes that the computation of weight

distribution of an irreducible cyclic code M(n)
1 over Fq is directly related to the counting

of either all lines a1x1 = 0, a1x1 + a2x2 = 0, all planes a1x1 + a2x2 + a3x3 = 0, …, or
all similar geometric structures a1x1 + a2x2 + a3x3 + · · · + anxn = 0, depending on the
dimension of the code. Here, a1, a2, …, an are the coefficients of the generator polynomial
of M(n)

1 . For p∗ = 2, Riddhi et al. [15] observed that it is sufficient to count the lines of the
form a1x1 = 0 to compute the weight distribution of an irreducible cyclic code. Similarly,
for p∗ = 3, we need to count the lines of the form a1x1 + a2x2 = 0. In Section 3, we
have counted all such lines. But for p∗ ≥ 4, it becomes quite tedious to count all geometric
structures of the form a1x1 + a2x2 + · · · + ap∗−1xp∗−1 = 0. Therefore, in the present paper,
we have chosen p∗ = 3, as we can count all the lines explicitly in this case.

5 Some Examples

Example 1 Consider an irreducible cyclic code of length 117 overF79. Here n = 117 = 9 ·13
such that ord9(79) = 3 and ord13(79) = 1. Therefore, ord9·13(79) = 3. Consequently,
M(117)

1 is a 3-dimensional irreducible cyclic code. Thus, by Corollary 14, its weight enumer-
ator is (1 + 78z39)3 = 1 + 474552z117 + 234z39 + 18252z78.

Example 2 Consider irreducible cyclic codes of length n = 7 · 52 over F11. It can be easily
seen that there are 27 distinct 11-cyclotomic cosets modulo 175. Thus, there are 27 distinct
irreducible cyclic codes of length 175 over F11. Note that ord7(11) = 3 and ord5(11) = 1.
Therefore, by Lemmas 4 and 6 of [19], ord7·52(11) = 3 ·5. Clearly,m is a divisor of 5 and has
two choices viz. 1 and 5. Consequently, the aforementioned codes are either 1-dimensional,
3-dimensional, 5-dimensional, or 15-dimensional. SinceM(n)

s andM(n)
v are equivalent codes

if gcd(n, s) = v, where v is a divisor of 175, therefore, we only need to compute the weight
enumerators of M(175)

1 , M(175)
5 , M(175)

7 , M(175)
52

, and M(175)
35 .

First, we compute the weight enumerator ofM(35)
1 = 〈g(x)〉, where g(x) = x32 + x31 +

2x30 + 8x29 + 4x28 + 9x25 + 9x24 + 7x23 + 6x22 + 3x21 + 4x18 + 4x17 + 8x16 + 10x15 +
5x14 + 3x11 + 3x10 + 6x9 + 2x8 + x7 + 5x4 + 5x3 + 10x2 + 7x + 9. Clearly, by Theorem
10, in the ratios of elements of the 2nd and 3rd rows of B1, there are 6 distinct ratios viz.
∞, 2, 3, 6, 1 and 0, each occurring once only. The weight distribution of M(35)

1 is given in
Table 3, and thus its weight enumerator, A(z) = 1 + 210z25 + 420z30 + 700z35.
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Table 3 Weight distribution of

M(35)
1

Weight Frequency

0 1

25 210

30 420

35 700

Next, we considerM(175)
1 . Since ord7·52(11) = 15, therefore,M(175)

1 is a 15-dimensional
code. By Corollary 12, its weight enumerator is: (A(z))5 = (1+210z25+420z30+700z35)5.

Further, the weight enumerator of M(175)
7 is calculated by Theorem 15. In this case,

v = 7, n/v = 52 and ordn/v(11) = 5 i.e. h = 5. Thus, the weight enumerator of M(175)
7 is:

(1 + 10z35)5 = 1 + 50z35 + 1000z70 + 10, 000z105 + 50, 000z140 + 1, 00, 000z175.
Similarly, byTheorem15, theweight enumerator ofM(175)

35 is: 1+10z175. ByTheorem16,

the weight enumerator ofM(175)
52

is A′(z25), where A′(z) is the weight enumerator ofM(7)
1 .

Since gcd(7, 10) = 1, therefore, by Theorem 8, its weight distribution is given in Table 4.
Consequently, A′(z) = 1 + 210z5 + 420z6 + 700z7. Therefore, the weight enumerator of
M(175)

52
is: 1 + 210z125 + 420z150 + 700z175.

Finally, by Theorem 17, the weight enumerator of M(175)
5 is A(z5), where A(z) is the

weight enumerator of M(35)
1 . Since A(z) = 1 + 210z25 + 420z30 + 700z35, therefore, the

weight enumerator of M(175)
5 is: 1 + 210z125 + 420z150 + 700z175.

Example 3 Table 5 gives the weight enumerators of some irreducible cyclic codes of different
lengths.

Further, the reader might think about how one can find the pair (n, q) such that the
multiplicative order of q modulo n is a divisor of 3n

κ(n)
. For finding q for any given length n,

we proceed as follows: Let p1, p2, …, pr−1, pr , …, pt be the prime divisors of n. To find q
such that

ord
p
bi
i

(q) =
{
3 if 1 ≤ i ≤ r − 1;
1 if r ≤ i ≤ t

for some integer bi (1 ≤ i ≤ t), we need to compute the common solution of the following
congruences:

x ≡ k1 (mod pb11 )

x ≡ k2 (mod pb22 )

...

Table 4 Weight distribution of

M(7)
1

Weight Frequency

0 1

5 210

6 420

7 700
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Table 5 Weight enumerators of codes of different lengths

n v q Dimension
ofM(n)

v

Weight enumerator ofM(n)
v

21 1 37 3 1 + 756z15 + 8064z18 + 41832z21

147 1 37 21 (1 + 756z15 + 8064z18 + 41832z21)7

27 1 7 9 (1 + 6z3)9

81 1 7 27 (1 + 6z3)27

77 1 23 3 1 + 462z55 + 2772z66 + 8932z77

847 1 23 33 (1 + 462z55 + 2772z66 + 8932z77)11

847 7 23 11 (1 + 22z77)11

847 77 23 1 1 + 22z847

847 121 23 3 1 + 462z605 + 2772z726 + +8932z847

847 11 23 3 1 + 462z605 + 2772z726 + +8932z847

x ≡ kr−1 (mod pbr−1
r−1 )

x ≡ 1 (mod pbrr )

...

x ≡ 1 (mod pbtt ),

where ki ≡ α

φ(p
bi
i )

3
i (mod pbii ), 1 ≤ i ≤ r − 1, αi is a primitive root modulo pbii , and φ

denotes Euler’s Phi function. We can find x by the Chinese Remainder theorem. Let one
value of x be k, then all other values will be of the form pb11 pb22 · · · pbr−1

r−1 pbrr · · · pbtt l + k,
where l is any positive integer. All those values of x that are either a prime or a prime power
will be possible choices for q . Also, note that we have not restricted q to be less than n. Our
results hold for q > n as well.

Example 4 Let n = 13 · 67 · 7. To obtain q such that ord13(q) = 3, ord67(q) = 3, and
ord7(q) = 1, we find k1 (mod 13) and k2 (mod 67). Since 2 and 7 are primitive roots modulo
13 and 67, respectively, therefore, k1 ≡ 3 (mod 13) and k2 ≡ 29 (mod 67). Next, we find
the common solution of the following congruences:

x ≡ 3 (mod 13)

x ≡ 29 (mod 67)

x ≡ 1 (mod 7).

By the Chinese remainder Theorem, one of the values of x is 29. Since 29 is a prime
number, therefore, one choice of q is 29 for given n.

Example 5 Let n = 33 · 5 = 135, and q be such that ord33(q) = 3 and ord5(q) = 1. Since
5 is a primitive root modulo 27, therefore, k1 ≡ 19 (mod 27). To find q , we need to obtain
the common solution of the following congruences:

x ≡ 19 (mod 27)

x ≡ 1 (mod 5).
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By the Chinese Remainder Theorem, 46 is one of the common solutions of the above
congruences and other solutions will be of the form 135l +46. But 46 is not a prime number.
Therefore, we need to find a solution that is either a prime or a prime power. If we take l = 1,
we get 181, which is a prime number. Similarly, for l = 7, we get another prime 991. Thus,
there are many choices of q for n = 135.

Example 6 Let n = 7100 · 11101, and q be such that ord7100(q) = 3 · 798 and ord11101(q) =
11100. By Lemmas 4 and 6 of [19], ord72(q) = 3 and ord11(q) = 1. Since 5 is a primitive
root modulo 49, therefore, k1 ≡ 18 (mod 49). Now, we find the common solution of the
following congruences:

x ≡ 18 (mod 49)

x ≡ 1 (mod 11).

Clearly, 67 is one such solution. Since 67 is a prime number, therefore, one possible value
of q is 67 for given n.

Further, if we fix q , then the prime factorization of q3 − 1 decides the value of n. In other
words, if q3 − 1 = 2a pα1

1 pα2
2 . . . pαt

t , then n = pβ1
1 pβ2

2 . . . pβt
t (because we are studying

codes of odd length), where βi ≥ 1.

Example 7 If we choose q = 5, then q3 − 1 = 22 · 31 implies that we can obtain the weight
enumerators of all irreducible cyclic codes of length n = 31β1 , where β1 ≥ 1. Similarly,
for q = 29, we can obtain the weight enumerators of all irreducible cyclic codes of length
n = 7β113β267β3 , where at least one of βi ≥ 1.

6 Conclusion

In this paper, we have obtained the weight enumerators of all m-dimensional and 3m-
dimensional irreducible cyclic codes of odd length n over Fq with the help of the weight
enumerators of 1-dimensional and 3-dimensional irreducible cyclic codes of length n/m,
respectively. It would be interesting to find: (i) how codes of even length n over Fq behave
(ii) whether the technique used, in this paper, to compute the weight enumerator of any 3-
dimensional irreducible cyclic code can be extended to four or higher-dimensional irreducible
cyclic codes.
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