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Abstract
Levenshtein first put forward the sequence reconstruction problem in 2001. This problem 
sets a model in which a sequence from some set is transmitted over multiple channels, and 
the decoder receives the different outputs. In this model, the sequence reconstruction prob-
lem is to find the minimum number of channels required to exactly recover the transmitted 
sequence. In the combinatorial context, the problem is equivalent to determining the maxi-
mum intersection between two balls of radius r, where the distance between their centers is 
at least d. The sequence reconstruction problem was studied for strings, permutations and 
so on. In this paper, we extend the study by Konstantinova et al. for reconstruction of per-
mutations distorted by single Kendall τ-errors. While they solved the case where the trans-
mitted permutation can be arbitrary and the erroneous patterns are distorted by at most 
two Kendall τ-errors, we study the setup where the transmitted permutation belongs to a 
permutation code of length n and the erroneous patterns are distorted by at most three Ken-
dall τ-errors. In this scenario, it is shown that n2 − n + 1 erroneous patterns are required in 
order to reconstruct an unknown permutation from some permutation code of minimum 
Kendall τ-distance 2 or an arbitrary unknown permutation for any n ≥ 3.

Keywords Erroneous patterns · Kendall τ-distance · Permutation codes · Sequence 
reconstruction
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1 Introduction

Levenshtein [7] first proposed the sequence reconstruction problem in 2001. In this scene, 
a sequence is transmitted through multiple channels and a decoder receives all the dis-
tinct outputs. Levenshtein [7, 8] determined the minimum number of transmission channels 
required to exactly recover the transmitted sequence. We denote by V and � ∶ V × V → ℕ a 
set of all sequences and a distance metric in V, respectively. In this model, Levenshtein [7] 
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proved that the minimum number of transmission channels has to be greater than the larg-
est intersection of two balls where their centers belong to V,

where Br(x) = {y ∈ V |ρ(x,y) ≤ r} is a ball of radius r centered in x and n is the length 
of sequences in V. We refer to this problem of determining the value of N(n,d,r) as the 
sequence reconstruction problem.

Levenshtein [7] studied the sequence reconstruction problem for several channels with 
some distances such as the Hamming distance, the Johnson graphs and the other metric 
distances. Later, this problem was discussed in the context of permutations [4–6, 12] and 
some other general error graphs [9, 10]. The deletion/insertion case was also explored in 
[11] for insertions and in [1, 2, 13] for deletions.

The sequence reconstruction problem over permutations has received a consider-
able attention in the literature. In particular, Konstantinova in [4, 5] solved this problem 
over permutations with reversal errors. The reconstruction problem for permutations with 
transposition errors was discussed in [6, 10]. The reconstruction problem over permuta-
tions under the Kendall τ-distance was studied for some special cases of d and r in [6, 12]. 
Specifically, Konstantinova et al. in [6] proved that N(n,1,1) = 2 and N(n,1,2) = 2(n − 1). 
Yaakobi et al. in [12] solved that N(n, 2r, r) =

(
2r

r

)
 for r ≤ n/4 and presented some proper-

ties of N(n,d,r).
In this paper, we discuss the reconstruction problem for permutations on n elements 

from their erroneous patterns which are distorted by at most three Kendall τ-errors. First, 
we present some upper bounds on the values of max

x1,x2∈V ,�(x1,x2)=d
{|Br(x1) ∩ Br(x2)|} for d 

= 2,3,4,5,6 and r = 3. Next, we determine that N(n,1,3) = N(n,2,3) = n2 − n for any n ≥ 3.
The rest of this paper is organized as follows. In Section 2, we formally give the defini-

tions of the sequence reconstruction problem and permutations under the Kendall τ-metric. 
In Section 3, we find the exact values of N(n,d,3) when d = 1 and 2. Section 4 concludes 
this paper.

2  Preliminaries

In this section, we present some definitions and notations of the sequence reconstruction 
problem and permutations with the Kendall τ-errors mentioned in [12] and [16].

We denote by Sn the set of all permutations over [n] = {1,2,...,n − 1,n}. Let � ∈ Sn be 
a permutation and π := [π(1),π(2),...,π(n)]. For two permutations �,� ∈ Sn , their multi-
plication π ∘ σ is defined as the composition of σ on π, that is, π ∘ σ(i) = σ(π(i)) for all i 
∈ [n]. Thus, Sn under this definition of multiplication is a noncommutative group of size 
|Sn| = n! . Assume B ⊂ Sn and � ∈ Sn , let α ∘ B = {α ∘β|β∈ B} and B ∘ α = {β∘α|β∈ B}. We 
denote by 𝜖n := [1,2,...,n] and π− 1 the identity element of Sn and the inverse element of π, 
respectively. For an unordered pair of distinct numbers i,j ∈ [n], this pair (i,j) is called an 
inversion in a permutation π if i < j and simultaneously π− 1(i) > π− 1(j). For convenience, 
we denote by Iv(π) the set of all inversions in π. For example, let π = [3,1,2], then Iv(π) = 
{(1,3),(2,3)}.

For any permutation � = [�(1),�(2), ...,�(i),�(i + 1), ...�(n)] ∈ Sn , an adjacent trans-
position is an exchange of two adjacent elements π(i),π(i + 1), resulting in the permuta-
tion [π(1),π(2),...,π(i + 1),π(i),...π(n)] for some 1 ≤ i ≤ n − 1. For any two permutations 

(1)N(n, d, r) = max
x1,x2∈V ,�(x1,x2)≥d

{|Br(x1) ∩ Br(x2)|},
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�,� ∈ Sn , the Kendall τ-distance between two permutations π,σ, defined as dK(π,σ), is the 
minimum number of adjacent transpositions required to obtain the permutation σ from π. 
The expression for dK(π,σ) [3] is as follows:

The Kendall τ-weight of � ∈ Sn , denoted by wK(π), is defined as the Kend-
all τ-distance between π and the identity permutation 𝜖n. For example, the Kendall 
τ-distance between 𝜖3 and π = [3,1,2] is 2, since we can do the adjacent transpositions 
[1, 2, 3] → [1, 3, 2] → [3, 1, 2]. The Kendall τ-metric is right invariant [15], that is, for 
every three permutations �, β, � ∈ Sn , we have

Given any permutation � ∈ Sn , we denote by Bn

K
(�, r) ∶= {� ∈ S

n
|d

K
(�,�) ≤ r} and 

Sn
K
(�, r) ∶= {� ∈ Sn|dK(�,�) = r} the Kendall τ-ball and the Kendall τ-sphere of radius 

r centered at π, respectively. The size of the Kendall τ-ball or the τ-sphere of radius r does 
not depend on the center of the ball or sphere under the Kendall τ-metric. Thus, we denote 
by Bn

K
(r) and Sn

K
(r) the size of Bn

K
(�, r) and Sn

K
(�, r) , respectively.

For two integers d and r, let I(n,d,r) be the size of the largest intersection of two balls of 
radius r and distance d between their centers. That is,

Similarly, let N(n,d,r) be the size of the maximum intersection two balls of radius r and 
distance at least d between their centers. That is,

Assume that a permutation π ∈ C is transmitted over N channels, where C ⊂ Sn and dK(π,β) 
≥ d for any two distinct π,β∈ C, there are at most r errors on each channel, and all the chan-
nel outputs are different from each other. Then, Levenshtein [7] proved that the minimum 
number of channels that guarantees the existence of a decoder that will successfully decode 
any transmitted codeword is given by N(n,d,r) + 1, where the distance between any two 
distinct codewords is at least d. It was shown in [6] that N(n,1,1) = 2 and N(n,1,2) = 2(n 
− 1).

Based on the above definitions and notations, we will determine the exact values of 
N(n,d,3) for d = 1,2 in the following section.

3  The exact values of N(n,d,3) for d = 1,2

In this section, we will give some upper bounds on the values of I(n,d,3) for d ∈ [6] and 
determine the exact values of N(n,d,3) for d = 1,2. In order to obtain these results, we need 
some lemmas as follows. The values of I(n,1,r) have been determined by Yaakobi et al. in 
[12] in the following lemma.

Lemma 1 [12, Theorem 5] For r ≥ 2, the values of I(n,1,r) satisfy the following recursive 
formula

(2)dK(𝜎,𝜋) = |{(i, j) ∶ 𝜎
−1(i) < 𝜎

−1(j) ∧ 𝜋
−1(i) > 𝜋

−1(j)}|.

(3)dK(�◦�, β◦�) = dK(�, β).

(4)I(n, d, r) = max
�,�∈Sn ,dK (�,�)=d

|Bn
K
(�, r) ∩ Bn

K
(�, r)|.

(5)N(n, d, r) = max
l≥d

I(n, l, r).
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where I(n,1,1) = 2.

Yaakobi et al. in [12] also proposed some properties of I(n,2,r). Given two permutations 
�, β ∈ Sn such that dK(α,β) = 2, there are two options:

1) There is only a single permutation σ such that dK(α,σ) = dK(β,σ) = 1.
2) There are two distinct permutations σ,π such that dK(α,σ) = dK(β,σ) = dK(α,π) = dK(β,π) 

= 1.

If the first option holds then we say that α and β are of type I, and otherwise, we say they 
are of type II. When α and β are of type II, Yaakobi et al. in [12] gave the following result.

Lemma 2 [12, Lemma 8] Assume that α,β satisfy dK(α,β) = 2 and they are of type II. 
Then, |Bn

K
(�, r) ∩ Bn

K
(β, r)| = I(n, 1, r).

By Lemma 2 and (5), we clearly obtain the following lemma.

Lemma 3 For any r ≥ 1, we have N(n,1,r) = N(n,2,r).

Proof By Lemma 2, we have N(n,2,r) ≥ I(n,1,r) for any r ≥ 1. Hence, we can obtain that 
N(n,1,r) = N(n,2,r) for any r ≥ 1. □

Since N(n,1,1) = 2 and N(n,1,2) = 2(n − 1) in [6], then we have that N(n,2,1) = 2 and 
N(n,2,2) = 2(n − 1). In the following, we will determine the exact values of N(n,d,3) for d 
= 1,2.

Wang et al. in [14] gave the recursive formula of Bn
K
(r) and the exact values of Bn

K
(r) for 

r = 2,3 as follows. Here, we have Bn
K
(0) = 1 and Bn

K
(1) = n.

Lemma 4 [14, Theorem 1] For all n ≥ 3, we have Bn
K
(2) =

n2+n−2

2
 and Bn

K
(3) =

(n+1)(n2+2n−6)

6

.

By Lemmas 1 and 4, we obtain

When α,β satisfy dK(α,β) = 2 and they are of type II, we have

To obtain the values of I(n,2,3), we now compute the exact value of |Bn
K
(�, 3) ∩ Bn

K
(β, 3)| 

when α,β satisfy dK(α,β) = 2 and they are of type I. We start in the next lemma.

Lemma 5 Let n,r,d be integers and �, β ∈ Sn such that dK(α,β) = d. Then there exists 
some permutation � ∈ Sn of weight wK(γ) = d such that |Bn

K
(�, r) ∩ B

n

K
(β, r)| = |Bn

K
(�n , r) ∩ B

n

K
(� , r)|.

(6)I(n, 1, r) = 2Bn
K
(r − 1) − I(n, 1, r − 1),

(7)
I(n, 1, 1) = 2,

I(n, 1, 2) = 2Bn

K
(1) − I(n, 1, 1) = 2n − 2,

I(n, 1, 3) = 2Bn

K
(2) − I(n, 1, 2) = n

2 − n.

(8)|Bn
K
(�, 3) ∩ Bn

K
(β, 3)| = I(n, 1, 3) = n2 − n.
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Proof Let γ =β ∘α− 1. If � ∈ Bn
K
(�, r) ∩ Bn

K
(β, r) , then we have dK(α,σ) ≤ r and dK(β,σ) ≤ r. Since the 

Kendall τ-metric is right invariant, then dK(𝜖n,σ ∘ α− 1) = dK(α,σ) ≤ r and dK(β∘α− 1,σ ∘ α− 1) = dK(β,σ) 
≤ r. Hence, �◦�−1 ∈ Bn

K
(�n, r) ∩ Bn

K
(� , r) and |Bn

K
(�, r) ∩ Bn

K
(β, r)| ≤ |Bn

K
(�n, r) ∩ Bn

K
(� , r)| . 

Similarly, we also have |Bn
K
(�, r) ∩ Bn

K
(β, r)| ≥ |Bn

K
(�n, r) ∩ Bn

K
(� , r)| . So, we clearly obtain 

|Bn
K
(�, r) ∩ Bn

K
(β, r)| = |Bn

K
(�n, r) ∩ Bn

K
(� , r)| . □

To compute the value of |Bn
K
(�, 3) ∩ Bn

K
(β, 3)| , by Lemma 5, we only consider α = 𝜖n and 

dK(𝜖n,β) = 2 such that 𝜖n,β are of type I. For convenience, the i-th adjacent transposition, 
denoted by ei, exchanges the elements in positions i and i + 1 and keeps all other elements 
fixed for any 1 ≤ i ≤ n − 1.

Lemma 6 Let β ∈ Sn . Then 𝜖n,β are of type II if and only if β = ei ∘ ej for some i,j ∈ [n 
− 1] and |i − j|≥ 2. Moreover, 𝜖n,β are of type I if and only if β = ei ∘ ei+ 1 or ei+ 1 ∘ ei for 
some i ∈ [n − 2].

Proof When 𝜖n,β are of type II, we have dK(𝜖n,β) = 2. Thus, β = ei ∘ ej for i≠j and i,j ∈ [n 
− 1]. If |i − j|≥ 2, it follows that 𝜖n,β are of type II. When |i − j| = 1, without loss of gen-
erality, we let j = i + 1. Then, we only have a permutation ei such that dK(𝜖n,ei) = dK(ei ∘ 
ei+ 1,ei+ 1) = 1. Hence, 𝜖n and β are not of type II. So, 𝜖n,β are of type II if and only if β = ei ∘ 
ej for some i,j ∈ [n − 1] and |i − j|≥ 2. Similarly, 𝜖n,β are of type I if and only if β = ei ∘ ei+ 1 
or ei+ 1 ∘ ei for some i ∈ [n − 2]. □

When dK(𝜖n,β) = 2 and they are of type I, by Lemma 6, then β = ei ∘ ei+ 1 or ei+ 1 ∘ ei for 
some i ∈ [n − 2]. For convenience, we call this kind of permutation the type I for i ∈ [n 
− 2]. Now, we give some lemmas in the following.

Lemma 7 Let � ∈ Sn . Then, it follows that

Proof By the definition of wK(α), we have that wK(α) = dK(𝜖n,α) = |{(i,j) : i < j ∧ α− 1(i) > 
α− 1(j)}|. Further, due to the definition of Iv(α), it follows that Iv(α) = {(i,j) : i < j ∧ α− 1(i) 
> α− 1(j)}. Hence, we have wK(α) = |Iv(α)|. □

For example, let π = [3,1,2]. Then we have that Iv(π) = {(1,3),(2,3)}. Hence, wK(π) = 
|Iv(π)| = 2.

Lemma 8 Let �, β ∈ Sn . Then, we have that

Proof By the definition of dK(α,β), it follows that dK (𝛼, β) = |{(i, j) ∶ 𝛼−1(i) < 𝛼−1(j) ∧ β−1(i) > β−1(j)}| . 
Let (i1, j1) ∈ {(i, j) ∶ 𝛼−1(i) < 𝛼−1(j) ∧ β−1(i) > β−1(j)} . Then, α− 1(i1) < α− 1(j1) and 
β−1(i1) > β−1(j1) . If i1 < j1, then it follows that (i1,j1) ∈ Iv(β) and (i1,j1)∉Iv(α). If i1 > 
j1, then we have that (i1,j1) ∈ Iv(α) and (i1,j1)∉Iv(β). Thus, (i1,j1) ∈(Iv(α) ∪ Iv(β))∖(Iv(α) 
∩ Iv(β)). Similarly, let (i1,j1) ∈(Iv(α) ∪ Iv(β))∖(Iv(α) ∩ Iv(β)), we also have that 
(i1, j1) ∈ {(i, j) ∶ 𝛼−1(i) < 𝛼−1(j) ∧ β−1(i) > β−1(j)} . Hence, it follows that

(9)wK(�) = |Iv(�)|.

(10)
dK(�, β) = |(Iv(�) ∪ Iv(β)

)
�
(
Iv(�) ∩ Iv(β)

)|
= |Iv(�) ∪ Iv(β)| − |Iv(�) ∩ Iv(β)|
= |Iv(�)| + |Iv(β)| − 2|Iv(�) ∩ Iv(β)|.
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Further, we obtain that dK(α,β) = |(Iv(α)∪Iv(β))∖(Iv(α)∩Iv(β))| = |Iv(α)∪Iv(β)|−|Iv(α)∩Iv(β)| 
= |Iv(α)|+|Iv(β)|− 2|Iv(α)∩Iv(β)|. □

For example, let α = [3,1,2] and β = [2,1,3]. Then it follows that Iv(α) = {(1,3),(2,3)} 
and Iv(β) = {(1,2)}. It is easily obtained that Iv(α) ∩ Iv(β) = ∅. Hence, dK(α,β) = |Iv(α)| + 
|Iv(β)|− 2|Iv(α) ∩ Iv(β)| = 2 + 1 = 3.

Lemma 9 For n ≥ r ≥ 3, we have 
|Bn

K
(�n , r) ∩ B

n

K
(ei◦ei+1, r)| = |Bn

K
(�n , r) ∩ B

n

K
(ei+1◦ei , r)| = |Bn

K
(ei , r) ∩ B

n

K
(ei+1, r)| = |Bn

K
(�n , r − 1) ∪ B

n

K
(ei◦ei+1◦ei , r − 2)|.

Proof Since the Kendall τ-metric is right invariant, we have 
|Bn

K
(�n, r) ∩ Bn

K
(ei◦ei+1, r)| = |Bn

K
(�n, r) ∩ Bn

K
(ei+1◦ei, r)| = |Bn

K
(ei, r) ∩ Bn

K
(ei+1, r)|  . 

Next, we prove that |Bn
K
(ei, r) ∩ Bn

K
(ei+1, r)| = |Bn

K
(�n, r − 1) ∪ Bn

K
(ei◦ei+1◦ei, r − 2)| . 

First, we discuss (Bn
K
(ei, r) ∩ Bn

K
(ei+1, r)) ⊂ (Bn

K
(𝜖, r − 1) ∪ Bn

K
(ei◦ei+1◦ei, r − 2)) . Let 

� ∈ Bn
K
(ei, r) ∩ Bn

K
(ei+1, r) , and assume that � ∉ Bn

K
(�n, r − 1) . By (10), we have

Since dK(γ,ei) ≤ r and |Iv(γ)|≥ r by assumption, it follows that (i,i + 1) ∈ Iv(γ). Similarly, 
we also have that (i + 1,i + 2) ∈ Iv(γ). By the definition of Iv(γ) and (i,i + 1),(i + 1,i + 2) 
∈ Iv(γ), we have that γ− 1(i) > γ− 1(i + 1) and γ− 1(i + 1) > γ− 1(i + 2). Hence, γ− 1(i) > γ− 1(i 
+ 2). So, (i,i + 2) ∈ Iv(γ). Therefore, (i,i + 1),(i + 1,i + 2),(i,i + 2) ∈ Iv(γ). It is easily veri-
fied that Iv(ei ∘ ei+ 1 ∘ ei) = {(i,i + 1),(i + 1,i + 2),(i,i + 2)}. By (10), it follows that

By (i,i + 1) ∈ Iv(γ) and � ∈ Bn
K
(ei, r) , we have dK(γ,ei) = |Iv(γ)|− 1 ≤ r. 

Hence, |Iv(γ)|≤ r + 1. By (12), it follows that dK(γ,ei ∘ ei+ 1 ∘ ei) ≤ r − 2. 
So, we have � ∈ Bn

K
(�n, r − 1) ∪ Bn

K
(ei◦ei+1◦ei, r − 2) . Similarly, when 

� ∈ Bn
K
(�n, r − 1) ∪ Bn

K
(ei◦ei+1◦ei, r − 2) , we also obtain that � ∈ Bn

K
(ei, r) ∩ Bn

K
(ei+1, r) . 

Therefore, we prove that |Bn
K
(ei, r) ∩ Bn

K
(ei+1, r)| = |Bn

K
(�n, r − 1) ∪ Bn

K
(ei◦ei+1◦ei, r − 2)| . 

□

When β is the type I, by Lemma 9, we can find the value of |Bn
K
(�n, 3) ∩ Bn

K
(β, 3)|.

Lemma 10 When β is the type I, for n ≥ r ≥ 3, we have

Proof By Lemma 9, we have |Bn
K
(�n , 3) ∩ B

n

K
(β, 3)| = |Bn

K
(�n , 2)| + |Bn

K
(ei◦ei+1◦ei , 1)| − |Bn

K
(�n , 2) ∩ B

n

K
(ei◦ei+1◦ei , 1)| 

for some i ∈ [n − 2]. For all i ∈ [n − 2], it is easily veri-
fied that Bn

K
(�n, 2) ∩ Bn

K
(ei◦ei+1◦ei, 1) = {ei◦ei+1, ei+1◦ei} . Then, we 

have |Bn
K
(�n, 2) ∩ Bn

K
(ei◦ei+1◦ei, 1)| = 2 . Thus, we can obtain that 

|Bn
K
(�n, 3) ∩ Bn

K
(β, 3)| = Bn

K
(2) + Bn

K
(1) − 2 . By Lemma 4, we have Bn

K
(2) =

n2+n−2

2
 and 

Bn
K
(1) = n . So, we have |Bn

K
(�n, 3) ∩ Bn

K
(β, 3)| = Bn

K
(2) + Bn

K
(1) − 2 =

n2+3n−6

2
 . □

{(i, j) ∶ 𝛼−1(i) < 𝛼−1(j) ∧ β−1(i) > β−1(j)}

= (Iv(𝛼) ∪ Iv(β)
)
�
(
Iv(𝛼) ∩ Iv(β)

)
.

(11)dK(� , ei) =

{
|Iv(�)| − 1, if (i, i + 1) ∈ Iv(�),

|Iv(�)| + 1, if (i, i + 1) ∉ Iv(�).

(12)dK(� , ei◦ei+1◦ei) = |Iv(�)| + 3 − 6 = |Iv(�)| − 3.

(13)|Bn
K
(�n, 3) ∩ Bn

K
(β, 3)| = Bn

K
(2) + Bn

K
(1) − 2 =

n2 + 3n − 6

2
.

136 Cryptography and Communications (2023) 15:131–144



1 3

By (8) and (13), we can obtain the following theorem.

Theorem 1 For n ≥ 3, we have

Proof When α,β satisfy dK(α,β) = 2 and they are of type II, by (8), we have 
|Bn

K
(�, 3) ∩ Bn

K
(β, 3)| = n2 − n . When α,β satisfy dK(α,β) = 2 and they are of type I, by 

Lemma 5 and (13), we can obtain that |Bn
K
(�, 3) ∩ Bn

K
(β, 3)| = n2+3n−6

2
 . Hence, we have 

I(n, 2, 3) = max{
n2+3n−6

2
, n2 − n} = n2 − n for all n ≥ 3. □

We will present the upper bounds of I(n,d,3) for d = 3,4,5,6 as follows. To get these 
properties, we need some lemmas.

When wK(β) = 2 or 3, the forms of β and the inversions of β are given in the following 
lemma.

Lemma 11 Let n ≥ 3 and β ∈ Sn . When wK(β) = 2, then β = ei ∘ ei+ 1 or ei+ 1 ∘ ei for some 
i ∈ [n − 2], or ej ∘ ei for some i,j ∈ [n − 1] and |i − j|≥ 2. When wK(β) = 3, then β = ek ∘ ei ∘ 
ei+ 1 for some k ∈ [n − 1], i ∈ [n − 2], and k≠i, or ek ∘ ei+ 1 ∘ ei for some k ∈ [n − 1], i ∈ [n 
− 2], and k≠i + 1, or ek ∘ ej ∘ ei for some i,j,k ∈ [n − 1], |i − j|≥ 2, and k≠i or j. Moveover, 
when wK(β) = 2, the inversions of β may be (i,i + 1) or (i,i + 2) for some i ∈ [n − 1]. When 
wK(β) = 3, the inversions of β may be (i,i + 1), (i,i + 2), or (i,i + 3) for some i ∈ [n − 1].

Proof When wK(β) = 2, if β is of type I, then β = ei ∘ ei+ 1 or ei+ 1 ∘ ei for some i ∈ [n − 2]. 
Hence, the inversions of β are (i,i + 1) and (i,i + 2), or (i,i + 2) and (i + 1,i + 2). If β is of 
type II, then β = ej ∘ ei for some |i − j|≥ 2. Thus, the inversions of β are (i,i + 1) and (j,j + 1). 
So, when wK(β) = 2, then β = ei ∘ ei+ 1 or ei+ 1 ∘ ei for some i ∈ [n − 2], or ej ∘ ei for some i,j 
∈ [n − 1] and |i − j|≥ 2. Moreover, the inversions of β may be (i,i + 1) or (i,i + 2) for some 
i ∈ [n − 1].

Similarly, when wK(β) = 3, by using the forms of the permutation of weight 2, then β = 
ek ∘ ei ∘ ei+ 1 for some k ∈ [n − 1], i ∈ [n − 2], and k≠i, or ek ∘ ei+ 1 ∘ ei for some k ∈ [n − 1], i 
∈ [n − 2], and k≠i + 1, or ek ∘ ej ∘ ei for some i,j,k ∈ [n − 1], |i − j|≥ 2, and k≠i or j. When β 
= ek ∘ ei ∘ ei+ 1 for some k ∈ [n − 1], i ∈ [n − 2], and k≠i, then (i,i + 2),(i + 1,i + 2) ∈ Iv(β). 
If k = i + 2, then Iv(β) = {(i,i + 2),(i + 1,i + 2),(i + 1,i + 3)}. If k = i + 1, then Iv(β) = {(i,i 
+ 1),(i,i + 2),(i + 1,i + 2)}. If k = i − 1, then Iv(β) = {(i,i + 2),(i + 1,i + 2),(i − 1,i + 2)}. If 
k≠i − 1,i,or i + 2, then Iv(β) = {(i,i + 2),(i + 1,i + 2),(k,k + 1)}.

When β = ek ∘ ei+ 1 ∘ ei for some k ∈ [n − 1], i ∈ [n − 2], and k≠i + 1, then (i,i + 1),(i,i 
+ 2) ∈ Iv(β). If k = i + 2, then Iv(β) = {(i,i + 1),(i,i + 2),(i,i + 3)}. If k = i, then Iv(β) = {(i,i 
+ 2),(i + 1,i + 2),(i,i + 1)}. If k = i − 1, then Iv(β) = {(i,i + 1),(i,i + 2),(i − 1,i + 1)}. If k≠i 
− 1,i + 1,or i + 2, then Iv(β) = {(i,i + 1),(i,i + 2),(k,k + 1)}.

When β = ek ∘ ej ∘ ei for some i,j,k ∈ [n − 1], |i − j|≥ 2, and k≠i or j, then (i,i + 1),(j,j 
+ 1) ∈ Iv(β). It is easily verified that β = ek ∘ ej ∘ ei = ek ∘ ei ∘ ej. For convenience, let i < j. 
If j − i = 2 and k = (i + j)/2, then Iv(β) = {(i,i + 1),(j,j + 1),(k − 1,k + 2)}. If |k − i|≥ 2 and 
|k − j|≥ 2, then Iv(β) = {(i,i + 1),(j,j + 1),(k,k + 1)}. If k = i − 1, then β = ek ∘ ej ∘ ei = ei− 1 ∘ 
ei ∘ ej and Iv(β) = {(i − 1,i + 1),(i,i + 1),(j,j + 1)}. If k = j + 1, then β = ek ∘ ej ∘ ei = ej+ 1 ∘ ej 
∘ ei and Iv(β) = {(i,i + 1),(j,j + 1),(j,j + 2)}. If k = i + 1 and j − i > 2, then β = ek ∘ ej ∘ ei = 
ei+ 1 ∘ ei ∘ ej and Iv(β) = {(i,i + 1),(j,j + 1),(i,i + 2)}. If k = j − 1 and j − i > 2, then β = ek ∘ ej 
∘ ei = ej− 1 ∘ ej ∘ ei and Iv(β) = {(i,i + 1),(j,j + 1),(j − 1,j + 1)}.

(14)I(n, 2, 3) = n2 − n.
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Therefore, when wK(β) = 3, the inversions of β may be (i,i + 1), (i,i + 2), or (i,i + 3) for 
some i ∈ [n − 1]. □

Now, given two distinct inversions I1,I2, we estimate the size of 
Sn
(3,I1,I2)

∶= {β ∈ Sn|wK(β) = 3, Ii ∈ Iv(β) for all i ∈ [2]} and the size of 
Sn
(2,I1)

∶= {β ∈ Sn|wK(β) = 2, I1 ∈ Iv(β)} , respectively.

Lemma 12 Assume that Sn
(3,I1,I2)

 and Sn
(2,I1)

 are defined as above. Then, we have

Proof By Lemma 11, we will discuss the value of |Sn
(3,I1,I2)

| according to the forms of I1,I2. 
Let β ∈ Sn

(3,I1,I2)
 . Then I1,I2 ∈ Iv(β) and |Iv(β)| = 3. If I1,I2 has one form of (i,i + 3), by 

Lemma 11, then β must be ei ∘ ei+ 1 ∘ ei+ 2, ei+ 2 ∘ ei+ 1 ∘ ei, or ei+ 1 ∘ ei ∘ ei+ 2. Hence, when 
I1,I2 has one form of (i,i + 3), we have that

If I1,I2 has one form of (i,i + 2), then (i,i + 2) ∈ Iv(β). For convenience, let I1 = (i,i + 2). By 
Lemma 11, Iv(β) must contain two inversions (i,i + 1),(i,i + 2) or (i,i + 2),(i + 1,i + 2). 
When {I1,I2} = {(i,i + 1),(i,i + 2)}, by the proof of Lemma 11, it follows that β = ek ∘ ei+ 1 ∘ 
ei for some k ∈ [n − 1], i ∈ [n − 2], and k≠i + 1. Since k ∈ [n − 1] and k≠i + 1, the number 
of this kind of β is n − 2. Hence, |Sn

(3,I1,I2)
| = n − 2 . Similarly, when {I1,I2} = {(i,i + 2),(i 

+ 1,i + 2)}, then β = ek ∘ ei ∘ ei+ 1 for some k ∈ [n − 1], i ∈ [n − 2], and k≠i. Thus, we also 
have that |Sn

(3,I1,I2)
| = n − 2 . Then, when {I1,I2} = {(i,i + 1),(i,i + 2)} or {(i,i + 2),(i + 1,i 

+ 2)}, it follows that

When {I1,I2}≠{(i,i + 1),(i,i + 2)} or {(i,i + 2),(i + 1,i + 2)}, then I2≠(i,i + 1) or (i + 1,i + 2). 
Since I1,I2 ∈ Iv(β) and Iv(β) must contain two inversions (i,i + 1),(i,i + 2) or (i,i + 2),(i + 1,i 
+ 2), it follows that Iv(β) must be {(i,i + 1),(i,i + 2),I2} or {(i + 1,i + 2),(i,i + 2),I2}. Hence, 
we have that

If I1 = (i,i + 1) and I2 = (j,j + 1), then (i,i + 1),(j,j + 1) ∈ Iv(β). For convenience, let j > i. 
When j − i = 1, we have that (i,i + 1),(i + 1,i + 2) ∈ Iv(β). By Lemma 11, then (i,i + 2) ∈ 
Iv(β). Hence, we have that

When j − i ≥ 2, by the proof of Lemma 11, it follows that β = ek ∘ ej ∘ ei for some k ∈ [n 
− 1] and k≠i or j. Thus, it follows that

By the above discussion, we obtain that

(15)|Sn
(3,I1,I2)

| ≤ (n − 2) for all n ≥ 4,

(16)|Sn
(2,I1)

| ≤ (n − 2) for all n ≥ 4.

(17)|Sn
(3,I1,I2)

| ≤ 3.

(18)|Sn
(3,I1,I2)

| = n − 2.

(19)|Sn
(3,I1,I2)

| ≤ 2.

(20)|Sn
(3,I1,I2)

| = 1.

(21)|Sn
(3,I1,I2)

| = n − 3.
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Next, we will discuss the value of discuss the value of |Sn
(2,I1)

| according to the forms of I1. 
Let β ∈ Sn

(2,I1)
 . Then I1 ∈ Iv(β) and |Iv(β)| = 2. If I1 = (i,i + 2), by Lemma 11, then β = ei ∘ 

ei+ 1 or ∘ ei+ 1 ∘ ei. Hence, when I1 = (i,i + 2), we have that |Sn
(2,I1)

| = 2 . If I1 = (i,i + 1), by 
Lemma 11, then β = ei ∘ ej for some j ∈ [n − 1] and j≠i. Hence, |Sn

(2,I1)
| = n − 2 . So, we also 

have that

□

By Lemma 12, we can obtain the following lemma.

Lemma 13 For n ≥ 6, we have

Proof Let β ∈ Sn be a permutation such that wK(β) = 3 and 
I(n, 3, 3) = |Bn

K
(�n, 3) ∩ Bn

K
(β, 3)| . For convenience, let Iv(β) = {I1,I2,I3}. Obviously, we 

have Bn
K
(�n, 3) ∩ Bn

K
(β, 3) = ∪3

i=0
{�|wK(�) = i, dK(� , β) ≤ 3} . We estimate the value of 

|{γ|wK(γ) = i,dK(γ,β) ≤ 3}| for each 0 ≤ i ≤ 3 as follows.
First, we consider the value of |{γ|wK(γ) = 3,dK(γ,β) ≤ 3}|. Suppose Iv(γ) = {a,b,c}. By 

Lemma 8, then we have dK(γ,β) = |Iv(γ)| + |Iv(β)|− 2|(Iv(β) ∩ Iv(γ))|. Hence, we get dK(γ,β) 
= 6 − 2|(Iv(β) ∩ Iv(γ))|. When dK(γ,β) ≤ 3, then we have |(Iv(β) ∩ Iv(γ))| = 2 or 3. If |(Iv(β) 
∩ Iv(γ))| = 3, the number of γ is 1. If |(Iv(β) ∩ Iv(γ))| = 2, then Iv(γ) contains two elements 
of {I1,I2,I3}. By Lemma 12, the number of this kind of γ is at most 

(
3

2

)
(n − 2) . Since β 

∈{γ|wK(γ) = 3,Iv(γ) contains two elements of {I1,I2,I3}}, then we have

Next, we compute |{γ|wK(γ) = 2,dK(γ,β) ≤ 3}|. Suppose Iv(γ) = {a,b}. When dK(γ,β) ≤ 3, 
then we get |(Iv(β) ∩ Iv(γ))| = 1 or 2. If |(Iv(β) ∩ Iv(γ))| = 2, the number of γ is at most (
3

2

)
= 3 . If |(Iv(β) ∩ Iv(γ))| = 1, then Iv(γ) contains one element of {I1,I2,I3}. By Lemma 12, 

the number of this kind of γ is at most 
(
3

1

)
(n − 2) . Hence, we have

Finally, we clearly obtain that |{γ|wK(γ) = 1,dK(γ,β) ≤ 3}|≤ 3 and |{γ|wK(γ) = 0,dK(γ,β) 
≤ 3}|≤ 1. Therefore, by (23)-(24), we have

□

Lemma 14 For n ≥ 6, we have

|Sn
(3,I1,I2)

| ≤ (n − 2) for all n ≥ 4.

|Sn
(2,I1)

| ≤ (n − 2) for all n ≥ 4.

(22)I(n, 3, 3) ≤ 6n − 7.

(23)|{�|wK(�) = 3, dK(� , β) ≤ 3}| ≤ 3(n − 2) − 2 = 3n − 8.

(24)|{�|wK(�) = 2, dK(� , β) ≤ 3}| ≤ 3(n − 2) + 3 = 3n − 3.

I(n, 3, 3) =

3∑
i=0

|{�|wK(�) = i, dK(� , β) ≤ 3}| ≤ 6n − 7.

(25)I(n, 4, 3) ≤ 6n − 8.
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Proof Let β ∈ Sn be a permutation such that wK(β) = 4 and 
I(n, 4, 3) = |Bn

K
(�

n
, 3) ∩ B

n

K
(β, 3)| . For convenience, let Iv(β) = {I1,I2,I3,I4}. Clearly, we have 

Bn
K
(�n, 3) ∩ Bn

K
(β, 3) = ∪3

i=0
{�|wK(�) = i, dK(� , β) ≤ 3} . Next, we estimate the size of 

|{γ|wK(γ) = i,dK(γ,β) ≤ 3}| for each 0 ≤ i ≤ 3 by the different kind of Iv(β). Suppose I1 = 
(i1,j1) ∈ Iv(β) is an inversion with the maximum value of |i1 − j1|.

Now, we consider the value of |{γ|wK(γ) = 3,dK(γ,β) ≤ 3}|. For convenience, Iv(γ) = 
{a,b,c}. By Lemma 8, then we have dK(γ,β) = |Iv(γ)| + |Iv(β)|− 2|(Iv(β) ∩ Iv(γ))|. Hence, we 
get dK(γ,β) = 7 − 2|(Iv(β) ∩ Iv(γ))|. When dK(γ,β) ≤ 3, we have that |(Iv(β) ∩ Iv(γ))| = 2 or 
3. Thus, Iv(γ) contains at least two elements of {I1,I2,I3,I4}. If |j1 − i1|≥ 4, then I1∉Iv(γ). By 
Lemma 12, the number of this kind of γ is at most 

(
3

2

)
(n − 2) . Hence, we have that

If |j1 − i1| = 3, then I1 may be an element of Iv(γ). When I1 ∈ Iv(γ), by (17), it follows that 
the number of this kind of γ is at most 3. When I1∉Iv(γ), by (26), we have that the number 
of this kind of γ is at most 3n − 6. Hence, we have that

If |j1 − i1| = 2, then I1 may be an element of Iv(γ). For convenience, let I1 = (i1,j1) = (i,i 
+ 2). Consider {(i,i + 1),(i + 1,i + 2)}⊂ Iv(β). When I1 ∈ Iv(γ), by (18) and (19), the number 
of this kind of γ is at most 2(n − 2) + 2. Moreover, if (i,i + 1),(i + 1,i + 2) ∈ Iv(γ), then I1 = 
(i,i + 2) ∈ Iv(γ). Thus, when I1∉Iv(γ), by Lemma 12, the number of this kind of γ is at most 
2(n − 2). Hence, when |j1 − i1| = 2 and {(i,i + 1),(i + 1,i + 2)}⊂ Iv(β), we have that

Consider {(i,i + 1),(i + 1,i + 2)}⊄Iv(β). When I1 ∈ Iv(γ), by (18) and (19), the number of 
this kind of γ is at most (n − 2) + 4. When I1∉Iv(γ), by Lemma 12, the number of this kind 
of γ is at most 3(n − 2). Hence, when |j1 − i1| = 2 and {(i,i + 1),(i + 1,i + 2)}⊄Iv(β), we have 
that

If |j1 − i1| = 1, then I1,I2,I3,I4 may be an element of Iv(γ). By (20) and (21), the number of 
this kind of γ is at most 

(
4

2

)
(n − 3) . Hence, when |j1 − i1| = 1, we have that

Similarly, when |i1 − j1|≥ 2, we have that |{γ|wK(γ) = 2,dK(γ,β) ≤ 3}|≤ 5, |{γ|wK(γ) = 1,dK(γ,β) 
≤ 3}|≤ 3 and |{γ|wK(γ) = 0,dK(γ,β) ≤ 3}| = 0. When |i1 − j1| = 1, we obtain that |{γ|wK(γ) 
= 2,dK(γ,β) ≤ 3}|≤ 6, |{γ|wK(γ) = 1,dK(γ,β) ≤ 3}|≤ 4 and |{γ|wK(γ) = 0,dK(γ,β) ≤ 3}| = 0. By 
(26)-(29) and the above discussion, when |i1 − j1|≥ 2, it follows that

for n ≥ 6. By (30) and the above discussion, when |i1 − j1| = 1, it follows that

(26)|{�|wK(�) = 3, dK(� , β) ≤ 3}| ≤
(
3

2

)
(n − 2) = 3n − 6.

(27)|{�|wK(�) = 3, dK(� , β) ≤ 3}| ≤
(
3

2

)
(n − 2) + 3 = 3n − 3.

(28)|{�|wK(�) = 3, dK(� , β) ≤ 3}| ≤ 4(n − 2) + 2 = 4n − 6.

(29)|{�|wK(�) = 3, dK(� , β) ≤ 3}| ≤ 4(n − 2) + 4 = 4n − 4.

(30)|{�|wK(�) = 3, dK(� , β) ≤ 3}| ≤
(
4

2

)
(n − 3) = 6n − 18.

(31)
3∑
i=0

|{�|wK(�) = i, dK(� , β) ≤ 3}| ≤ 4n − 4 + 8 = 4n + 4,
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Therefore, for n ≥ 6, by (31) and (32), we have that

□

Lemma 15 For n ≥ 5, we have

Proof When d = 5, let β ∈ Sn be a permutation such that wK(β) = 5 and 
I(n, 5, 3) = |Bn

K
(�n, 3) ∩ Bn

K
(β, 3)| . For convenience, let Iv(β) = {I1,I2,I3,I4,I5}. Next, we esti-

mate the value of |{γ|wK(γ) = i,dK(γ,β) ≤ 3}| for each 0 ≤ i ≤ 3.
Let wK(γ) = i and dK(γ,β) ≤ 3. By Lemma 8, then we have dK(γ,β) = |Iv(γ)| + 

|Iv(β)|− 2|(Iv(β) ∩ Iv(γ))|. Hence, we obtain that dK(γ,β) = 5 + i − 2|(Iv(β) ∩ Iv(γ))| and 0 
≤|(Iv(β) ∩ Iv(γ))|≤ i for any 0 ≤ i ≤ 3. Since dK(γ,β) ≤ 3, then we have i = 2 or 3, and Iv(γ) ⊂ 
Iv(β). When i = 2, the number of γ of wK(γ) = 2 is at most 

(
5

2

)
 . When i = 3, we also have that 

the number of γ of wK(γ) = 3 is at most 
(
5

3

)
 . So, we get

Similarly, we can obtain that I(n,6,3) ≤ 20 and I(n,d,3) = 0 for all d ≥ 7. □

By Lemmas 13-15, we can summarize up some properties of N(n,d,3) for 3 ≤ d as 
follows.

Proposition 1 Let n,d be integers. Then we have

 and I(n,d,3) = 0 for all d ≥ 7.

By the above discussion, we can obtain the following theorem. Moreover, the upper 
bounds on I(4,3,3),I(4,4,3),I(5,3,3),I(5,4,3) will be discussed in the A.

Theorem 2 For all n ≥ 3, we have

Proof By (14), Lemma 3, and Proposition 1, we can obtain that N(n,1,3) = N(n,2,3) = n2 
− n for any n ≥ 6. When 3 ≤ n ≤ 5, we have N(3,1,3) = N(3,2,3) = 6,N(4,1,3) = N(4,2,3) 

(32)
3∑
i=0

|{�|wK(�) = i, dK(� , β) ≤ 3}| ≤ 6n − 18 + 10 = 6n − 8.

I(n, 4, 3) =

3∑
i=0

|{�|wK(�) = i, dK(� , β) ≤ 3}| ≤ 6n − 8.

(33)
I(n, d, 3) ≤ 20 if d = 5 or 6,

I(n, d, 3) = 0 if d ≥ 7.

I(n, 5, 3) ≤

(
5

2

)
+

(
5

3

)
= 20.

I(n, d, 3) ≤

⎧
⎪⎨⎪⎩

6n − 7 if d = 3 and n ≥ 6,

6n − 8 if d = 4 and n ≥ 6,

20 if d = 5 or 6 and n ≥ 5,

(34)N(n, 1, 3) = N(n, 2, 3) = n2 − n.
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= 12,N(5,1,3) = N(5,2,3) = 20. Specifically, more details on the proof of N(n,d,3) for all 
d = 1,2 and 3 ≤ n ≤ 5 can be found in the A. Therefore, for all n ≥ 3, we have N(n,1,3) = 
N(n,2,3) = n2 − n. □

4  Conclusions

In this paper, we studied the reconstruction problem for permutations on n elements from 
their erroneous patterns which are distorted by at most three Kendall τ-errors. Specially, it 
is shown that n2 − n + 1 erroneous patterns are required in order to reconstruct an unknown 
permutation from some permutation code of minimum Kendall τ-distance 2 or an arbitrary 
unknown permutation for any n ≥ 3. That is, we proved that N(n,1,3) = N(n,2,3) = n2 − n 
for any n ≥ 3.

Appendix

In this appendix, we will discuss the size of N(n,d, 3) for all 3 ≤ n ≤ 5 and d 
= 1, 2 as follows. Assume that there exists some permutation β ∈ Sn such that 
I(n, d, 3) = |Bn

K
(β, 3) ∩ Bn

K
(�n, 3)| and wK(β) = d for any 3 ≤ n ≤ 5 and d = 3, 4.

When n = 3, we can easily obtain I(3, 1, 3) = I(3, 2, 3) = I(3, 3, 3) = 6. Hence we have 
N(3, 1, 3) = N(3, 2, 3) = 6.

When n = 4, we have I(4, 1, 3) = I(4, 2, 3) = 12. By Lemma 4, we have 
S4
K
(0) = 1, S4

K
(1) = 3, S4

K
(2) = 5, and S4

K
(3) = 6 . If (i,i + 1) ∈ Iv(β) for each i ∈ [3], then 

β = [4, 3, 2, 1] and wK(β) = 6. Since S4
K
(1) = 3 , then |{γ|wK(γ) = 1,dK(γ,β ) ≤ 3}|≤ 2 for 

wK(β) = 3 or 4. First, we estimate the value of I(4, 4, 3) for wK(β) = 4. Suppose Iv(ei) = I1 
such that I1∉Iv(β) for some i ∈ [3]. Then, there exists a permutation α such that Iv(α) = 
{I1,I2}. Hence, |Iv(β) ∩ Iv(α)|≤ 1 and dK(β,α) ≥ 4. Since S4

K
(2) = 5 , then we have |{γ|wK(γ) 

= 2,dK(γ,β ) ≤ 3}|≤ 4 for wK(β) = 4. Therefore, we have

Second, we estimate the value of I(4, 3, 3) for wK(β) = 3. When wK(γ) = 3, we have that 
|{γ|wK(γ) = 3,dK(γ,β ) ≤ 3}|≤ 4. Therefore, we have

So, we can obtain that N(4, 1, 3) = N(4, 2, 3) = 12.
When n = 5, we have I(5, 1, 3) = I(5, 2, 3) = 20. By Lemma 4, we have 

S5
K
(0) = 1, S5

K
(1) = 4, S5

K
(2) = 9, and S5

K
(3) = 15 . First, we estimate the value of I(5, 4, 3) 

for wK(β) = 4. The inversions of all the elements of S5
K
(�5, 1) are (1, 2), (2, 3), (3, 4), (4, 5). 

Suppose (i0,j0) ∈ Iv(β) is an inversion with the maximum value of |i0 − j0|. It is easily veri-
fied that j0 − i0 = 2, 3, or 4. When j0 − i0 = 4, then (1, 5) ∈ Iv(β). Since wK(β) = 4 and (1, 
5) ∈ Iv(β), it follows that β = [5, 1, 2, 3, 4] or [2, 3, 4, 5, 1]. Without loss of generality, let 
β = [5, 1, 2, 3, 4]. Thus, Iv(β) = {(1, 5), (2, 5), (3, 5), (4, 5)}. let γ ∈{γ|wK(γ) = 1,dK(γ,β ) 
≤ 3}. Since wK(β) = 4, wK(γ) = 1, and dK(γ,β ) ≤ 3, by Lemma 8, then Iv(γ) ⊂ Iv(β). Hence, 
|{γ|wK(γ) = 1,dK(γ,β ) ≤ 3}| = 1. Similarly, let γ ∈{γ|wK(γ) = 2,dK(γ,β ) ≤ 3}, then Iv(γ) ⊂ 

I(4, 4, 3) =
3∑
i=1

�{��wK(�) = i, dK(� , β) ≤ 3}� ≤ 2 + 4 + 6 = 12.

I(4, 3, 3) =
3∑
i=0

�{��wK(�) = i, dK(� , β) ≤ 3}� ≤ 1 + 2 + 5 + 4 = 12.
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Iv(β) and |{γ|wK(γ) = 2,dK(γ,β ) ≤ 3}| = 1. Since S5
K
(3) = 15 , then |{γ|wK(γ) = 2,dK(γ,β ) 

≤ 3}|≤ 15. So, we have

When j0 − i0 = 3, then (1, 4) or (2, 5) ∈ Iv(β). Without loss of generality, let (1, 4) ∈ 
Iv(β). Since wK(β) = 4 and (1, 4) ∈ Iv(β), it follows that {(1, 4), (2, 4), (3, 4)} or {(1, 4), 
(1, 2), (1, 3)}⊂ Iv(β). Consider {(1, 4), (2, 4),(3, 4)}⊂ Iv(β), we easily have that |{γ|wK(γ) 
= 1,dK(γ,β ) ≤ 3}|≤ 2 and |{γ|wK(γ) = 2,dK(γ,β ) ≤ 3}|≤ 3. So, we have

When j0 − i0 = 2, then (1, 3), (2, 4), or (3, 5) ∈ Iv(β). If Iv(β) has at least two elements 
of {(1, 3), (2, 4), (3, 5)}, then (1, 3), (2, 4) ∈ Iv(β) or (2, 4), (3, 5) ∈ Iv(β). Without loss of 
generality, consider (1, 3), (2, 4) ∈ Iv(β), it follows that |{γ|wK(γ) = 1,dK(γ,β ) ≤ 3}|≤ 2 and 
|{γ|wK(γ) = 2,dK(γ,β ) ≤ 3}|≤ 3. So, we have

If Iv(β) has only an element of (1, 3), (2, 4), (3, 5), it is easily verified that β = [3, 2, 1, 
5, 4] or [2, 1, 5, 4, 3]. Without loss of generality, let β = [3, 2, 1, 5, 4]. Then we have that 
|{γ|wK(γ) = 1,dK(γ,β ) ≤ 3}| = 3 and |{γ|wK(γ) = 2,dK(γ,β ) ≤ 3}| = 4. Obviously, when γ = [4, 
1, 2, 3, 5] or [1, 5, 2, 3, 4], we have dK(β,γ) ≥ 4. Since S5

K
(3) = 15 , then |{γ|wK(γ) = 2,dK(γ,β 

) ≤ 3}|≤ 13. So, we have

By the above discussion, we have that

Second, we estimate the size of I(5, 3, 3) and wK(β) = 3. If Iv(β) contains all the inver-
sions of any three distinct elements of S5

K
(�5, 1) , then |Iv(β)|≥ 4. Hence, |{γ|wK(γ) = 1,dK(γ,β 

) ≤ 3}|≤ 2. Since S5
K
(2) = 9 , then |{γ|wK(γ) = 2,dK(γ,β ) ≤ 3}|≤ 9. Therefore, by (23), we 

have

So, we can get N(5, 1, 3) = N(5, 2, 3) = 20.
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3∑
i=1

�{��wK(�) = i, dK(� , β) ≤ 3}� ≤ 1 + 1 + 15 = 17.

3∑
i=1

�{��wK(�) = i, dK(� , β) ≤ 3}� ≤ 2 + 3 + 15 = 20.

3∑
i=1

�{��wK(�) = i, dK(� , β) ≤ 3}� ≤ 2 + 3 + 15 = 20.

3∑
i=1

�{��wK(�) = i, dK(� , β) ≤ 3}� ≤ 3 + 4 + 13 = 20.

I(5, 4, 3) =
3∑
i=1

�{��wK(�) = i, dK(� , β) ≤ 3}� ≤ 20.

I(5, 3, 3) =
3∑
i=0

�{��wK(�) = i, dK(� , β) ≤ 3}� ≤ 1 + 2 + 9 + 7 = 19.
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