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Abstract
Self-dual codes over the ring ℤ

4
 are related to combinatorial designs and unimodular lat-

tices. First, we discuss briefly how to construct self-dual cyclic codes over ℤ
4
 of arbitrary 

even length. Then we focus on solving one key problem of this subject: for any positive 
integers k and m such that m is even, we give a direct and effective method to construct all 
distinct Hermitian self-dual cyclic codes of length 2k over the Galois ring GR(4,m). This 
then allows us to provide explicit expressions to accurately represent all these Hermitian 
self-dual cyclic codes in terms of binomial coefficients. In particular, several numerical 
examples are presented to illustrate our applications.

Keywords  Hermitian self-dual code · Cyclic code · Galois ring · Kronecker product of 
matrices · Binomial coefficient

Mathematics Subject Classification (2010)  94B15 · 94B05 · 11T71

 *	 Yonglin Cao 
	 ylcao@sdut.edu.cn

	 Yuan Cao 
	 yuancao@sdut.edu.cn

	 San Ling 
	 lingsan@ntu.edu.sg

	 Guidong Wang 
	 hbuwgd@163.com

1	 School of Mathematics and Statistics, Shandong University of Technology, Zibo, 
Shandong 255091, China

2	 Hubei Key Laboratory of Applied Mathematics, Faculty of Mathematics and Statistics, Hubei 
University, Wuhan 430062, China

3	 School of Physical and Mathematical Sciences, Nanyang Technological University, 21 Nanyang 
Link, Singapore 637371, Republic of Singapore

Cryptography and Communications (2022) 14:1117–1143

http://orcid.org/0000-0002-3682-6483
http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-022-00579-2&domain=pdf


1 3

1  Introduction

The class of self-dual codes is closely related to other fields of mathematics, such as lat-
tices, cryptography, invariant theory, block designs, etc. In particular, self-dual codes over 
ℤ4 are related to combinatorial designs and unimodular lattices (cf. [2, 6, 8, 23, 25–28]). 
The construction of self-dual codes over ℤ4 is an interesting topic in coding theory.

In general, the construction of optimal self-dual codes requires computer searches. To 
reduce the search field, self-dual codes can be constructed from linear codes with some 
special algebraic structures, such as cyclic codes, constacyclic codes and quasi-cyclic 
codes, etc.

The study of cyclic codes over finite rings started to attract much attention in the 1990s, 
when it was observed that some good nonlinear codes over �2 can be viewed as binary 
images of linear cyclic codes over ℤ4 under a Gray map [24]. In particular, [24] motivated 
the study of cyclic and negacyclic codes over Galois rings (see, for example, [1, 3–5, 15, 
30, 35, 40, 44, 47, 48]). Using the Gray map from ℤ4 onto � 2

2  , defined by: 0↦00, 1↦01, 
2↦11, 3↦10, binary formally self-dual codes can be obtained from self-dual codes over 
ℤ4

 with good parameters. The construction of self-dual codes over ℤ4 and other rings has 
since become a research topic of much interest (cf. [31, 34, 36, 43]).

Cyclic codes were initially studied where their length is relatively prime to the charac-
teristic of the ring. The structure of this class of cyclic codes over rings was studied in [7, 
15, 35, 39, 40] and certain special generating sets for these codes were determined therein. 
Cyclic codes (resp. negacyclic codes) whose length is not relatively prime to the charac-
teristic of the ring are called repeated-root cyclic codes (resp. negacyclic codes). The first 
study for this latter class of cyclic codes was done in [1], where the generators for cyclic 
codes over ℤ4 of length 2e were determined. Then the generators for cyclic codes over ℤ4 
of length 2n were presented in [4], where n is odd. Repeated-root cyclic and negacyclic 
codes are also interesting as they allow very simple syndrome-forming and decoding cir-
cuitry and, in some cases (see [38, 41]), they are maximum distance separable. A partial 
list of references for the theory of repeated-root cyclic codes includes [14, 16–21, 32, 33, 
37, 41, 42, 45, 49].

Another important reason for studying cyclic codes over ℤ4 of even length is that there 
are more self-dual codes among them than there are among cyclic codes over ℤ4 of odd 
length. For example: the numbers of self-dual cyclic codes over ℤ4 of length 23, 22 and 
20 are equal to 3, 33 and 63, respectively; the numbers of self-dual cyclic codes over ℤ4 
of length 25, 26 and 28 are equal to 1, 65 and 339, respectively. In fact, some good binary 
self-dual codes or formally self-dual codes can be obtained from self-dual cyclic codes 
over ℤ4 of even length. Here is a simple example: there is only one binary self-dual cyclic 
code of length 8 and its basic parameters are [8,4,2]. However, there are 3 self-dual cyclic 
codes over ℤ4 of length 4, and two of them give binary self-dual codes having optimal 
parameters [8,4,4] by the Gray map defined above.

Now, we briefly review some main results on the determination of self-dual cyclic codes 
of even length over ℤ4 in the literature. A concatenated structure and an explicit represen-
tation for all distinct self-dual cyclic codes over ℤ4 of length 2n and 4n were given by [9, 
10], for any positive odd integer n. For length 2kn, where k ≥ 3, using the methods in [9, 
10] will result in complex representations.

Let k,n ≥ 3 be any integers such that n is odd. Using the standard Discrete Fourier 
Transform decomposition, which may be viewed as an extension of the approaches in [4] 
and [21], and by [22, Theorem 3.2 and Corollary 3.3] and [29, Lemma 4.3 and Proposition 
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4.5], the problem of determining all (Euclidean) self-dual cyclic codes of length 2kn over 
ℤ4 can be translated into solving the following three problems (see Section 2 of this paper 
for details):

(♭) Determining all cyclic codes and their Euclidean dual codes of length 2k over a 
Galois extension ring of ℤ4 , say GR(4,m), where m ≥ 1.
(♮) Constructing and expressing explicitly all Euclidean self-dual cyclic codes of length 
2k over GR(4,m).
(♯) Constructing and expressing explicitly all Hermitian self-dual cyclic codes of length 
2k over GR(4,m), where m is an even positive integer.

So far, several results on the three problems have been obtained:

For Problem (♭): All cyclic codes and their Euclidean dual codes over GR(4,m) of length 
2k have been determined by [22, Lemma 2.4 (iv), Proposition 2.5 and Theorem 5.3] and 
[32, 33].
For Problem (♮): The number of Euclidean self-dual cyclic codes over GR(4,m) of 
length 2k was determined by [33, Corollary 3.5]. Then explicit expressions for all dis-
tinct Euclidean self-dual cyclic codes over GR(4,m) of length 2k were given in [11], 
using binomial coefficients.
For Problem (♯): The number NH

(
GR(4,m), 2k

)
 of all Hermitian self-dual 

cyclic codes over GR(4,m) of length 2k was determined by [29, Theorem  3.4]: 

NH

(
GR(4,m), 2k

)
=

(
2
m
2

)2k−1+1

−1

2
m
2 −1

 , where m is even.
 
However, to the best of our knowledge, there are no general results on the construction 
and explicit representation of all distinct Hermitian self-dual cyclic codes over GR(4,m)  
of length 2k.

In order to represent explicitly all Euclidean self-dual cyclic codes of length 2kn over 
ℤ4

 , 
we need to solve Problem (♯) completely. This is the main contribution of this current work.

The paper is organised as follows. In Section  2, we discuss briefly how to construct 
Euclidean self-dual cyclic codes over ℤ4 of length 2kn, for any positive odd integer n. In 
Section 3, we introduce necessary notation for the Galois ring GR(4,m) and Hermitian dual 
codes over GR(4,m). In Section  4, we give a direct and effective approach to construct 
precisely all distinct Hermitian self-dual cyclic codes over GR(4,m) of length 2k by Theo-
rem 1. This then allows us to provide an explicit expression to accurately represent all these 
Hermitian self-dual cyclic codes by Theorem 2, using binomial coefficients. In Section 5, 
we prove Theorem 1 in detail. As an application, we give explicitly all distinct Hermitian 
self-dual cyclic codes of length 2k over GR(4,m), for the cases of k = 3,4,5, in Section 6. 
Section 7 concludes the paper.

2 � Constructing self‑dual cyclic codes over ℤ
4
 of length 2kn

In this section, we describe how to construct all distinct Euclidean self-dual cyclic codes 
over ℤ4 of length 2kn, where n is an odd positive integer.
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As in [22] and [29, Section 4], define the ring R =
ℤ4[u]

⟨u2k−1⟩ . Then we have a 
ℤ4

-module 
isomorphism Φ ∶ R

n
→

ℤ4[x]

⟨x2kn−1⟩ defined by: for any ci(u) =
∑2k−1

j=0
ci,ju

j ∈ R with ci,j ∈ ℤ4 , 
i = 0,1,…,n − 1, let

 Let M be the the multiplicative order of 2 modulo n and let ζ be a primitive n th root of 
unity in the Galois ring GR(4,M). We define the Discrete Fourier Transform of

 as the vector (̂c0, ĉ1,… , ĉn−1) ∈
�

GR(4,M)[u]

⟨u2k−1⟩
�n

 with

 where 
nn′ ≡ 1

 (mod 2k), and define the Mattson-Solomon polynomial of c(Z) to be 

ĉ(Z) =
∑n−1

h=0
ĉn−h (mod n)Z

h . By [22, Lemma 3.1] or [29, Lemma 4.1], we have the following

 where ⋆ indicates the componentwise multiplication.
For any integer h, 0 ≤ h ≤ n − 1, denote by S2(h) the 2-cyclotomic coset modulo n 

containing h, i.e., S2(h) = {h2i (mod n)∣i = 0,1,…}. The 2-cyclotomic coset S2(h) is said 
to be self-inverse if S2(−h) = S2(h). Set J0 = I0 = {0}. Let I1 be the union of all self-
inverse 2-cyclotomic cosets modulo n excluding I0 and set I2 = {0,1,…,n − 1}∖ (I0 ∪ I1). 
The set I2 is the union of pairs of 2-cyclotomic cosets of the form S2(h) ∪ S2(−h), where 
h∉I0 ∪ I1. Let J1 and J2 be complete sets of representatives of 2-cyclotomic cosets in I1 
and I2, respectively. Without loss of generality, we assume that J2 is chosen such that h 
∈ J2 if and only if n − h ∈ J2. For any h ∈ J0 ∪ J1 ∪ J2, denote by mh the size of S2(h). 
Then mh is even for all h ∈ J1.

By [22, Theorem  3.2 and Corollary 3.3] or [29, Lemma 4.3], we know that 
ℤ4[x]

⟨x2kn−1⟩ ≅
∏

h∈J0∪J1∪J2

GR(4,mh)[x]

⟨x2k−1⟩  via the following ring isomorphism

 Then every Euclidean self-dual cyclic code 
C

 over ℤ4 of length 2kn can be constructed as 
follows (cf. [29, Proposition 4.5]):

 where

◇ C0 is a Euclidean self-dual cyclic code over ℤ4 of length 2k,

Φ(c0(u), c1(u),… , cn−1(u)) =

n−1∑
i=0

2k−1∑
j=0

ci,jx
i+jn.

c(x) =

n−1�
i=0

2k−1�
j=0

ci,jx
i+jn ∈

ℤ4[x]

⟨x2kn − 1⟩

ĉh =

n−1∑
i=0

2k−1∑
j=0

ci,j�
hiun

�i+j, 0 ≤ h ≤ n − 1,

c(x) = Φ
((

1, u−n
�

, u−2n
�

,… , u−(n−1)n
�)
⋆

1

n

(
�c(1),�c(𝜁 ),… ,�c

(
𝜁n−1

)))
,

c(x) ↦ (̂ch)h∈J0∪J1∪J2 .

C ≅ C0 ×
∏
j∈J1

Cj ×
∏
h∈J2

Ch,
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◇ Cj is a Hermitian self-dual cyclic code of length 2k over the Galois ring GR(4,mj) for 
all j ∈ J1,
◇ Ch is a cyclic code of length 2k over the Galois ring GR(4,mh) and Cn−h = C

⊥E

h  , where 
C
⊥E

h
 is the Euclidean dual of Ch, for all h ∈ J2.

In the following sections, we focus on the problem of constructing Hermitian self-dual 
cyclic code of length 2k over the Galois ring GR(4,m).

3 � Preliminaries

In this section, we introduce the notation needed in the following sections.
Let ℤ4 = {0, 1, 2, 3} in which the arithmetic is done modulo 4, and let ℤ2 = {0, 1} 

in which the arithmetic is done modulo 2. In this paper, we regard ℤ2 as a subset of ℤ4 , 
although ℤ2 is not a subfield of the ring ℤ4 . In that sense, we have that 2ℤ2 = {0, 2} ⊆ ℤ4 , 
and each element a in ℤ4 has a unique 2-adic expansion: a = b0 + 2b1, where b0, b1 ∈ ℤ2.

Define a = b0 = a (mod 2), and let a(z) =
∑d

i=0
aiz

i ∈ ℤ2[z] , for any 
a(z) =

∑d

i=0
aiz

i ∈ ℤ4[z] . Then the map − is a surjective homomorphism of rings from ℤ4[z] 
onto ℤ2[z] . A monic polynomial a(z) in ℤ4[z] of positive degree is said to be basic irreduc-
ible if a(z) is an irreducible polynomial in ℤ2[z] . From now on, we adopt the following 
notation:

Let m be an arbitrary even positive integer, set q = 2
m

2 and let ς(z) be a fixed monic basic 
irreducible polynomial in ℤ4[z] of degree m.
Let R =

ℤ4[z]

⟨�(z)⟩ = {
∑m−1

i=0
aiz

i ∣ a0, a1,… , am−1 ∈ ℤ4} in which the arithmetic is done 
modulo ς(z). Then R is a Galois ring of characteristic 4 and 4m = q4 elements, i.e., R = 
GR(4,m) (cf. [46, Theorem 14.1]).
Let 𝔽q2 = 𝔽2m =

ℤ2[z]

⟨�(z)⟩ =
�∑m−1

i=0
biz

i ∣ b0, b1,… , bm−1 ∈ ℤ2

�
 in which the arithmetic is 

done modulo 
�(z)

 . Then �q2 is a finite field of q2 elements.
Let �q = {𝜉 ∈ �q2 ∣ 𝜉

q = 𝜉} ⊆ �q2 . Then �q is the unique subfield of �q2 with q elements 
(cf. [46, Theorem 6.18]). In particular, 𝔽2 = ℤ2

.

As we have regarded ℤ2 as a subset of ℤ4 , we will regard �q2 as a subset of R in the 
natural way, though �q2 is not a subfield of R. In this sense, we have 2 ⋅ 1 = 2 ∈ R, where 
2 ∈ ℤ4 ⊆ R and 1 ∈ ℤ2 ⊆ 𝔽q2.

Let � =
∑m−1

i=0
aiz

i ∈ R , where ai = bi0 + 2bi1 ∈ ℤ4
 with bi0, bi1 ∈ ℤ2 , for 

all i = 0,1,…,m − 1. Then α can be uniquely expressed as: α = β0 + 2β1, where 
�j =

∑m−1

i=0
bijz

i ∈ �q2 for j = 0, 1 . Define

 Then the map − is a surjective homomorphism of rings from R onto �q2 with the following 
kernel:

� = �0 =

m−1∑
i=0

aiz
i, ∀� ∈ R.

(1)2R = 2�q2 =
{
2𝛽 ∣ 𝛽 ∈ �q2

}
⊂ R and |2R| = |�q2 | = q2.
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Here, we emphasize that �q2 is only regarded as a subset of R, but �q2 is not a subfield of R. 
Then we have �q2 = R = {� ∣ � ∈ R}.

As 2m = q2 and R is a Galois ring of characteristic 4 and 4m elements, by [46, Theo-
rem 14.8], we can choose a fixed invertible element ζ of R with multiplicative order q2 
− 1. From now on, we let

 By [46, Theorem 14.8]), each element α of R has a unique 2-adic expansion: α = t0 + 2t1, 
where t0, t1 ∈ T  . This implies R = T  , 2R = 2T  and |2R| = |T| = q2 . Then by (1), we have 
T = �q2 and 2T = 2�q2 . Moreover, we let

 As the multiplicative order of ζq+ 1 is 
q2−1

q+1
= q − 1 , we see that |T0| = q and 

T0 = {� ∈ T ∣ �q = �} . Hence the subset R0 of R, defined by

 is the unique Galois subring of R with q2 = 4
m

2 elements. Therefore, R is a Galois exten-
sion ring of R0 with degree 2. Moreover, by T = �q2 we have

 where �q is the subfield of �q2 with q elements. From now on, we define the map � ∶ R → R 
by

 By [46, Theorem 14.30], we know that ϕ is the generalized Frobenius automorphism of R 
over R0 with multiplicative order 2 satisfying

 Especially, by �q = T0 ⊂ T  , it follows that cq = c for all c ∈ �q.
Now, let Tr�q2∕�q be the trace function from �q2 onto �q defined by:

 and set Tr
−1
�
q2
∕�q

(c) =
{
� ∈ �q2 ∣ Tr�q2∕�q

(�) = c
}

 for any c ∈ �q . Then for any � ∈ �q2 , we 
know that Tr�q2∕�q (�) = 0 if and only if � ∈ �q . This implies Tr−1

�
q2
∕�q

(0) = �q . Moreover, for 
any element c ∈ �q , we have |Tr−1

�
q2
∕�q

(c)| = q (cf. [46, Corollary 7.17]).
The following lemma is one of the key results for this paper.

Lemma 1  Using the notation above, let w be a fixed element of the finite field �q2 satisfy-
ing Tr

�q2∕�q
(w) = 1 , i.e., w + wq = 1. Then

	 (i)	  �q2 = {a + bw ∣ a, b ∈ �q}.
	 (ii)	 For any a, b ∈ �q , we have (a + bw)q = (a + b) + bw.

T = {0} ∪
{
� i ∣ i = 0, 1,… , q2 − 2 = 2m − 2

}
.

T0 = {0} ∪
{(

𝜁q+1
)i
∣ i = 0, 1,… , q − 2 = 2

m

2 − 2

}
⊆ T.

R0 =
{
t0 + 2t1 ∣ t0, t1 ∈ T0

}
,

T0 =
{
� ∣ �

q
= �, � ∈ T = �q2

}
= �q,

�(t0 + 2t1) = t
q

0
+ 2t

q

1
(∀t0, t1 ∈ T).

�(a) = a, ∀a ∈ R0.

Tr
�q2∕�q

(�) = � + �q
(
∀� ∈ �q2

)
,
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	 (iii)	 Let c ∈ �q2 . We regard 2c as an element of the Galois ring R. Then we have ϕ(2 ⋅ c) 
= 2 ⋅ cq. In particular, we have that ϕ(2 ⋅ c) = 2 ⋅ c if c ∈ �q.

Proof  (i) By Tr
�q2∕�q

(w) = 1 , we see that w ∉ �q . Since �q2 is an �q-linear space of dimen-
sion 2, the set {1,w} is an �q-basis of �q2 . Therefore, �q2 =

{
a + bw ∣ a, b ∈ �q

}
.

(ii) By w + wq = 1, we have wq = 1 + w. As q = 2
m

2 and a, b ∈ �q , we have aq = a and bq 
= b. Therefore, in the finite field �q2 , we have (a + bw)q = aq + bqwq = a + b(1 + w) = (a 
+ b) + bw.

(iii) As we regard �q2 as a subset of the Galois ring R, the element c ∈ �q2 has a unique 
2-adic expansion c = t0 + 2t1, where t0, t1 ∈ T  . This implies 2c = 2t0. From this and by the 
definition of ϕ, we deduce that �(2c) = 2t

q

0.
On the other hand, by c = t0 + 2t1 and 4 = 0 in ℤ4 ⊂ R , we have 

c2 = t2
0
+ 4

(
t0t1 + t2

2

)
= t2

0 . From this and by q = 2
m

2 , we obtain cq = t
q

0
.

As stated above, we conclude that �(2c) = 2t
q

0
= 2cq . □

At the end of this section, we emphasize that the element w and the subset �q of the 
Galois ring GR(4,m) play important roles in the construction and representation of Her-
mitian self-dual cyclic codes of length 2k over GR(4,m). Specifically, the element w and 
subset �q can be constructed as follows:

1. Choose a monic basic irreducible polynomial ς(z) in ℤ4[z] of degree m, say 
�(z) =

∑m−1

i=0
�iz

i + zm , where �i ∈ ℤ4
 for all i = 0,1,…,m − 1.

Then �(z) =
∑m−1

i=0
� iz

i + zm is an irreducible polynomial in ℤ2[z].
2. Set the Galois ring R = GR(4,m) = {

∑m−1

i=0
aiz

i ∣ ai ∈ ℤ4, i = 0, 1,… , m − 1} in 
which zm = −

∑m−1

i=0
�iz

i = 3
∑m−1

i=0
�iz

i.
Set the finite field 𝔽q2 = {

∑m−1

i=0
biz

i ∣ bi ∈ ℤ2, i = 0, 1,… ,m − 1} in which 
zm =

∑m−1

i=0
� iz

i.
3. Choose a primitive element ζ of the finite field �q2 . Then ζq+ 1 is a primitive element 
of the subfield �q ⊂ �q2 . Hence

4. Select a fixed w ∈ �q2 such that w + wq ≡ 1 (mod �(z) ) in ℤ2[z] . Then

 and R = {� + 2� ∣ �, � ∈ �q2} . Here we regard �q2 as a subset of R.

Finally, we give two examples to describe the above constructions:

Example 1  Let m = 2. Then q = 2. Choose ς(z) = z2 + z + 1. Therefore,

•	  R = GR(4, 2) = {a0 + a1z ∣ a0, a1 ∈ ℤ4} in which z2 = 3 + 3z.
	   𝔽4 = {b0 + b1z ∣ b0, b1 ∈ ℤ2} = {0, 1, z, 1 + z} in which z2 = 1 + z.
•	 ζ = z is a primitive element of �4 . Then ζq+ 1 = z3 = 1 is a primitive element of �2 . 

Hence �2 = {0, 1}.
•	 Let w = z. Then w2 + w ≡ 1 (mod z2 + z + 1) in ℤ2[z] . Hence �4 = {� + z� ∣ �, � ∈ �2}.

Example 2  Let m = 4. Then q = 4. Choose ς(z) = z4 + z3 + 1. We have the following:

�q = {0} ∪
{
� l(q+1) ∣ l = 0, 1,… , q − 2

}
(mod �(z)).

�q2 = {� + w� ∣ �, � ∈ �q} (mod �(z))

1123Cryptography and Communications (2022) 14:1117–1143
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•	 R = GR(4, 4) = {a0 + a1z + a2z
2 + a3z

3 ∣ a0, a1, a2, a3 ∈ ℤ4} in which z4 = 3 + 3z3.
	   𝔽16 = {b0 + b1z + b2z

2 + b3z
3 ∣ b0, b1, b2, b3 ∈ ℤ2} in which z4 = 1 + z3.

•	 ζ = 1 + z + z2 is a primitive element of the finite field �16.
	   ζq+ 1 = (1 + z + z2)5 = 1 + z + z3 is a primitive element of �4 . Hence 

�4 = {0, 1, �q+1, (�q+1)2} (mod z4 + z3 + 1), i.e.,

•	 Let w = z2 + z3. Then w2 + w ≡ 1 (mod z4 + z3 + 1) in ℤ2[z] . Hence

4 � Hermitian self‑dual cyclic codes of length 2k over GR(4,m)

In this section, we give an explicit representation for every Hermitian self-dual cyclic 
code over GR(4,m) of length 2k. To do this, we first review necessary concepts and facts 
for Euclidean and Hermitian self-dual codes.

Using the notation of Section  2, let k be any fixed positive inte-
ger and assume � = (�0, �1,… , �2k−1), � = (�0, �1,… , �2k−1) ∈ R2k . We let 
�(�) = (�(�0),�(�1),… ,�(�2k−1)) . Recall that the Euclidean inner product [α,β]E and 
the Hermitian inner product [α,β]H of α and β are defined by

 respectively. Then both [−,−]E and [−,−]H are nondegenerate bilinear quadratic forms on 
R2k.

Let C be a linear code over R of length 2k. Then the Euclidean dual code C⊥E and the 
Hermitian dual code C⊥H of C are defined by

 and

 respectively. Both C⊥E and C⊥H are also linear codes over R of length 2k. As R is a Galois 
ring, we have |C||C⊥H | = |C||C⊥E | = |R|2k , and so |C⊥H | = |C⊥E |.

In particular, C is said to be Hermitian self-dual (resp. Euclidean self-dual) if 
C
⊥H = C (resp. C⊥E = C ). It is well known that the number of codewords in each Her-

mitian (Euclidean) self-dual code over the Galois ring R of length 2k is equal to 
(|R|2k)

1

2 =
(
(4m)2

k
) 1

2

= (2m)2
k

= (q2)2
k.

In this paper, we write 𝜙(C) = {𝜙(𝛼) ∣ 𝛼 ∈ C} ⊆ R2k . As ϕ is a ring automorphism on 
R of multiplicative order 2, by the definition of inner products [−,−]E and [−,−]H, we 
conclude that

�4 =
{
0, 1, 1 + z + z3, z + z3

}
.

�16 =
{
� +

(
z2 + z3

)
� ∣ �, � ∈ �4

}
.

[�, �]E =

2k−1∑
i=0

�i�i ∈ R and [�, �]H =

2k−1∑
i=0

�i ⋅ �(�i) = [�,�(�)]E,

C
⊥E =

{
𝛽 ∈ R2k ∣ [𝛼, 𝛽]E = 0, ∀𝛼 ∈ C

}

C
⊥H =

{
𝛽 ∈ R2k ∣ [𝛼, 𝛽]H = 0, ∀𝛼 ∈ C

}
,
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 The latter implies 𝜙(C⊥H ) ⊆ C
⊥E , and hence 𝜙(C⊥H ) = C

⊥E . Therefore,

Next, we review the notation and some known results for Kronecker products of matri-
ces of specific types. These are key to the constructions in this paper. In the following, set 
q = 2

m

2 and let the field �q be the same as that defined in Section 2.
Let A = (aij) and B be matrices over �q of sizes s × t and l × v respectively. We denote by 

Atr the transpose of A. Recall that the Kronecker product of A and B is defined by A ⊗ B = 
(aijB), which is a matrix over �q of size sl × tv. Then we define

For any integers l and s, where 1 ≤ l ≤ 2λ and 1 ≤ s ≤ 2λ− 1, we denote by Il the identity 
matrix of order l and adopt the following notation:

•	 Let Gl be the submatrix of size l × l in the upper left corner of G2�
 and define Ml = Il + 

Gl, i.e.,

Then Ml is a matrix over �2 of size l × l and M2� = I2� + G2�.
•	 We label the rows of the matrix Ml from top to bottom as: 0th row, 1st row, …, (l − 1)st 

row; and label the columns of Ml from left to right as: 1st column, 2nd column, …, l th 
column.

	   For l = 2s − 1, we denote by �
[0,2s−1)

j  the j th column vector of the matrix M2s− 1, for 
all j = 1,2,…,2s − 1. Then � [0,2s−1)

j
∈ �

2s−1
2

 and

•	 For any vector �[0,2s−1) ∈ �
2s−1
q

 , define its truncated vector α[s− 1,2s− 1) by

•	 Let �(2s−1)
2s−1

= (0,… , 0, 1)tr ∈ �
2s−1
2

.

The solution space of the homogeneous linear equations with coefficient matrix Ml is 
determined by the following lemma, when l is odd.

Lemma 2  (cf. [11, Theorem 1]) For any positive integer s, let S2s−1
 be the solution space 

for the homogeneous linear equations over �q:

|𝜙(C⊥H )| = |C⊥H | = |C⊥E | and [C,𝜙(C⊥H )]E = [C, C⊥H ]H = {0}.

(2)C
⊥H = C ⟺ 𝜙(C) = 𝜙(C⊥H ) ⟺ 𝜙(C) = C

⊥E .

(3)G2 =

(
1 0

1 1

)
, G2𝜆 = G2 ⊗ G2𝜆−1 =

(
G2𝜆−1 0

G2𝜆−1 G2𝜆−1

)
for all 𝜆 ≥ 2.

(4)
(
Gl 0

∗ ∗

)
= G2� and

(
Ml 0

∗ ∗

)
= I2� + G2� .

M2s−1 =
(
�

[0,2s−1)

1
,�

[0,2s−1)

2
,… ,�

[0,2s−1)

2s−1

)
.

(5)
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 Then we have the following conclusions:

	 (i)	  dim�q
(S2s−1) = s and the following s column vectors:

 form a basis of the �q-linear space S2s−1
.

	 (ii)	  S2s−1 =
�∑s−1

i=1
a2i−1�

[0,2s−1)

2i−1
+ a2s−2�

(2s−1)

2s−1
∣ a2i−1 ∈ �q for all 1 ≤ i ≤ s − 1, and a2s−2 ∈ �q

�
.

To determine Hermitian self-dual cyclic codes over GR(4,m) of length 2k, the follow-
ing conclusion plays an essential role.

Lemma 3  Using the notation above, we set

 Then S[s−1]

2s−1
 is an �q-subspace of � s

q . Moreover, we have that dim�q

�
S
[s−1]

2s−1

�
= ⌈ s+1

2
⌉ and an 

�q
-basis of S[s−1]

2s−1
 is given by:

 Therefore, we have �S[s−1]

2s−1
� = q

⌈ s+1

2
⌉ and

Proof  By (3) and (4), we see that M2s− 1 is a strictly lower triangle matrix and its column 
vectors � [0,2s−1)

1
,�

[0,2s−1)

2
,… ,�

[0,2s−1)

2s−1
 satisfy the following properties: � [0,2s−1)

2s−1
= 02s−1 , 

and

where 0t is the zero column vector of length t for any integer t ≥ 0. Hence

M2s−1Y = �, where Y = (y0, y1, y2,… , , y2s−2)
tr.

�
[0,2s−1)

1
,�

[0,2s−1)

3
,… ,�

[0,2s−1)

2s−3
, �

(2s−1)

2s−1

S
[s−1]

2s−1
=
{
(bs−1, bs,… , b2s−2)

tr ∣ (0,… , 0, bs−1, bs,… , b2s−2)
tr ∈ S2s−1

}
.

�
�

[s−1,2s−1)

2i−1
∣ ⌊ s + 1

2
⌋ ≤ i ≤ s − 1

�
∪
�
�(s)
s

= (0,… , 0, 1)tr
�
.

S
[s−1]

2s−1
=

⎧⎪⎨⎪⎩

�
⌊ s+1

2
⌋≤i≤s−1

a2i−1�
[s−1,2s−1)

2i−1
+ a2s−2�

(s)
s

∣ a2i−1, a2s−2 ∈ �q, ⌊ s + 1

2
⌋ ≤ i ≤ s − 1

⎫⎪⎬⎪⎭
.

(6)�
[0,2s−1)

2i−1
=

⎛
⎜⎜⎜⎜⎜⎜⎝

02i−1

1

∗

∗

⋮

∗

⎞
⎟⎟⎟⎟⎟⎟⎠

, �
[0,2s−1)

2i
=

⎛
⎜⎜⎜⎜⎜⎜⎝

02i−1

0

0

∗

⋮

∗

⎞
⎟⎟⎟⎟⎟⎟⎠

, ∀i = 1, 2,… , s − 1,
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 From this and by Lemma 2 (i), we deduce that dim
�q

(
S
[s−1]

2s−1

)
=
⌈
s+1

2

⌉
 , and 

S
[s−1]

2s−1
=
�∑

⌊ s+1

2
⌋≤i≤s−1a2i−1�

[s−1,2s−1)

2i−1
+ a2s−2�

(s)
s

∣ a2i−1, a2s−2 ∈ �q, ⌊ s+1

2
⌋ ≤ i ≤ s − 1

�
 by 

Lemma 2 (ii).
□

In this paper, cyclic codes of length 2k over the Galois ring R = GR(4,m) are identified 
with ideals of the following ring

•	 R[x]

⟨x2k−1⟩ = R[x]∕⟨x2k − 1⟩ =
�∑2k−1

i=0
aix

i ∣ a0, a1,… , a2k−1 ∈ R
�

 in which the arithmetic 
is done modulo the polynomial 

x2
k

− 1
,

under the identification map � ∶ R2k
→

R[x]

⟨x2k−1⟩ defined by

 for all ai ∈ R and i = 0,1,…,2k − 1. Further, we set

•	  
�
q2
[x]

⟨x2k−1⟩ = �q2 [x]∕⟨x2k − 1⟩ =
�∑2k−1

i=0
bix

i ∣ b0, b1,… , b2k−1 ∈ �q2

�
 in which the arithme-

tic is done modulo x2k − 1.

As we have regarded �q2 as a subset of R, we will regard 
�
q2
[x]

⟨x2k−1⟩ as a subset of R[x]

⟨x2k−1⟩ in the 
natural way, though 

�
q2
[x]

⟨x2k−1⟩ is not a subring of R[x]

⟨x2k−1⟩ . In that sense, each element ξ of R[x]

⟨x2k−1⟩ 
has a unique 2-adic expansion:

 This implies 2 ⋅ R[x]

⟨x2k−1⟩ = 2 ⋅
�
q2
[x]

⟨x2k−1⟩ =
�
2𝜉0 ∣ 𝜉0 ∈

�
q2
[x]

⟨x2k−1⟩
�
⊂ R[x]

⟨x2k−1⟩ . Here we only regard 
�
q2
[x]

⟨x2k−1⟩ as a subset of R[x]

⟨x2k−1⟩.
For any polynomial b(x) =

∑2k−1

i=0
bix

i ∈
R[x]

⟨x2k−1⟩ , where bi ∈ R for all i, we define 

�(b(x)) =
∑2k−1

i=0
�(bi)x

i . Then ϕ is an automorphism of multiplicative order 2 on the ring 
R[x]

⟨x2k−1⟩ . By Lemma 1 (iii), we have that

Let 
C

 be an ideal of the ring 
R[x]

⟨x2k−1⟩ . We set �(C) = {�(b(x)) ∣ b(x) ∈ C}, which is an 
ideal of 

R[x]

⟨x2k−1⟩ as well. Hence ϕ introduces a bijection C ↦ �(C) on the set of ideals in 
R[x]

⟨x2k−1⟩.
Let f (x), g(x) ∈ R[x]

⟨x2k−1⟩ . In this paper, we denote by 〈f(x),g(x)〉 the ideal of the ring R[x]

⟨x2k−1⟩ 
generated by f(x) and g(x), i.e.,

Now, using the notation above and in Section  2, we determine all distinct Hermitian 
self-dual cyclic codes of length 2k over the Galois ring R = GR(4,m) by the following theo-
rem. Its detailed proof is given in Section 4.

� ∶ (a0, a1,… , a2k−1) ↦ a0 + a1x +…+ a2k−1x
2k−1

� = �0 + 2�1, where �0, �1 ∈ �q2 [x]∕⟨x2k − 1⟩.

�(2b(x)) = 2b(x), if bi ∈ �q for all i = 0, 1,… , 2k − 1.

⟨f (x), g(x)⟩ =
�
a(x)f (x) + b(x)g(x) ∣ a(x), b(x) ∈ R[x]∕⟨x2k − 1⟩

�
.
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Theorem 1  For any positive integer k, we have the following:
⋄ If k = 1, there are 1 + 2

m

2 Hermitian self-dual cyclic codes of length 2 over R:

⋄ If k = 2, there are 1 + 2
m

2 + 2m Hermitian self-dual cyclic codes of length 22 over R:
〈2〉;
〈(x − 1)3 + 2b0,2(x − 1)〉, where b0 ∈ �q;
〈(x − 1)2 + 2(b0 + w + b1(x − 1))〉, where b0, b1 ∈ �q.
⋄  Let k ≥ 3 and set q = 2

m

2 . Then all distinct Hermitian self-dual cyclic codes of length 
2k over R are given by the following four cases:

I. 1 code: 〈2〉.
II. q codes: ⟨(x − 1)2

k−1 + 2b0, 2(x − 1)⟩ where b0 ∈ �q.
III. For every integer s, 2 ≤ s ≤ 2k− 1 − 1, there are qs codes:

 in which bs(x) =
∑s−1

j=0
(bj,0 + wbj,1)(x − 1)j is determined by:

where

 and c2t−1, a2i−1, a2s−2 ∈ �q
 , for all integers t and i: ⌈ s+1

2
⌉ ≤ t ≤ s − 1 and ⌊ s+1

2
⌋ ≤ i ≤ s − 1.

IV. q2k−1 codes:

 where

 and ai, ci, c0, c2k−2 ∈ �q , for all i = 1,2,…,2k− 2 − 1.
Hence the number NH(GR(4,m),2k) of all Hermitian self-dual cyclic codes of length 2k 

over R is NH(GR(4,m), 2
k) =

∑2k−1

s=0
(2

m

2 )s =
(2

m
2 )2

k−1+1−1

2
m
2 −1

.

Remark 1 

⟨2⟩, ⟨(x − 1) + 2(b0 + w)⟩ where b0 ∈ �q.

⟨(x − 1)2
k−s + 2(x − 1)(2

k−1−1)−s + 2bs(x), 2(x − 1)s⟩

⎛⎜⎜⎜⎝

b0,1
b1,1
⋮

bs−1,1

⎞
⎟⎟⎟⎠
=

∑
⌈ s+1

2
⌉≤t≤s−1

c2t−1�
[s−1,2s−1)

2t−1
,

⎛⎜⎜⎜⎝

b0,0
b1,0
⋮

bs−1,0

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

ĉs
ĉs+1
⋮

ĉ2s−1

⎞
⎟⎟⎟⎠
+

∑
⌊ s+1

2
⌋≤i≤s−1

a2i−1�
[s−1,2s−1)

2i−1
+ a2s−2

⎛
⎜⎜⎜⎝

0

⋮

0

1

⎞
⎟⎟⎟⎠
,

ĉj =

�
c2t−1, if j = 2t − 1 and ⌈ s+1

2
⌉ ≤ t ≤ s − 1;

0, otherwise,

⟨(x − 1)2
k−1

+ 2b(x)⟩,

b(x) = (c0 + w) +

2k−2−1∑
j=1

(aj + cj + ajw)x
j + c2k−2x

2k−2 +

2k−2−1∑
j=1

(cj + ajw)x
2k−1−j
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	 (i)	 The formula for the number of Hermitian self-dual cyclic codes of length 2k over 
GR(4,m) has been given in [29, Theorem 3.4].

	 (ii)	 In Theorem 1, b(x) is expressed as a polynomial in x in Case IV, while bs(x) is 
expressed as a polynomial in x − 1 in case III.

Finally, we give an explicit expression for every Hermitian self-dual cyclic code of 
length 2k over GR(4,m). For any integers K and t satisfying 1 ≤ t ≤ K, let 

(
K

t

)
 be the 

binomial coefficient defined by

 Then by [13, Proposition 2], we have

 where

From this, by (4) and (5), we have the following conclusion:

Theorem 2  For any integer k ≥ 3, all distinct Hermitian self-dual cyclic codes of length 
2k over GR(4,m) are given by the following four cases:

I. 1 code: 〈2〉.
II. q codes: ⟨(x − 1)2

k−1 + 2b0, 2(x − 1)⟩ , where b0 ∈ �q.
III. For each integer s: 2 ≤ s ≤ 2k− 1 − 1, there are qs codes:

 where

and c2t−1, a2i−1, a2s−2 ∈ �q , for all integers t and i satisfying

(
K

t

)
=

K!

(K − t)! t!
=

K ⋅ (K − 1) ⋅… ⋅ (K − t + 1)

1 ⋅ 2 ⋅… ⋅ t
.

G2k =

⎛⎜⎜⎜⎜⎝

g
(2k)

1,1
g
(2k)

1,2
… g

(2k)

1,2k

g
(2k)

2,1
g
(2k)

2,2
… g

(2k)

2,2k

… … … …

g
(2k)

2k ,1
g
(2k)

2k ,2
… g

(2k)

2k ,2k

⎞⎟⎟⎟⎟⎠
(mod 2),

(7)g
(2k)

i,j
=

(
2k − j

i − j

)
if i ≥ j, and

(
2k − j

i − j

)
= 0 if i < j.

⟨(x − 1)2
k−s + 2(x − 1)(2

k−1−1)−s + 2bs(x), 2(x − 1)s⟩,

bs(x) =
∑

⌊ s+1

2
⌋≤i≤s−1

2(s−i)∑
�=1

a2i−1

�
2k − 2i + 1

�

�
(x − 1)2i−1−s+�

+a2s−2(x − 1)s−1 +
∑

⌈ s+1

2
⌉≤t≤s−1

c2t−1(x − 1)2t−1−s

+
∑

⌈ s+1

2
⌉≤t≤s−1

2(s−t)∑
�=1

c2t−1w

�
2k − 2t + 1

�

�
(x − 1)2t−1−s+�
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 IV. q2k−1 codes: ⟨(x − 1)2
k−1

+ 2b(x)⟩, where

 and ai, ci, c0, c2k−2 ∈ �q , for all i = 1,2,…,2k− 2 − 1.

Proof  Obviously, we only need to prove the conclusion in Case III. For any integer s, 2 ≤ 
s ≤ 2k− 1 − 1, let j ∈{i,t}, where ⌊ s+1

2
⌋ ≤ i ≤ s − 1 and ⌈ s+1

2
⌉ ≤ t ≤ s − 1 . By the definition 

for the truncated vector � [s−1,2s−1)

2j−1
 (see (5)) and (7), we have � [s−1,2s−1)

2j−1
=

⎛⎜⎜⎜⎝

gs−1,2j−1
gs,2j−1
⋮

g2s−2,2j−1

⎞⎟⎟⎟⎠
 in 

which gs− 1+γ,2j− 1 satisfies the following conditions:

(◇) If 0 ≤ γ < 2j − 1 − s, gs−1+� ,2j−1 =
(

2k − (2j − 1)

s + � − (2j − 1)

)
= 0.

(◇) If γ = 2j − 1 − s, gs−1+� ,2j−1 =
(

2k − (2j − 1)

s + � − (2j − 1)

)
+ 1 = 0.

(◇) If γ = 2j − 1 − s + ν, where 1 ≤ ν ≤ 2(s − j),

From these and by Theorem 1, we deduce the conclusions in Case III directly. Here, we 
omit the trivial verification process.

□

5 � Proof of Theorem 1

In this section, we prove Theorem 1. To save space, we will refer directly to some of the 
results in the literature later in this paper.

Lemma 4  (cf. [11, Lemma 1]) We have (x − 1)2
k

= 2(x − 1)2
k−1 in 

R[x]

⟨x2k−1⟩.

Lemma 5  (cf. [11, Lemma 2]) Let s be an integer: 1 ≤ s ≤ 2k− 1. For any vector 
b = (b0, b1,… , bs−1)

tr ∈ �
s

q2
 , we set b(x) =

∑s−1

j=0
bj(x − 1)j , and let Cb be the ideal of 

R[x]

⟨x2k−1⟩ 
generated by (x − 1)2

k−s + 2b(x) and 2(x − 1)s, i.e.,

Then we have the following:

	 (i)	 The ideal Cb is a cyclic code of length 2k over R containing (|R|2k ) 1

2 codewords.
	 (ii)	 We have Cb ≠ Cc , for any b, c ∈ �

s

q2 satisfying b ≠ c.

⌈
s + 1

2

⌉
≤ t ≤ s − 1 and

⌊
s + 1

2

⌋
≤ i ≤ s − 1.

b(x) = (c0 + w) +

2k−2−1∑
j=1

(aj + cj + ajw)x
j + c2k−2x

2k−2 +

2k−2−1∑
j=1

(cj + ajw)x
2k−1−j

gs−1+� ,2j−1 =

(
2k − (2j − 1)

�

)
=

(
2k − 2j + 1

�

)
.

(8)Cb = ⟨(x − 1)2
k−s + 2b(x), 2(x − 1)s⟩.
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As x2k = 1 in the rings 
R[x]

⟨x2k−1⟩ and 
�
q2
[x]

⟨x2k−1⟩ , we have x−l = x2
k−l for all integers l, 1 ≤ l ≤ 2k 

− 1. Here is the key conclusion for proving Theorem 1:

Lemma 6  Using the notation of Lemma 5, if b(x) satisfies the following congruence rela-
tion in the ring �q2 [x]:

where �(b(x)) =
∑s−1

j=0
b
q

j
(x − 1)j ∈ �q2 [x] , the code Cb defined by (8) is a Hermitian self-

dual cyclic code of length 2k over R.

Proof  Let b(x) satisfy (9). By Lemma 5 (i), we know that Cb is a cyclic code of length 2k 
over R containing (2m)2k = (|R|2k ) 1

2 codewords. Moreover, by Lemma 1 (iii) and ϕ(a) = a 
for all a ∈ R0, it follows that

For any ideal D of the ring 
R[x]

⟨x2k−1⟩ , recall that the annihilator 
Ann(D)

 of D is defined by

 Let � ∶
R[x]

⟨x2k−1⟩ →
R[x]

⟨x2k−1⟩ be the conjugate map defined by

 Then it is well known that (cf. [32, Theorem 4.1])

 Since b(x) satisfies (9), there exists g(x) ∈
�
q2
[x]

⟨x2k−1⟩ such that

 This implies 2x−sb(x−1) = 2(�(b(x)) + (x − 1)2
k−1−s) + g(x) ⋅ 2(x − 1)s in R[x]

⟨x2k−1⟩ . As x is 
invertible in R[x]

⟨x2k−1⟩ , by − 2 = 2 in 
ℤ4 ⊂ R , it follows that

Moreover, by Lemma 4, we have that

(9)�(b(x)) + x−sb(x−1) ≡ (x − 1)2
k−1−s (mod (x − 1)s),

�(Cb) = ⟨�((x − 1)2
k−s + 2b(x)),�(2(x − 1)s)⟩

= ⟨(x − 1)2
k−s + 2�(b(x)), 2(x − 1)s⟩.

Ann(D) =
�
a(x) ∈ R[x]∕⟨x2k − 1⟩ ∣ a(x)c(x) = 0, ∀c(x) ∈ D

�
.

�(a(x)) = a(x−1) = a0 +

2k−1∑
i=1

aix
2k−i, ∀a(x) =

2k−1∑
i=0

aix
i where ai ∈ R.

C
⊥E

b
= 𝜒(Ann(Cb)) =

{
𝜒(a(x)) ∣ a(x) ∈ Ann(Cb)

}
.

x−sb(x−1) = �(b(x)) + (x − 1)2
k−1−s + g(x)(x − 1)s.

�(Cb) = ⟨�((x − 1)2
k−s + 2b(x)),�(2(x − 1)s)⟩

= ⟨(x−1 − 1)2
k−s + 2b(x−1), 2(x−1 − 1)s⟩

= ⟨(−1)2k−sx−(2k−s)(x − 1)2
k−s + 2b(x−1), 2x−s(x − 1)s⟩

= ⟨(x − 1)2
k−s + 2x−sb(x−1), 2(x − 1)s⟩

= ⟨(x − 1)2
k−s + 2(�(b(x)) + (x − 1)2

k−1−s) + g(x) ⋅ 2(x − 1)s, 2(x − 1)s⟩
= ⟨(x − 1)2

k−s + 2(�(b(x)) + (x − 1)2
k−1−s), 2(x − 1)s⟩.

(x − 1)2
k−s

⋅ 2(x − 1)s = 2(x − 1)2
k

= 2 ⋅ 2(x − 1)2
k−1

= 0.
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 Similarly, as 2k − 2s ≥ 2k − 2 ⋅ 2k− 1 = 0, we obtain

 and hence

From these, we deduce that �(Cb) ⋅ �(Cb) = {0} . Since R is a Galois ring and 
|�(Cb)| = |�(Cb)| = |Cb| = (|R|2k ) 1

2 , we conclude that Ann(�(Cb)) = �(Cb).
As χ− 1 = χ, we have (𝜙(Cb))

⊥E = 𝜒(Ann(𝜙(Cb))) = 𝜒2(Cb) = Cb . This implies 
𝜙(Cb) = C

⊥E

b  . From this and by the condition in (2) of Section 2, we conclude that Cb is a 
Hermitian self-dual code.

Finally, by the definition of ϕ and Lemma 1 (iii), it follows that

This implies �(b(x)) =
∑s−1

j=0
b
q

j
(x − 1)j (mod 2).

□

By − 1 = 1 in the finite field �2 ⊂ �q2
 , we have the following conclusion.

Lemma 7  ([12, Theorem 1 (ii) and its proof]) Let l be an integer satisfying 1 ≤ l ≤ 2k − 1, 
and let Gl be the matrix defined by (4). Let Bl = (b0,b1,…,bl− 1)tr ∈ �

l

q2 and set 
�(x) =

∑l−1

j=0
bj(x − 1)j . Then we have

 where x−1 = x2
k−1(mod (x − 1)l).

Lemma 8  Let k ≥ 3 be any fixed integer. For any integer s, 2 ≤ s ≤ 2k− 1 − 1, we set

 Then ρs(x) satisfies (9) in Lemma 6, i.e.,

Proof  As ϕ(a) = a for all a ∈ ℤ4 ⊆ R0 , we have ϕ(ρs(x)) = ρs(x). Then by [11, Lemma 5]:

(x − 1)2(2
k−s) = (x − 1)2

k

(x − 1)2
k−2s = 2(x − 1)2

k−1

(x − 1)2
k−2s,

(
(x − 1)2

k−s + 2�(b(x))
)(
(x − 1)2

k−s + 2
(
�(b(x)) + (x − 1)2

k−1−s
))

= (x − 1)2(2
k−s) + 2(x − 1)2

k−s ⋅
(
�(b(x)) + �(b(x)) + (x − 1)2

k−1−s
)

= 2(x − 1)2
k−1+2k−2s + 2(x − 1)2

k−s ⋅ (x − 1)2
k−1−s

= 0.

2�(b(x)) = �(2b(x)) = �

�
s−1∑
j=0

2bj(x − 1)j

�
=

s−1∑
j=0

�(2bj)�
�
(x − 1)j

�

=
s−1∑
j=0

2b
q

j
(x − 1)j = 2

�
s−1∑
j=0

b
q

j
(x − 1)j

�
.

x−1�(x−1) ≡ (1, (x − 1), (x − 1)2,… , (x − 1)l−1)(GlBl) (mod (x − 1)l),

�s(x) = (x − 1)(2
k−1−1)−s.

�(�s(x)) + x−s�s(x
−1) ≡ (x − 1)2

k−1−s (mod (x − 1)s).
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 we conclude that �(�s(x)) + x−s�s(x
−1) ≡ (x − 1)2

k−1−s (mod (x − 1)s).
□

We are now ready to prove Theorem 1 in Section 3. It is obvious that ⟨2⟩ = 2 ⋅
R[x]

⟨x2k−1⟩ is 
a trivial Hermitian self-dual cyclic code of length 2k over R for any positive integer k. Then 
we only need to determine the nontrivial codes.

Case 1: k = 1.
In this case, by [29, Theorem  3.4], there are 

2
m

2

 nontrivial Hermitian self-dual cyclic 
codes of length 2 over R. As 1 ≤ s ≤ 2k− 1 = 1, we have s = 1.

Let b(x) = b0 + w, where b0 ∈ �q and q = 2
m

2 . Then we have ϕ(b(x)) = b0 + 1 + w, 
(x − 1)2

k−1−s = (x − 1)0 = 1 and x− 1b(x− 1) = x− 1(b0 + w) ≡ b0 + w (mod x − 1). From these, 
we deduce that

 Then by Lemma 6, we conclude that 〈(x − 1) + 2b(x),2(x − 1)〉 is a nontrivial Hermitian 
self-dual cyclic code of length 2 over R, for any b0 ∈ �q.

Moreover, by Lemma 5, all these cyclic codes are distinct from each other. Further, by 
2(x − 1) = 2((x − 1) + 2b(x)) ∈〈(x − 1) + 2b(x)〉, it follows that 〈(x − 1) + 2b(x),2(x − 1)〉 = 
〈(x − 1) + 2b(x)〉.

Therefore, all Hermitian self-dual cyclic codes of length 2 over R have been given in 
Theorem 1. 

Case 2: k ≥ 2.
As 1 ≤ s ≤ 2k− 1, we have two cases for nontrivial Hermitian self-dual cyclic codes of 

length 2k over R: when s = 1 and when 2 ≤ s ≤ 2k− 1.
(i) Let s = 1. For any b0 ∈ �q , set b(x) = b0. Then ϕ(b(x)) = b0. As x ≡ 1 (mod x − 1), 

we get x− 1 ≡ 1 (mod x − 1). By k ≥ 2, we have 2k− 1 − 1 ≥ 1. This implies (x − 1)2
k−1−1 ≡ 0 

(mod x − 1). From these, we deduce that

 Then by Lemma 6, ⟨(x − 1)2
k−1 + 2b(x), 2(x − 1)s⟩ is a nontrivial Hermitian self-dual 

cyclic code of length 2k over R. Therefore, by Lemma 5, we obtain q distinct nontrivial 
Hermitian self-dual cyclic codes of length 2k over R: ⟨(x − 1)2

k−1 + 2b0, 2(x − 1)⟩ , where 
b0 ∈ �q.

(ii) Let 2 ≤ s ≤ 2k− 1. We further split this case into two subcases: when k = 2 and when 
k ≥ 3.

(ii-1) Let k = 2. Then we have s = 2, which is the only case. For any b0, b1 ∈ �q , set b(x) 
= b0 + w + b1(x − 1). Then we have that ϕ(b(x)) = b0 + 1 + w + b1(x − 1) = 1 + b(x) and 
(x − 1)2

2−1−2 = 1 . Further, by q = 2
m

2 , we have (x − 1)2 = x2 − 1. This implies x2 ≡ 1 and x− 1 
≡ x (mod (x − 1)2), and hence x− 2b(x− 1) ≡ b(x) (mod (x − 1)2). From these, we deduce that

�s(x) + x−s�s(x
−1) ≡ (x − 1)2

k−1−s (mod (x − 1)s),

�(b(x)) + x−1b(x−1) ≡ (b0 + 1 + w) + b0 + w = (x − 1)2
k−1−s (mod x − 1).

�(b(x)) + x−1b(x−1) ≡ b0 + b0 = 0 ≡ (x − 1)2
k−1−1 (mod x − 1).

�(b(x)) + x−2b(x−1) ≡ 1 + b(x) + b(x) = (x − 1)2
2−1−2 (mod (x − 1)2).
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 Therefore, by Lemmas 6 and 5, we obtain q2 distinct nontrivial Hermitian self-dual cyclic 
codes of length 2k over R:

where b0, b1 ∈ �q , since 2(x − 1)2 = 2((x − 1)2 + 2(b0 + w + b1(x − 1))).
Now, by Lemma 5, we have obtained q + q2 distinct nontrivial Hermitian self-dual 

cyclic codes of length 22 over R given by Case (i) and Case (ii-1).
Moreover, by [29, Theorem  3.4], q + q2 is the number of all nontrivial Hermitian 

self-dual cyclic codes of length 22 over R. Hence all Hermitian self-dual cyclic codes of 
length 22 over R have been given in Theorem 1.

(ii-2) Let k ≥ 3 and 2 ≤ s ≤ 2k− 1. For any integer l ≥ 2, we set

 Let b = (b0, b1,… , bs−1)
tr , where bj = bj,0 + wbj,1 ∈ �q2 with bj,0, bj,1 ∈ �q for all j 

= 0,1,…,s − 1. Let Bs;(0) =

⎛⎜⎜⎜⎝

b0,0
b1,0
⋮

bs−1,0

⎞⎟⎟⎟⎠
and Bs;(1) =

⎛⎜⎜⎜⎝

b0,1
b1,1
⋮

bs−1,1

⎞⎟⎟⎟⎠
, which are vectors in 

�
s
q

 . Then we 

have b = Bs;(0) + wBs;(1)
 . Set

 By Lemma 1 (ii), we have bqj = bj,0 + (1 + w)bj,1 = (bj,0 + bj,1) + wbj,1 for all j. Then it follows 
that

By 2 ≤ s ≤ 2k− 1, where k ≥ 3, we have the following two cases: (‡) 2 ≤ s ≤ 2k− 1 − 1, 
and (†) s = 2k− 1.

(‡) Let 2 ≤ s ≤ 2k− 1 − 1. We adopt the following notation:

◇ Set b̂(x) = �s(x) + b(x) , where �s(x) = (x − 1)(2
k−1−1)−s (see Lemma 8).

◇ Let C
b̂(x)

= ⟨(x − 1)2
k−s + 2b̂(x), 2(x − 1)s⟩ , which is a cyclic code of length 2k over 

R by Lemma 5. Then

Obviously, we have that b(x) = �s(x) + b̂(x) , �(b̂(x)) = �(b(x)) + �(�s(x)) and 
x−sb̂(x−1) = x−sb(x−1) + x−s�s(x

−1) . Furthermore, by Lemma 8, we have that 
�(�s(x)) + x−s�s(x

−1) ≡ (x − 1)2
k−1−s (mod (x − 1)s). These imply

⟨(x − 1)2 + 2(b0 + w + b1(x − 1)), 2(x − 1)2⟩
= ⟨(x − 1)2 + 2(b0 + w + b1(x − 1))⟩,

Xl = (1, (x − 1), (x − 1)2,… , (x − 1)l−1).

b(x) = b0 + b1(x − 1) +… + bs−1(x − 1)s−1 = Xsb = Xs(Bs;(0) + wBs;(1)).

�(b(x)) =
s−1∑
j=0

b
q

j
(x − 1)j =

s−1∑
j=0

((bj,0 + bj,1) + wbj,1)(x − 1)j

= Xs(Bs;(0) + Bs;(1) + wBs;(1)) (mod 2).

C
b̂(x)

= ⟨(x − 1)2
k−s + 2(x − 1)(2

k−1−1)−s + 2b(x), 2(x − 1)s⟩.

�(b̂(x)) + x−sb̂(x−1) =
(
�(b(x)) + x−sb(x−1)

)
+
(
�(�s(x)) + x−s�s(x

−1)
)

≡
(
�(b(x)) + x−sb(x−1)

)
+ (x − 1)2

k−1−s (mod (x − 1)s).
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From this and by Lemma 6, we deduce that

From now on, we let

 where 0t is the zero column vector of length t, for any integer t ≥ 0. Then we have 

�(�(x)) = X2s−1

((
0s−1

Bs;(0)

)
+

(
0s−1

Bs;(1)

)
+ w

(
0s−1

Bs;(1)

))
 and

 by Lemma 7. On the other hand, we have

 and x− 1β(x− 1) = x− 1(x− 1 − 1)s− 1b(x− 1) = (x − 1)s− 1 ⋅ x−sb(x− 1) (mod 2). From these, we 
deduce that

where M2s− 1 = I2s− 1 + G2s− 1, by (4).
Using (4), (5) and (6) in Section 3, we can write

 where M̃s =
(
� [s−1,2s−1)
s

,�
[s−1,2s−1)

s+1
,… ,�

[s−1,2s−1)

2s−1

)
 . Therefore, the matrices Bs;(1) and 

Bs;(0) satisfy the following matrix equations:

if and only if M̃sBs;(1) = 0s and M̃sBs;(0) = Bs;(1)
.

Now, by Lemmas 2 and 3 in Section 3, it follows that

𝜙(b(x)) + x−sb(x−1) ≡ 0 (mod (x − 1)s)

⟺ 𝜙(�b(x)) + x−s�b(x−1) ≡ (x − 1)2
k−1−s (mod (x − 1)s)

⟹ (C�b(x))
⊥H = C�b(x).

�(x) = (x − 1)s−1b(x) = X2s−1

(
0s−1

b

)
= X2s−1

(
0s−1

Bs;(0) + wBs;(1)

)
,

x−1�
(
x−1

)
≡ X2s−1

(
G2s−1

((
0s−1

Bs;(0)

)
+ w

(
0s−1

Bs;(1)

))) (
mod (x − 1)2s−1

)

�(�(x)) = �((x − 1)s−1b(x)) = (x − 1)s−1 ⋅ �(b(x))

�(b(x)) + x−sb
�
x−1

�
≡ 0 (mod (x − 1)s)

⟺ �(�(x)) + x−1�
�
x−1

�
≡ 0

�
mod (x − 1)2s−1

�

⟺

�
0s−1

Bs;(0)

�
+

�
0s−1

Bs;(1)

�
+ w

�
0s−1

Bs;(1)

�
= G2s−1

��
0s−1

Bs;(0)

�
+ w

�
0s−1

Bs;(1)

��

⟺

⎧⎪⎨⎪⎩

�
0s−1

Bs;(1)

�
+ G2s−1

�
0s−1

Bs;(1)

�
= 0;

�
0s−1

Bs;(0)

�
+

�
0s−1

Bs;(1)

�
+ G2s−1

�
0s−1

Bs;(0)

�
= 0.

⟺

⎧⎪⎨⎪⎩

M2s−1

�
0s−1

Bs;(1)

�
= 0;

M2s−1

�
0s−1

Bs;(0)

�
=

�
0s−1

Bs;(1)

�
,

M2s−1 =

(
Ms−1 0

∗ M̃s

)
,

(10)M2s−1

(
0s−1

Bs;(1)

)
= 0 and M2s−1

(
0s−1

Bs;(0)

)
=

(
0s−1

Bs;(1)

)
,
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Therefore, S[s−1]

2s−1
 is the solution space of the system of homogeneous linear equations 

M̃sY = 0s
 , where Y = (y0,y1,…,ys− 1)tr. By M̃sBs;(0) = Bs;(1) , we see that Bs;(0) is a solution 

vector of the following system of linear equations:

As 2 ≤ s ≤ 2k− 1 − 1, we split this case into two subcases: when s is even and when s 
is odd.

(‡-1) Let s be even, where 2 ≤ s ≤ 2k− 1 − 2. Assume Bs;(1) ∈ S
[s−1]

2s−1
 . Then by Lemma 

3, the vector Bs;(1) is uniquely expressed as

where c2s−2, c2t−1 ∈ �q for all integers t: s

2
≤ t ≤ s − 1 . Applying col-

umn elementary transformation to the augmented matrix of (11), from 
M̃s =

(
� [s−1,2s−1)
s

,�
[s−1,2s−1)

s+1
,… ,�

[s−1,2s−1)

2s−1

)
 , we obtain

 From this, by Lemma 3 and (6) in Section 3, we deduce that there are solutions to the lin-
ear equation system (11) if and only if cs− 1 = c2s− 2 = 0. Now, let this condition be satisfied. 
By (12), we have

and the components of ĉ are defined by:
⊳ ĉj = c2t−1 , if j = 2t − 1 and s

2
+ 1 ≤ t ≤ s − 1;

⊳ ĉj = 0 , otherwise.
Then the vector ĉ is a solution of the linear equation system (11). Furthermore, since 

S
[s−1]

2s−1 is the solution space of M̃sY = 0s
 , ĉ + S

[s−1]

2s−1 must be the set of all solutions of 11), 
for any vector Bs,(1) given by (13).

As stated above, we obtain the following q
s

2
−1
q

s

2
+1 = qs nontrivial Hermitian self-

dual cyclic codes of length 2k over R:

 where b(x) = Xs(Bs;(0) + wBs;(1)) is determined by

M̃sBs;(1) = 0s ⟺ M2s−1

(
0s−1

Bs;(1)

)
= 0 ⟺

(
0s−1

Bs;(1)

)
∈ S2s−1

⟺ Bs;(1) ∈ S
[s−1]

2s−1
.

(11)M̃sY = Bs;(1), where Bs;(1) ∈ S
[s−1]

2s−1
.

(12)Bs;(1) =
∑

s

2
≤t≤s−1

c2t−1�
[s−1,2s−1)

2t−1
+ c2s−2�

(s)
s
,

(
M̃s ∣ Bs;(1)

)
column

⟶

(
M̃s ∣ cs−1�

[s−1,2s−1)

s−1
+ c2s−2�

(s)
s

)
.

(13)Bs;(1) =
�

s

2
+1≤t≤s−1

c2t−1�
[s−1,2s−1)

2t−1
= M̃sĉ with ĉ =

⎛⎜⎜⎜⎝

ĉs
ĉs+1
⋮

ĉ2s−1

⎞⎟⎟⎟⎠
,

C
b̂(x)

= ⟨(x − 1)2
k−s + 2(x − 1)(2

k−1−1)−s + 2b(x), 2(x − 1)s⟩,

Bs;(0) ∈ ĉ + S
[s−1]

2s−1
, Bs;(1) =

∑
s

2
+1≤t≤s−1

c2t−1�
[s−1,2s−1)

2t−1
,
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 and c2t−1 ∈ �q for all integers t: s
2
+ 1 ≤ t ≤ s − 1.

(‡-2) Let s be odd, where 3 ≤ s ≤ 2k− 1 − 1. Assume Bs;(1) ∈ S
[s−1]

2s−1
 . Then by Lemma 3, 

the vector Bs;(1) is uniquely expressed as

where c2s−2, c2t−1 ∈ �q for all integers t: s+1
2

≤ t ≤ s − 1 . Applying column elementary trans-
formation to the augmented matrix of (11), by M̃s = (� [s−1,2s−1)

s
,�

[s−1,2s−1)

s+1
,… ,�

[s−1,2s−1)

2s−1
) , 

we obtain

 From this, by Lemma 3 and (6) in Section 3, we deduce that there are solutions to the 
linear equation system (11) if and only if c2s− 2 = 0. Now, let this condition be satisfied. By 
(14), we have

and the components of ĉ are defined by: ĉj = c2t−1 , if j = 2t − 1 and s+1
2

≤ t ≤ s − 1 ; and 
ĉj = 0 , otherwise. Then the vector ĉ is a solution of the linear equation system (11). Fur-
thermore, since S[s−1]

2s−1 is the solution space of M̃sY = 0s
 , we conclude that ĉ + S

[s−1]

2s−1 is the 
set of all solutions of (11), for any vector Bs,(1) given by (15).

As stated above, we obtain the following q
s−1

2 q
s+1

2 = qs nontrivial Hermitian self-dual 
cyclic codes of length 2k over R:

 where b(x) = Xs(B̂s;(0) + wBs;(1)) is determined by

 and c2t−1 ∈ �q for all integers t: s+1
2

≤ t ≤ s − 1.
(†) Let s = 2k− 1 and set

 where ai, ci, c0, c2k−2 ∈ �q
 , for all i = 1,2,…,2k− 2 − 1. As q = 2

m

2 , we have 
(x − 1)2

k−1

= x2
k−1

− 1 . This implies x2k−1 ≡ 1 and x−j ≡ x2
k−1−j (mod (x − 1)2

k−1

 ), and hence

(14)
Bs;(1) =

∑
s+1

2
≤t≤s−1

c2t−1�
[s−1,2s−1)

2t−1
+ c2s−2�

(s)
s
,

(
M̃s ∣ Bs;(1)

)
column

⟶

(
M̃s ∣ c2s−2�

(s)
s

)
.

(15)Bs;(1) =
�

s+1

2
≤t≤s−1

C
2t−1Y

[s−1,2s−1)

2t−1
= M̃sĉ with ĉ =

⎛
⎜⎜⎜⎝

ĉs
ĉs+1
⋮

ĉ
2s−1

⎞
⎟⎟⎟⎠
,

C
b̂(x)

= ⟨(x − 1)2
k−s + 2(x − 1)(2

k−1−1)−s + 2b(x), 2(x − 1)s⟩,

Bs;(0) ∈ ĉ + S
[s−1]

2s−1
, Bs;(1) =

∑
s+1

2
≤t≤s−1

c2t−1�
[s−1,2s−1)

2t−1
,

b(x) = (c0 + w) +

2k−2−1∑
j=1

(aj + cj + ajw)x
j + c2k−2x

2k−2 +

2k−2−1∑
j=1

(cj + ajw)x
2k−1−j,
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From this, we deduce that �(b(x)) + x−2
k−1

b(x−1) ≡ 1 (mod (x − 1)2
k−1 ). Then by Lemmas 

6 and 5, we obtain q2⋅(2k−2−1)+2 = q2
k−1 distinct nontrivial Hermitian self-dual cyclic codes of 

length 2k over R:

 where ai, ci, c0, c2k−2 ∈ �q , for all i = 1,…,2k− 2 − 1.
Summarizing the results above, we have constructed

 distinct Hermitian self-dual cyclic codes of length 2k over R.
As the number of all Hermitian self-dual cyclic codes of length 2k over R is 

NH(GR(4,m), 2
k) =

q2
k−1+1−1

q−1  (cf. [29, Theorem  3.4]), where q = 2
m

2
 , the codes listed by 

Theorem 1 are exactly all the distinct Hermitian self-dual cyclic codes of length 2k over R. 
Therefore, we have proved Theorem 1.

6 � Applications

In this section, we list all distinct Hermitian self-dual cyclic codes of length 2k over the 
Galois ring R = GR(4,m), where m is even, using Theorem 1 or Theorem 2. To save space, 
we only consider the cases k = 3,4,5.

Example 3  All 1 + q + q2 + q3 + q4 Hermitian self-dual cyclic codes of length 8 over R are 
given by the following four cases:

	 (i)	 1 code: 〈2〉.
	 (ii)	 q codes: 〈(x − 1)7 + 2b0,2(x − 1)〉, where b0 ∈ �q.
	 (iii)	 q2 + q3 codes: 〈(x − 1)8−s + 2(x − 1)3−s + 2bs(x),2(x − 1)s〉, where s = 2,3 and

�(b(x)) = (c0 + 1 + w) +
2k−2−1∑
j=1

(aj + cj + aj(1 + w))xj

+c2k−2x
2k−2 +

2k−2−1∑
j=1

(cj + aj(1 + w))x2
k−1−j

= 1 + (c0 + w) +
2k−2−1∑
j=1

(aj + cj + w)x2
k−1−j

+c2k−2x
2k−2 +

2k−2−1∑
j=1

(cj + ajw)x
j

≡ 1 + x−2
k−1

b(x−1)
�
mod (x − 1)2

k−1�
.

⟨(x − 1)2
k−1

+ 2b(x), 2(x − 1)2
k−1⟩ = ⟨(x − 1)2

k−1

+ 2b(x)⟩,

1 + q +

2k−1−1∑
s=2

qs + q2
k−1

=
q2

k−1+1 − 1

q − 1
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	 (iv)	 q4 codes: 〈(x − 1)4 + 2b(x)〉, where

Example 4  All 1 +
∑8

s=1
qs Hermitian self-dual cyclic codes of length 16 over R are given 

by the following four cases:

	 (i)	 1 code: 〈2〉.
	 (ii)	 q codes: 〈(x − 1)15 + 2b0,2(x − 1)〉, where b0 ∈ �q.
	 (iii)	  

∑7

s=2
qs codes: 〈(x − 1)16−s + 2(x − 1)7−s + 2bs(x),2(x − 1)s〉,

where s = 2,3,4,5,6,7 and
b2(x),b3(x) are the same as those in Example 3;

	 (iv)	 q8 codes: 〈(x − 1)8 + 2b(x)〉, where

 and ai, ci, c0, c4 ∈ �q , for all i = 1,2,3.

Example 5  All 1 +
∑15

s=1
qs Hermitian self-dual cyclic codes of length 32 over R are given 

by the following four cases:

	 (i)	 1 code: 〈2〉.
	 (ii)	 q codes: 〈(x − 1)31 + 2b0,2(x − 1)〉, where b0 ∈ �q.
	 (iii)	  

∑15

s=2
qs codes: 〈(x − 1)32−s + 2(x − 1)15−s + 2bs(x),2(x − 1)s〉, where s = 2,3,4,5,6,7,

8,9,10,11,12,13,14,15 and

b2(x),b3(x),b4(x),b5(x),b6(x),b7(x) are the same as those in Example 4;

b2(x) = a1 + (a1 + a2)(x − 1), a1, a2 ∈ �q;

b3(x) = c3 + (a3 + wc3)(x − 1) + a4(x − 1)2, c3, a3, a4 ∈ �q.

b(x) = (c0 + w) + (a1 + c1 + wa1)x + c2x
2 + (c1 + a1w)x

3anda1, c0, c1, c2 ∈ �q.

b
4
(x) = a

3
+ c

5
(x − 1) + (a

5
+ wc

5
)(x − 1)2 + (a

3
+ a

5
+ a

6
+ wc

5
)(x − 1)3, c

5
, a

3
, a

5
, a

6
∈ �q;

b
5
(x) = c

5
+ (a

5
+ wc

5
)(x − 1) + (c

7
+ a

5
+ wc

5
)(x − 1)2 + (a

5
+ a

7
+ w(c

5
+ c

7
))(x − 1)3

+a
8
(x − 1)4, c

5
, c

7
, a

5
, a

7
, a

8
∈ �q;

b
6
(x) = a

5
+ (c

7
+ a

5
)(x − 1) + (a

5
+ a

7
+ wc

7
)(x − 1)2 + c

9
(x − 1)3 + (a

9
+ wc

9
)(x − 1)4

+(a
9
+ a

10
+ wc

9
)(x − 1)5, c

7
, c

9
, a

5
, a

7
, a

9
, a

10
∈ �q;

b
7
(x) = c

7
+ (a

7
+ wc

7
)(x − 1) + c

9
(x − 1)2 + (a

9
+ wc

9
)(x − 1)3 + (c

11
+ a

9
+ wc

9
)(x − 1)4

+(a
9
+ a

11
+ w(c

9
+ c

11
))(x − 1)5 + (a

9
+ a

12
+ wc

9
)(x − 1)6, c

7
, c

9
, c

11
, a

7
, a

9
, a

11
, a

12
∈ �q.

b(x) = (c0 + w) +

3∑
j=1

(aj + cj + ajw)x
j + c4x

4 +

3∑
j=1

(cj + ajw)x
8−j
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and ai, c2t−1 ∈ �q for all integers i,t: 1 ≤ i ≤ 28 and 2 ≤ t ≤ 14.

	 (iv)	 q16 codes: 〈(x − 1)16 + 2b(x)〉, where

 and ai, ci, c0, c8 ∈ �q , for all i = 1,2,3,4,5,6,7.

b8(x) = a7 + c9(x − 1) + (a9 + c9w)(x − 1)2 + (a9 + c11 + c9w)(x − 1)3 + (a9 + a11

+c9w + c11w)(x − 1)4 + (a9 + c13 + c9w)(x − 1)5 + (a9 + a13 + c9w

+c13w)(x − 1)6 + (a7 + a9 + a11 + a13 + a14 + c9w + c11w + c13w)(x − 1)7;

b9(x) = c9 + (a9 + c9w)(x − 1) + (a9 + c11 + c9w)(x − 1)2 + (a9 + a11 + c9w

+c11w)(x − 1)3 + (a9 + c13 + c9w)(x − 1)4 + (a9 + a13 + c9w

+c13w)(x − 1)5 + (a9 + a11 + a13 + c15 + c9w + c11w + c13w)(x − 1)6

+(a9 + a11 + a13 + a15 + c9w + c11w + c13w + c15w)(x − 1)7 + a16(x − 1)8;

b10(x) = a9 + (a9 + c11)(x − 1) + (a9 + a11 + c11w)(x − 1)2 + (a9 + c13)(x − 1)3

+(a9 + a13 + c13w)(x − 1)4 + (a9 + a11 + a13 + c15 + c11w + c13w)(x − 1)5

+(a9 + a11 + a13 + a15 + c11w + c13w + c15w)(x − 1)6 + c17(x − 1)7

+(a17 + c17w)(x − 1)8 + (a17 + a18 + c17w)(x − 1)9;

b11(x) = c11 + (a11 + c11w)(x − 1) + c13(x − 1)2 + (a13 + c13w)(x − 1)3 + (a11 + a13

+c15 + c11w + c13w)(x − 1)4 + (a11 + a13 + a15 + c11w + c13w + c15w)(x − 1)5

+c17(x − 1)6 + (a17 + c17w)(x − 1)7 + (a17 + c19 + c17w)(x − 1)8 + (a17

+a19 + c17w + c19w)(x − 1)9 + (a17 + a20 + c17w)(x − 1)10;

b12(x) = a11 + c13(x − 1) + (a13 + c13w)(x − 1)2 + (a11 + a13 + c15 + c13w)(x − 1)3

+(a11 + a13 + a15 + c13w + c15w)(x − 1)4 + c17(x − 1)5 + (a17 + c17w)(x − 1)6

+(a17 + c19 + c17w)(x − 1)7 + (a17 + a19 + c17w + c19w)(x − 1)8 + (a17 + c21

+c17w)(x − 1)9 + (a17 + a21 + c17w + c21w)(x − 1)10 + (a17 + a19 + a21

+a22 + c17w + c19w + c21w)(x − 1)11;

b13(x) = c13 + (a13 + c13w)(x − 1) + (a13 + c15 + c13w)(x − 1)2 + (a13 + a15 + c13w

+c15w)(x − 1)3 + c17(x − 1)4 + (a17 + c17w)(x − 1)5 + (a17 + c19 + c17w)(x − 1)6

+(a17 + a19 + c17w + c19w)(x − 1)7 + (a17 + c21 + c17w)(x − 1)8 + (a17 + a21

+c17w + c21w)(x − 1)9 + (a17 + a19 + a21 + c23 + c17w + c19w + c21w)(x − 1)10

+(a17 + a19 + a21 + a23 + c17w + c19w + c21w + c23w)(x − 1)11

+(a17 + a24 + c17w)(x − 1)12;

b14(x) = a13 + (a13 + c15)(x − 1) + (a13 + a15 + c15w)(x − 1)2 + c17(x − 1)3 + (a17

+c17w)(x − 1)4 + (a17 + c19 + c17w)(x − 1)5 + (a17 + a19 + c17w + c19w)(x − 1)6

+(a17 + c21 + c17w)(x − 1)7 + (a17 + a21 + c17w + c21w)(x − 1)8 + (a17 + a19

+a21 + c23 + c17w + c19w + c21w)(x − 1)9 + (a17 + a19 + a21 + a23 + c17w

+c19w + c21w + c23w)(x − 1)10 + (a17 + c25 + c17w)(x − 1)11 + (a17 + a25

+c17w + c25w)(x − 1)12 + (a17 + a19 + a25 + a26 + c17w + c19w + c25w)(x − 1)13;

b15(x) = c15 + (a15 + c15w)(x − 1) + c17(x − 1)2 + (a17 + c17w)(x − 1)3 + (a17 + c19

+c17w)(x − 1)4 + (a17 + a19 + c17w + c19w)(x − 1)5 + (a17 + c21 + c17w)(x − 1)6

+(a17 + a21 + c17w + c21w)(x − 1)7 + (a17 + a19 + a21 + c23 + c17w + c19w

+c21w)(x − 1)8 + (a17 + a19 + a21 + a23 + c17w + c19w + c21w + c23w)(x − 1)9

+(a17 + c25 + c17w)(x − 1)10 + (a17 + a25 + c17w + c25w)(x − 1)11 + (a17 + a19

+a25 + c27 + c17w + c19w + c25w)(x − 1)12 + (a17 + a19 + a25 + a27 + c17w

+c19w + c25w + c27w)(x − 1)13 + (a17 + a21 + a25 + a28 + c17w + c21w + c25w)(x − 1)14,

b(x) = (c0 + w) +
∑7

j=1
(aj + cj + ajw)x

j + c8x
8 +

∑7

j=1
(cj + ajw)x

16−j
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Remark 2  Let the Galois rings GR(4,2) and GR(4,4) be constructed by Examples 1 and 2, 
respectively. Then by Examples 4 and 5, we obtain:

◇ 511 distinct Hermitian self-dual cyclic codes of length 16 over GR(4,2);
◇ 87381 distinct Hermitian self-dual cyclic codes of length 16 over GR(4,4);
◇ 131071 distinct Hermitian self-dual cyclic codes of length 32 over GR(4,2);
◇ 5726623061 distinct Hermitian self-dual cyclic codes of length 32 over GR(4,4).

Finally, we give an example of the construction of self-dual cyclic codes over ℤ4
 of 

length 6. First, we have that z3 − 1 = (z − 1)(z2 + z + 1), where z − 1 and z2 + z + 1 cor-
respond to the 2-cyclotomic cosets modulo 3 S2(0) = {0} and S2(1) = {1,2} respectively. 
Obviously, S2(1) is self-inverse.

Let GR(4, 2) =
ℤ4[z]

⟨z2+z+1⟩ . As ℤ4 =
ℤ4[z]

⟨z−1⟩ , we have the following isomorphism of rings 
from 

ℤ4 × GR(4, 2) onto 
ℤ4[z]

⟨z3−1⟩ defined by:

 for all b, a0, a1 ∈ ℤ4
 . Hence C is a self-dual cyclic code over ℤ4 of length 6 if and only if 

C ≅ C0 × C1 , where C0 (as an ideal of 
ℤ4[y]

⟨y2−1⟩ ) is an Euclidean self-dual cyclic code over 
ℤ4

 
of length 2 and C1 (as an ideal of 

GR(4,2)[y]

⟨y2−1⟩  ) is a Hermitian self-dual cyclic code over 
GR(4,2) of length 2.

By [11, Theorem 2] and Theorem 1 in Section 4, we give all 3 self-dual cyclic codes 
C

 
over ℤ4 of length 6 by the following table:

C0 C1  C (as ideals of the ring 
ℤ

4
[x]

⟨x6−1⟩)

〈2〉 〈2〉 〈2〉 
〈2〉 〈(y − 1) + 2z〉 〈2 + x + 3x2 + 2x3 + x4 + x5〉 
〈2〉 〈(y − 1) + 2(1 + z)〉 〈2 + x + x2 + 2x3 + 3x4 + x5〉 

7 � Conclusions and further work

For any positive integers m and k, where m is even, we have given a direct and effective 
approach to construct all distinct Hermitian self-dual cyclic codes of length 2k over the 
Galois ring GR(4,m) precisely. In particular, using binomial coefficients, we have provided 
an explicit expression to accurately represent this class of Hermitian self-dual cyclic codes 
over GR(4,m).

Theoretically, using the results in [11, 22] and this paper, any self-dual cyclic code over 
ℤ4

 of arbitrary even length can be constructed by the Discrete Fourier Transform decompo-
sition given in [29]. This approach is, however, not easy to be implemented in practice.

A natural extension of this work will be to give directly an explicit representation for 
all self-dual cyclic codes over ℤ4 of length 2kn, for any positive odd integer n. Moreover, it 
would be interesting to investigate the parameters of these codes and obtain good self-dual 
cyclic ℤ4-codes and formally self-dual binary codes, using the representations obtained.

(b, a0 + a1z) ↦ 3(z2 + z + 1)b + (z2 + z + 2)(a0 + a1z) (mod z3 − 1),
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