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Abstract
Let GF(q2) be the finite field containing q2 elements, where q is an odd prime power. In 
this paper, we study the differential properties of the power mapping F(x) = xd over GF(q2), 
where d = 2q − 1 is a Niho exponent [14]. The differential spectrum of F is given by
� = {�0 =

q
2+q−2

2
,�2 =

q
2−q

2
,�

q
= 1}.
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1 Introduction

Let GF(q) be the finite field with q elements, where q is a prime power. For any function 
f : GF(q) →GF(q), the derivative of f in respect to any given a ∈ GF(q) is a function from 
GF(q) to GF(q) defined by

 For any b ∈ GF(q) and a ∈ GF(q)* := GF(q)⧵{0}, we denote

 The differential uniformity of f is defined as

 and f is said to be differentially δ-uniform [15]. Differential uniformity is an important 
concept in cryptography since it quantifies the degree of security of a Substitution box 

Da f (x) = f (x + a) − f (x),∀x ∈ GF(q).

�(a, b) = #{x ∈ GF(q) | Daf (x) = b}.

� = max
a∈GF(q)∗, b∈GF(q)

�(a, b),
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(S-box) used in the cipher with respect to differential attacks [1]. Clearly, δ ≥ 1 for any f 
over GF(q). In particular, a function f with the lowest differential uniformity δ = 1 is called 
a perfect nonlinear (PN) function, which only exists in odd characteristic finite fields. Func-
tions with differential uniformity δ = 2 are called almost perfect nonlinear (APN) func-
tions, which have the lowest differential uniformity over even characteristic finite fields. 
For more information on PN and APN functions, the readers are referred to [5] and [6].

Power functions with low differential uniformity serve as good candidates for the design 
of S-boxes not only because of their strong resistance to differential attacks but also for the 
usually low implementation cost in hardware. Therefore, it is worthy to study power func-
tions with low differential uniformity. When f (x) = xd is a power function over GF(q), it is 
easy to see that �(a, b) = �

(
1,

b

ad

)
 for any a ∈ GF(q)*. This implies that the differential 

properties of f are completely determined by the values of δ(1,  b) when b runs through 
GF(q). In [2], the differential spectrum of a power function is defined as follows.

Definition 1 [2] Let f (x) = xd be a power function over GF(q) with differential uniform-
ity δ. Denote

 where 0 ≤ i ≤ δ. The differential spectrum of f is defined to be the multiset

Sometimes the zeros in � can be omitted. The differential spectrum of f over GF(q) satisfies 
the following identities (see [2]).

The identities (1) are useful in computing the differential spectrum of f. From (1), it 
is easy to see that all PN functions over GF(q) have the same differential spectrum 
� = {�1 = q} , and all APN functions over GF(2n) have the same differential spectrum 
� = {�0 = 2n−1,�2 = 2n−1} . Moreover, we have the following relationship between 
the differential spectrum and the number of solutions of a system of equations with four 
variables.

Lemma 1 [11] With the notation introduced in Definition 1, let N4 denote the number of 
solutions (x1, x2, x3, x4) ∈ (GF(q))4 of the system of equations

Then we have

As pointed out in [2], the differential spectrum of S-boxes is useful to analyze 
the resistance of the cipher to the differential attacks and to its variations. For exam-
ple, the inverse function x− 1 over GF(2n) with even n has the best resistance to 

�i = #{b ∈ GF(q) | �(1, b) = i},

� = {�i | 0 ≤ i ≤ �}.

(1)
�∑
i=0

�i =

�∑
i=0

i�i = q.

{
x1 − x2 + x3 − x4 = 0,

xd
1
− xd

2
+ xd

3
− xd

4
= 0.

�∑
i=0

i2�i =
N4 − q2

q − 1
.
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differential cryptanalysis for 4-uniform S-boxes, since it has the differential spectrum 
� = {�0 = 2n−1 + 1,�2 = 2n−1 − 2,�4 = 1} . However, it seems difficult to determine the 
differential spectrum of a power function. Only a few power mappings over GF(2n) have 
known differential spectrum, the readers are referred to [2–4, 17, 18]. For the power 
mappings over odd characteristic finite fields, the known results are introduced as fol-
lows. Dobbertin et al. determined the differential spectrum of the ternary Welch power 
mapping x2⋅3

n−1
2 +1 over GF(3n) with odd n, which was used in the study of the cross-

correlation function of an m-sequence and its decimated sequence [9]. In [7], Choi et al. 
computed the differential spectra of two classes of power mappings. The differential 
spectrum of p-ary Kasami power function was studied in [21] and [12]. Recently, the 
differential spectrum of xpn−3 over GF(pn) was determined in [16] and [20]. Yan and 
Li investigated the differential spectrum of x

5n−3

2  over GF(5n), which was an involution 
function with algebraic degree n [19]. We summarize the known results in Table 1. By 
the main result in [8], the power mappings in Table 1 are pairwise CCZ-inequivalent.

Niho exponents were introduced by Yoji Niho, who investigated the cross-correla-
tion function between an m-sequence and its decimation sequence in 1972 [14]. Since 
then, Niho exponents have been widely used in other research areas such as cryptog-
raphy and coding theory. For the recent progress in the application of Niho exponents, 
the readers are referred to [13]. We focus on the power mapping F(x) = x2q− 1 over 
GF(q2), where q is an prime power. Herein 2q − 1 is a Niho exponent. This expo-
nent was first studied by Niho in [14]. which was used to construct m-sequences with 
four-valued cross-correlation function. Helleseth found the distribution of the cross-
correlation function when q ≢ 2(mod 3) [10]. When q is a power of 2, the differential 
spectrum of F was computed by Blondeau et al. in 2011. It is rational to consider the 
differential spectrum of F for the case that q is an odd prime power. In this paper, we 
mainly study the differential spectrum of F(x) = x2q− 1 over GF(q2), where q is an odd 
prime power. By solving certain differential equations over finite fields, we deter-
mine the differential spectrum of F in Section 2. The number of solutions of a system 
of equations with four variables is obtained from the differential spectrum. Section 3 
concludes this paper.

Table 1  Power mappings xd over GF(pn) with known differential spectrum (p is odd)

p d Conditions Differential uniformity Reference

3  2 ⋅ 3
n−1

2 + 1 n is odd 4 [9]

odd  p
k+1

2
  e = gcd(n, k)  p

e−1

2
 or pe + 1 [7]

odd  p
n+1

pm+1
+

pn−1

2
 pn ≡ 3 (mod 4), m∣n pm+1

2
 [7]

odd p2k − pk + 1  n
e
 odd, e = gcd(n, k) pe + 1 [12, 21]

odd pn − 3 any n ≤ 5 [16, 20]
5  5

n−3

2
 any n 4 or 5 [19]

odd  2p
n

2 − 1 n is even  p
n

2 This paper
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2  The differential spectrum of F(x) = x2q− 1 over GF(q2)

This section is devoted to study the differential spectrum of F(x) = x2q− 1 over GF(q2), 
where q is an odd prime power. Before we investigate the differential spectrum of F, a use-
ful lemma will be introduced first. For any x ∈ GF(q2)*, if there exist y ∈ GF(q2)* such that 
y2 = x, we call x a square element in GF(q2). Otherwise, we call x a nonsquare element in 
GF(q2). We have the following observation.

Lemma 2 Define � = {z ∈ GF(q2) | zq+1 = 1} . For any square element x ∈ GF(q2)*, 
there exist exactly two pairs, namely (y,z) and (−y,−z), such that x = yz = (−y)(−z), ± y ∈ 
GF(q)* and ±z ∈ �.

Proof Let 𝜖 be a primitive element in GF(q2). Since x is a square, then x = 𝜖2u for some 
integer u in the range 0 ≤ u ≤

q2−3

2
 . Note that (q + 1, q − 1) = 2, then there exist integers s 

and t such that s(q + 1) + t(q − 1) = 2. Then

 Put y = 𝜖su(q+ 1) and z = 𝜖tu(q− 1), it can be checked that y ∈ GF(q)* and z ∈ � . Moreover, if 
there exist y′ ≠ y and z′ ≠ z , such that x = y�z� , y� ∈ GF(q)∗ and z� ∈ � , then we have

 We conclude that y� = −y since GF(q) ∩ � = {±1} . The desired result follows.

To determine the differential spectrum of F, we mainly study the derivative equation

for some b ∈ GF(q2). Denote by δ(b) the number of solutions of (2) in GF(q2). We have the 
following lemma.

Lemma 3 With the notation introduced above, we have

(i)  δ(1) = q,
(ii)  δ(b) is either 0 or 2 for b ≠ 1.

Proof When b = 1, (2) becomes

It is obvious that x = 0 and x = − 1 are both solutions of (3). Now we assume that x ≠ 0,− 1. 
The (3) becomes

 then

x = �
2u = �

(s(q+1)+t(q−1))u = �
su(q+1)

�
tu(q−1)

.

y�

y
=

z

z�
∈ �.

(2)(x + 1)2q−1 − x2q−1 = b

(3)(x + 1)2q−1 − x2q−1 = 1.

x(x + 1)2q − (x + 1)x2q = x(x + 1),

x(xq + 1)2 − (x + 1)x2q = x(x + 1),
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 i.e.,

 We assert that x is a solution of (3) if and only if x ∈ GF(q). Hence δ(1) = q.
Note that 2q − 1 is odd, then the solutions of (2) come in pairs, i.e., x is a solution of (2) 

if and only if − x − 1 is a solution of (2). Hence the value of δ(b) is even except when x = 
−x − 1, i.e., x = −

1

2
 . In this latter case, the corresponding b equals to 1 since − 1

2
∈ GF(q) . 

Thus δ(b) is even for b ≠ 1. In the rest of this proof, we will show δ(b) ≤ 2, for b ≠ 1. If 
b ≠ 1, then x ≠ 0. We discuss the solutions of (2) in the following two disjoint cases.

Case 1 x is a square element in GF(q2)*.
By Lemma 2, there exist y ∈ GF(q)* and z ∈ � such that x = yz. Then (2) becomes

 Note that yq = y and zq = z− 1, we obtain

Raising both sides of (4) into the power q, we have

The (4) and (5) lead to

 which can be rewritten as

Note that z − z− 1≠ 0. Otherwise, z = ± 1, then x = yz ∈ GF(q), which leads to b = 1, a con-
tradiction. We then conclude that

Multiplying both sides of (7) by z2 and denoting z2 by u, we obtain

which is a quadratic equation of u. There exist at most two u’s for a given b ≠ 1. Moreover, 
from (4) we obtain

which means x is uniquely determined by u. Recall that x = yz = (−y)(−z), z and − z cor-
respond to the same u. We conclude that (2) has at most two solutions in this case.

Case 2 x is a nonsquare element in GF(q2).
Let 𝜖 be a primitive element in GF(q2), let

(xq − x)2 = 0.

(yz + 1)2q−1 − (yz)2q−1 = b.

(4)y(bz − 2z−1 + z−3) = 1 − b.

(5)y(bqz−1 − 2z + z3) = 1 − bq.

(bz − 2z−1 + z−3)(1 − bq) − (bqz−1 − 2z + z3)(1 − b) = 0,

(6)(z − z−1)
(
(1 − b)z2 − (1 − bq+1) + (1 − bq)z−2

)
= 0.

(7)(1 − b)z2 − (1 − bq+1) + (1 − bq)z−2 = 0.

(8)(1 − b)u2 − (1 − bq+1)u + (1 − bq) = 0,

(9)x = yz =
1 − b

b − 2z−2 + z−4
=

1 − b

b − 2u−1 + u−2
,

� =

{
�

q+1

2 , if q ≡ 1(mod 4),

�
q−1

2 , if q ≡ 3(mod 4).
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 Obviously, λ is a nonsquare element in GF(q2)*. Moreover, if q ≡ 1(mod 4), we have λq = 
−λ. If q ≡ 3(mod 4), we have λq = −λ− 1.

Subcase 2.1. q ≡ 1(mod 4).
Since x is a nonsquare element, then xλ− 1 is a square element. By Lemma 2, there exist 

y ∈ GF(q)* and z ∈ � such that xλ− 1 = yz, i.e., x = λyz. The (2) becomes

Raising both sides of (10) into the power q, we have

The (10) and (11) lead to

If z + z− 1 = 0, then z− 1 = −z, we have (λz)q = (−λ)(−z) = λz, i.e., λz ∈ GF(q). Therefore, x 
= λz ⋅ y ∈ GF(q), which indicates b = 1, a contradiction. We assert that z + z− 1≠ 0, then the 
following identity holds.

Let u = z2, then (13) becomes

which is a quadratic equation of u. There exist at most two u’s for a given b≠ 1. Moreover, 
from (10) we obtain

which means x is uniquely determined by u. Recall that x = λyz = λ(−y)(−z), z and − z cor-
respond to the same u. We conclude that (2) has at most two solutions in this subcase.

Subcase 2.2. q ≡ 3(mod 4).
Note that λq = −λ− 1 in this subcase. Similar to Subcase 2.1, there also exist y ∈ GF(q)* 

and z ∈ � such that x = λyz. Then (2) becomes

Raising both sides of (16) into the power q, we have

The (16) and (17) lead to

If λz + λ− 1z− 1 = 0, then λz = −λ− 1z− 1 = λqzq, which means λz ∈ GF(q). We have x = λyz ∈ 
GF(q) and then b = 1, which is a contradiction. Thus we conclude that

(10)�y(bz + 2z−1 + z−3) = 1 − b.

(11)−�y(bqz−1 + 2z + z3) = 1 − bq.

(12)(z + z−1)
(
(1 − b)z2 + (1 − bq+1) + (1 − bq)z−2

)
= 0

(13)(1 − b)z2 + (1 − bq+1) + (1 − bq)z−2 = 0.

(14)(1 − b)u2 + (1 − bq+1)u + (1 − bq) = 0,

(15)x = �yz =
1 − b

b + 2z−2 + z−4
=

1 − b

b + 2u−1 + u−2
,

(16)y(�−3z−3 + 2�−1z−1 + b�z) = 1 − b.

(17)y(−�3z3 − 2�z − bq�−1z−1) = 1 − bq.

(18)(�z + �
−1z−1)

(
(1 − b)�2z2 + (1 − bq+1) + (1 − bq)�−2z−2

)
= 0.

(19)(1 − b)�2z2 + (1 − bq+1) + (1 − bq)�−2z−2 = 0.

1086 Cryptography and Communications (2022) 14:1081–1089



1 3

Let u = λ2z2, (19) becomes

which is a quadratic equation of u. Note that (14) and (20) are the same. There exist at most 
two u’s for a given b ≠ 1. Moreover, from (16) we obtain

which means x is uniquely determined by u. Recall that x = λyz = λ(−y)(−z), z and − z corre-
spond to the same u. We conclude that (2) has at most two solutions in this subcase (Table 2).

In the following, we will show that δ(b) ≠ 4 for b ≠ 1. Otherwise, if δ(b) = 4, (2) has two 
square solutions and two nonsquare solutions. The square solutions are

 where u1 and u2 are the two roots of the quadratic (8). Moreover, it can be easily seen that 
the roots of (14) and (20) are − u1 and − u2. Then by (15) and (21), the nonsquare solutions 
of (2) are

 which is a contradiction. Hence, (2) cannot have four solutions, i.e., δ(b) = 0 or 2 for b≠ 1 
since δ(b) is even. We complete the proof. □

By Lemma 3, the nonzero elements in the differential spectrum of F are ω0, ω2 and ωq. 
We determine the differential spectrum of F in the following theorem.

Theorem 1 Let q be an odd prime power. Let F(x) = x2q− 1 be a power mapping defined 
over GF(q2). The differential spectrum of F is given by

Proof From Lemma 3 and (1), we obtain the following system of equations.

(20)(1 − b)u2 + (1 − bq+1)u + (1 − bq) = 0,

(21)x = �yz =
1 − b

b + 2�−2z−2 + �−4z−4
=

1 − b

b + 2u−1 + u−2
,

xi =
1 − b

b − 2u−1
i

+ u−2
i

, i = 1, 2,

1 − b

b + 2(−ui)
−1 + (−ui)

−2
=

1 − b

b − 2u−1
i

+ u−2
i

= xi, i = 1, 2,

� = {�0 =
q2 + q − 2

2
,�2 =

q2 − q

2
,�q = 1}.

⎧⎪⎨⎪⎩

�0 + �2 + �q = q2,

2 �2 + q �q = q2,

�q = 1.

Table 2  Possible solutions of the (2) for a given b ≠ 1

Cases Limitation of u Solution x

Case 1 (1 − b)u2 − (1 − bq+ 1)u + (1 − bq) = 0, (8)  x = 1−b

b−2u−1+u−2
 

Subcase 2.1 (1 − b)u2 + (1 − bq+ 1)u + (1 − bq) = 0, (14)  x = 1−b

b+2u−1+u−2
 

Subcase 2.2 (1 − b)u2 + (1 − bq+ 1)u + (1 − bq) = 0, (20)  x = 1−b

b+2u−1+u−2
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Solving the previous system of equations, we obtain the differential spectrum of F.

By Theorem 1 and Lemma 1, one can immediately deduce the following corollary.

Corollary 1 Let q be an odd prime power and GF(q2) be the finite field with q2 element. 
The number of solutions (x1, x2, x3, x4) ∈ (GF(q2))4 of the system of equations

is 4q4 − 2q3 − 3q2 + 2q, where d = 2q − 1.

3  Concluding remarks

Let F(x) = x2q− 1 be a power mapping over GF(q2), where 2q − 1 is a Niho exponent. When 
q is a power of 2, the differential spectrum of F was computed in [3]. In this paper, we 
studied the differential spectrum of F when q is an odd prime power. The differential spec-
trum of F was determined, and the number of solutions of a related system of equations 
followed. The application of the differential spectrum of F in sequence design, coding the-
ory and combinatorial design is of great significance.
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