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Abstract
Boolean bent functions have been introduced by Rothaus in 1966, bent functions in odd 
characteristic were first considered in 1985 by Kumar, Scholtz, and Welch. Two books on 
bent functions and some surveys on bent functions and related topics mainly deal with the 
Boolean case. In this survey, we focus on bent and vectorial bent functions in odd char-
acteristic. Lately, one can observe increasing interest in the bentness of functions from 
elementary abelian into cyclic groups. Following this development, we also survey recent 
results on this class of functions.
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1 Introduction

As indicated in the influential PhD thesis of Dillon [49] in 1974, Boolean bent functions 
have been introduced in 1966 by Rothaus in the paper [110], which in its final version was 
published 1976. In 1985, Kumar, Scholtz, and Welch [72] generalized the concept to p-ary 
functions, i.e., to functions which map from elementary abelian p-groups into the prime 
field �p1. Boosted by applications in cryptography and coding theory, and by rich connec-
tions to objects from geometry and combinatorics, bent functions and related functions 
developed into a lively research area. Two books on bent functions, [92, 117], chapters in 
books (see e.g. [23, Chapter 6], [45, Chapter 5]), and several surveys on bent functions and 
functions related to bent functions, testify to this fact (we refer to [26] and [21, 22]).

The books and surveys mainly focus on the Boolean case.2 In this survey, we 
concentrate on p-ary (vectorial) bent functions, where p is an odd prime. We 
especially elaborate the differences between bent functions in characteristic 2 
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1 More general, in [72], functions from ℤn
q to ℤq are considered for arbitrary positive integers q.

2 Some treatment of the p-ary case can be found e.g. in [92, Chapters 13,14], or in [117, Chapter 15].
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and bent functions in odd characteristic, and analyse several properties, which 
are specific to bent functions in odd characteristic. For instance, whereas all 
Boolean bent functions are so-called regular bent functions, the class of p-ary 
bent functions inherits a much larger variety of properties. It contains the class 
of dual-bent functions introduced in [31] as a proper subclass, which again con-
tains the class of weakly regular bent functions as a proper subclass. To compare 
the Boolean and the p-ary case, we will also have to shortly recall some classical 
results on Boolean bent functions.

Lately, one can observe increasing interest in the bentness of functions from ele-
mentary abelian into cyclic groups, leading to the concepts of generalized bent func-
tions and ℤpk-bent functions. We follow this development, and survey recent results 
on these classes of functions.

The objective of this survey article, is to give comprehensive information on the 
current status of research on p-ary bent functions, generalized bent and ℤpk-bent func-
tions, albeit without claiming to be exhaustive. Parts of the survey (in particular the 
choice of the problems) reflect aspects about (vectorial) p-ary bent functions, gener-
alized bent and ℤpk-bent functions, in which I am personally most interested.

This survey article is organized as follows. After the introduction, in Chapter 2, we 
give the definitions and recall the basic properties of p-ary bent functions, vectorial 
bent functions, and generalized bent and ℤpk-bent functions. In Chapter 3, we review 
classes and constructions of p-ary and vectorial bent functions. Chapter  4 is dedi-
cated to regularity and duality for p-ary bent functions. For alternative information 
on this chapter (including also some proofs), we also may refer to the survey [37] on 
these special aspects. More properties of p-ary bent functions, like algebraic degree, 
normality, distance between bent functions, and also some theoretical coding results, 
are dealt with in Chapter 5. In Chapter 6, some approaches to generalize the classical 
result on the connection between Boolean bent functions and Hadamard difference 
sets are discussed. Finally, in Chapter  7, recent results on generalized bent and ℤpk

-bent functions are presented.
We finish the introduction with the definition of bent functions between arbitrary finite 

abelian groups.
In [105], three equivalent characterizations of bent functions3 between arbitrary 

finite abelian groups are shown. The first one is a definition via character sums, for 
the second one, differential properties of a function are considered. The third defini-
tion equivalently uses an object from combinatorics, namely relative difference sets, a 
generalization of a difference set. We therefore first recall the definitions of a differ-
ence set and of a relative difference set.

Definition 1 Let H be a finite (abelian) group of order � . A subset D of H with k ele-
ments is called a (�, k, �)-difference set in H, if every element z ∈ H can be written as 
z = d1 − d2 with d1, d2 ∈ D , in � ways.

Let H be an abelian group of order �� with a subgroup N of order � . A subset R of 
H with k elements is called a (�, �, k, �)-relative difference set relative to N, if every 
element z ∈ H ⧵ N  can be written as z = d1 − d2 with d1, d2 ∈ R , in � ways, and there 
is no such representation for any nonzero element in N. N is then called the forbidden 
subgroup.

3 In [105], the term perfect nonlinear function is used.
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Clearly, a relative difference set with trivial forbidden subgroup is just a difference set.

Definition 2 Let (A,+A) and (B,+B) be two finite abelian groups. A function f from A to 
B is called a bent function, if and only if one (and hence all) of the following equivalent 
conditions are satisfied. 

 (i) For every character � of A × B which is nontrivial on B we have4

 (ii) For all nonzero a ∈ A , the derivative Daf  of f in direction a, 

 is balanced, i.e., every value in B is taken on the same number |A|/|B| of times.
 (iii) The graph of f, G(f ) = {(x, f (x)) ∶ x ∈ A} , is a relative difference set5 in A × B rela-

tive to {0} × B (see [105, Theorem 1]).

We remark that bent functions can also be defined between finite non-abelian groups. 
The charaterizarions in Definition 2 (ii), (iii) still apply, see [99] and [100, 101]. For recent 
results on bentness of functions on a non-abelian group, respectively between non-abelian 
groups, also on characterizations in terms of adequately defined Fourier transforms, we 
refer to [53, 120], and [121] and references therein.

Relative difference sets of the type given in Definition 2 (iii) are called splitting rela-
tive difference sets. In contrast, a relative difference set in a group H is nonsplitting, if the 
forbidden subgroup B has no complement, hence the group H cannot be written as A × B 
for some group A. Moreover, for the parameters of G(f) we have k = � , G(f) is then called 
semiregular. Conversely, semiregular splitting relative difference sets in A × B define bent 
functions f ∶ A → B , see [105, p.180]. The study of bent functions is therefore also a study 
of semiregular splitting relative difference sets (and vice versa). For further background on 
relative difference sets we refer to [104].

We finally remark that in some literature, the term perfect nonlinear function is used, 
e.g. also in [105]. In this survey, we will use the term bent function, and more concretely, 
depending on the groups involved, the terms Boolean bent function, p-ary bent function, 
vectorial bent function, ℤpk

-bent function, which we will introduce in the next section.

2  Bent definitions, basic properties

We first fix some notation, which we will use throughout the survey article.
Let q be a prime power. We denote with �q the finite field with q elements. The ring of 

integers respectively the cyclic group (with respect to the addition) of the integers modulo 
q, we denote by ℤq

 (q will here again always be a prime power). For a positive integer n 

(1)
�����
�
x∈A

�(x, f (x))
�����
=
√�A�.

Daf (x) = f (x +A a) −B f (x)

4 By Parseval’s identity (see [105, Theorem 4]), for a bent function, the maximal value for �∑x∈A �(x, f (x))� 
over all such characters (which is 

√�A� ) is smallest possible.
5 The parameters of G(f) obviously are (�, �, k, �) = (|A|, |B|, |A|, |A|∕|B|).
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and a prime p, we denote by � (p)
n  the vector space of dimension n over the prime field �p , 

and with ⟨, ⟩n we denote a non-degenerate inner product of � (p)
n  . If � (p)

n  is represented by 
�
n
p  , the vector space of the n-tuples over �p , then one may take the conventional dot prod-

uct u ⋅ v for ⟨u, v⟩n , the standard inner product for the finite field �pn with pn elements, is 
⟨u, v⟩n = Trn

1
(uv) , where Trn

1
(z) is the absolute trace of z ∈ �pn . Accordingly, for a divisor m 

of n, Trn
m
(z) is the relative trace of z ∈ �pn from �pn into the subfield �pm . (The characteristic 

p of the field is seen from the context, and is not included in the notation for the trace.) 
Some classes of interesting functions from � (p)

n  to �p , like some bent functions, can be rep-
resented best in bivariate form, where � (p)

n = �pm × �pm , n = 2m , in which case we can take 
the inner product ⟨(u1, u2), (v1, v2)⟩n = Trm

1
(u1v1 + u2v2).

We will have to strictly distinguish between the addition in elementary abelian groups, 
and the addition in other structures. Addition and subtraction in vector spaces over a prime 
field �p is hence denoted by ⊕ and ⊖ , whereas + and − stands for addition and subtraction 
in ℤq , in the integers, complex numbers, etc.

2.1  The Boolean and p‑ary case

Functions f from � (p)
n  into the prime field �p , we call p-ary functions, and when p = 2 , as 

usual also Boolean functions. A function f from � n
p
 to �p can uniquely be expressed with its 

algebraic normal form (ANF)

with coefficients a(j1,…,jn) in �p . The degree of a monomial 
∏n

i=1
x
ji
i  is j1 +⋯ + jn

 , and 
the largest degree of all monomials in (2) with nonzero coefficient a(j1,…,jn)

 is called the 
algebraic degree of f. If f is given as a function from the finite field �pn to �p , then f can 
be uniquely represented as a polynomial f (x) =

∑pn−1

j=0
ajx

j of polynomial degree at most 
pn − 1.6 Every exponent t can be written in base p representation t =

∑n−1

i=0
tip

i , the weight 
of t is then 

∑n−1

i=0
ti . The algebraic degree of f equals the largest weight of an exponent t in 

the polynomial representation of f, for which at ≠ 0 . The constant functions therefore are 
the functions with algebraic degree 0, the functions of algebraic degree 1 are called affine 
functions.

For p-ary functions f ∶ �
(p)
n → �p , the character sum in Equation (1), which is called the 

Walsh transform (or Walsh-Hadamard transform) of f, denoted by Wf  , is the function from 
�
(p)
n  into the complex numbers ℂ of the form

The multiset {Wf (b) ∶ b ∈ �
(p)
n } is called the Walsh spectrum of the function f.7

(2)f (x1,… , xn) =
∑

(j1,…,jn)∈�
n
p

a(j1,…,jn)

n∏
i=1

x
ji
i
,

(3)Wf (b) =
�
x∈�

(p)
n

𝜁 f (x)⊖⟨b,x⟩n
p

, 𝜁p = e2𝜋i∕p.

6 Recall that all functions from �pn to �pn (or with values in a subfield) have a unique representation as a uni-
variate polynomial of degree at most pn − 1.
7 More precisely, the character sum (3) should be of the form Wf (a, b) =

∑
x∈�

(p)
n
𝜁
af (x)⊖⟨b,x⟩n
p  with a ∈ �

∗
p  . 

However, since with a p-ary function f, also af is bent for all a ∈ �
∗
p
 , in connection with bentness, the Walsh 

transform of a p-ary function is commonly defined as in (3).
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Differently from the exact value of the Walsh transform Wf (b) at an element b ∈ �
(p)
n  , 

the Walsh spectrum of f is independent from the inner product used in (3). Definition 2 (i) 
for p-ary bent functions is then of the following form.

Definition 3 A function f from � (p)
n  to �p is called a bent function, if the Walsh transform 

Wf (b) of f at b, has absolute value pn∕2 for all b ∈ �
(p)
n .

The first well-known fundamental differences between the Boolean case and the case of 
odd primes p, we observe at the possible values in the Walsh spectrum.

The Boolean case. If p = 2 , then �2 = −1 and Wf (b) is always an integer. For a Boolean 
bent function we hence have Wf (b) = 2n∕2(−1)f

∗(b) for a Boolean function f ∗ ∶ �
(2)
n

→ �2 , 
called the dual8 of f. Clearly, n must be even. As is well-known, the dual f ∗ is a bent func-
tion as well, and (f ∗)∗ ∶= f ∗∗ = f .

The p  odd case. Differently from the case that p = 2 , bent functions from � (p)
n  to �p , p 

odd, exist for all integers n ≥ 1
9. As first shown in [72] (see also [57]), the values of the 

Walsh transform of a p-ary bent function are also quite restricted. For a p-ary bent function 
f ∶ �

(p)
n → �p , the Walsh coefficient Wf (b) at b ∈ �

(p)
n  always satisfies

where f ∗ is a function from � (p)
n

 to �p , which again is called the dual of f (and i =
√
−1).

A bent function f ∶ �
(p)
n → �p is called weakly regular if, for all b ∈ �

(p)
n  , we have 

Wf (b) = � �
f ∗(b)
p pn∕2 for some fixed � ∈ {±1,±i} , cf. Equation (4). If � = 1 we call f regu-

lar10. If (the sign of) � changes with b ∈ �
(p)
n  , then f is called non-weakly regular bent. 

Weakly regular bent functions f belong to the class of dual-bent functions, for which the 
dual f ∗ is bent as well. Moreover, we then have f ∗∗(x) = f (−x) , hence f ∗∗∗∗(x) = f (x) , see 
e.g. [57]. A non-weakly regular bent function can be either dual-bent or non-dual-bent, 
see [31, 34]. As it is shown in [98], the dual of a non-weakly regular dual-bent function is 
again non-weakly regular.

Boolean bent functions are defined as the Boolean functions in even dimension with 
the largest possible nonlinearity N = 2n−1 − 2n∕2−1 , i.e., as the Boolean functions with the 
furthest distance N  from the set of affine functions. The size of the preimage sets |f −1(i)| , 
i = 0, 1 , are 2n−1 ± 2n∕2−1 . In coding theoretical terms, the distance N  of a Boolean bent 
function from the set of the affine functions is the covering radius of the first order Reed-
Muller code RM2(1, n) . We refer to [21]. This does not apply for p-ary bent functions and 
the Reed-Muller code RMp(1, n) . The size of the preimage sets and the Hamming distance 
of a p-ary bent function from the set of the affine functions is determined in Theorems 
3.2–3.5 in [97].

Theorem  1 [97] Let f ∶ �
(p)
n ↦ �p , p odd, be a bent function, and for � ∈ �p , let 

b
�
= |f −1(�)| , where f −1(�) = {x ∈ �

(p)
n ∶ f (x) = �} . 

(4)Wf (b) =

{
±�

f ∗(b)
p pn∕2 ∶ pn ≡ 1 mod 4;

±i�
f ∗(b)
p pn∕2 ∶ pn ≡ 3 mod 4,

8 Since the Walsh coefficient Wf (b) depends also on the inner product used in (3), strictly speaking, f ∗ is 
the dual of f with respect to ⟨, ⟩n.
9 As is shown by Hou in [62], the bent functions f ∶ �p → �p are the functions f (x) = ax2 ⊕ bx⊕ c , a ≠ 0.
10 This trivially applies to Boolean bent functions. Hence we can see Boolean bent functions as regular 
bent functions.
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 (i) If n is even, then there exits a unique c ∈ �p such that bc = pn−1 ± (p − 1)p
n

2
−1 and 

b
�
= pn−1 ∓ p

n

2
−1 for all � ∈ �p ⧵ {c} . Moreover, if f is regular, then the upper signs 

have to be attained. The Hamming distance to the nearest affine function from � (p)
n  

to �p is (p − 1)pn−1 − pn∕2−1 or (p − 1)(pn−1 − pn∕2−1) . If f is regular, then the latter 
case applies.

 (ii) If n is odd, then the value distribution is given by (b0, b1,… , bp−1) or a cyclic shift of 
(b0, b1,… , bp−1) , where b0 = pn−1 and b� = pn−1 +

(
�

p

)
p

n−1

2  for all � ∈ �p ⧵ {0} , or 

b
�
= pn−1 −

(
�

p

)
p

n−1

2  for all � ∈ �p ⧵ {0} , and 
(
∗

∗

)
 is the Legendre symbol. The Ham-

ming distance to the nearest affine function from � (p)
n  to �p is (p − 1)pn−1 − p(n−1)∕2.

We finish this section with the definitions of some related functions. A p-ary function 
f ∶ �

(p)
n → �p is called plateaued (also s-plateaued), if |Wf (b)| ∈ {0, p(n+s)∕2} for an integer 

s, 0 ≤ s ≤ n , depending only on f.11 Bent functions are exactly the 0-plateaued functions. 
If s = 1 , then f is called semi-bent (or also near-bent). For p = 2 the term semi-bent is also 
used for s = 2 if n is even (note that n ≡ s mod 2 is required when p = 2).12

A subclass of the plateaued functions is the class of partially bent functions, which are 
the functions f ∶ �

(p)
n → �p , for which the derivative Daf (x) = f (x⊕ a)⊖ f (x) is either bal-

anced or constant. The set of elements a ∈ �
(p)
n  for which Daf  is constant forms a subspace 

of � (p)
n  , the linear space of f, of some dimension s. The function f is then s-plateaued.

2.2  Vectorial bent functions

Let � (p)
n  and � (p)

m  be vector spaces over �p of dimension n and m respectively. For a function 
F from � (p)

n  to � (p)
m

 , which we call a vectorial function (when m > 1 ), the character sum (1), 
which is also called the Walsh transform, is given by

Hence, Definition 2 (i) for vectorial functions appears as follows.

Definition 4 A function F from � (p)
n  to � (p)

m  is called a bent function, if the Walsh transform 
Wf (a, b) of F at (a, b), has absolute value pn∕2 for all b ∈ �

(p)
n  and nonzero a ∈ �

(p)
m .

For a vectorial function F ∶ �
(p)
n → �

(p)
m  and a nonzero element a ∈ �

(p)
m  (and some fixed 

inner product ⟨, ⟩m of � (p)
m  ), the p-ary function Fa ∶ �

(p)
n → �p , Fa(x) = ⟨a,F(x)⟩m , is called 

a component function of the vectorial function F. The algebraic degree of a vectorial func-
tion is the largest algebraic degree among its component functions. In terms of the compo-
nent functions, a vectorial function F is bent, if and only if all of its component functions 
are p-ary bent functions. The set of the component functions, together with the 0-function, 
forms then a vector space of p-ary bent functions of dimension m.

Wf (a, b) =
�
x∈�

(p)
n

𝜁 ⟨a,f (x)⟩m⊖⟨b,x⟩n
p

, 𝜁p = e2𝜋i∕p.

11 Recall that by Parseval’s identity we have 
∑

b∈�
(p)
n
�Wf �2 = p2n . Hence if f is an s-plateaued function, then 

Wf (b) ≠ 0 for pn−s values of b.
12 The notion of plateaued functions was introduced in [125]. In some literature, the term three valued 
function is used, and semi-bent functions are called three valued almost optimal, see for instance [15].
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The following fundamental differences between p = 2 and p odd are well known.
p = 2 . Clearly, also vectorial bent functions F ∶ �

(2)
n

→ �
(2)
m

 can only exist for even n. 
By Theorem 3.2 (and its Corollary) in [96], for a vectorial bent function F ∶ �

(2)
n

→ �
(2)
m

 , 
m can be at most n/2. More precisely, in [96] it is shown that for a vectorial bent function 
F ∶ �

(p)
n → �

(p)
m  of which all component functions are regular bent functions, m can be at 

most n/2.
p odd. Bent functions from � (p)

n  to � (p)
m  exist for all integers n and m ≤ n . Vectorial bent 

functions on � (p)
n  are called planar functions. Planar functions attracted a lot of attention in 

the literature, in particular due to their connections to projective planes and commutative 
semifields. We may refer to Section 8 (and also Section 3.3) in the survey paper [106], or 
to [44].

2.3  Bent functions into the cyclic group

Recently, one can observe increasing interest in functions from the vector space � (p)
n  into 

the cyclic group ℤpk . The character sum in (1) for functions f ∶ 𝕍
(p)
n → ℤpk is of the form

the accordant version of Definition 2 (i) is then

Definition 5 A function f from � (p)
n  to ℤpk is bent if and only if |Hf (c, u)| = pn∕2 for all 

u ∈ �
(p)
n  and nonzero c ∈ ℤpk.

Differently from bent functions between elementary abelian groups, bent functions from 
�
(p)
n  to ℤpk , which we will also call ℤpk-bent functions, seem to be “rare”, see our discus-

sions in Section 7.2.
The class of functions from � (p)

n  to ℤpk satisfying only the much weaker condition that 
|Hf (1, u)| = pn∕2 for all u ∈ �

(p)
n  , is called the class of generalized bent functions. General-

ized bent functions originally have been introduced in [111] for p = 2 , in connection with 
applications in code division multiple access (CDMA) systems when k = 2 . Satisfying 
only a much weaker condition, generalized bent functions (in general) do not yield relative 
difference sets. As easily seen, cf. [61], f ∶ 𝕍

(p)
n → ℤpk is bent, if and only if ptf  is general-

ized bent for all 0 ≤ t ≤ k − 1 . Consequently, generalized bent functions play an important 
role in the research on ℤpk-bent functions respectively relative difference sets in 𝕍 (p)

n × ℤpk.
The possible values of Hf (1, u) respectively Hf (c, u) for a generalized bent function 

respectively a ℤpk-bent function are similar as for bent functions between elementary abe-
lian groups. The following generalizations are shown in [82] for p = 2 , and in [94, Lemma 
3] for odd p. For the special case, p = 2 and n is odd we refer to [111, Lemma 3.3].

Theorem 2 Let f ∶ 𝕍
(p)
n → ℤpk be a generalized bent function.

– Let p = 2 . If n is even or n is odd and k ≠ 2 , then Hf (1, u) = 2n∕2�
f ∗(u)

2k
 for all u ∈ �

(2)
n  and 

some function f ∗ ∶ 𝕍
(2)
n

→ ℤ2k . If n is odd and k = 2 , then Hf (1, u) = (1 + i)2(n−1)∕2if
∗(u) 

for all u ∈ �
(2)
n

 and some function f ∗ ∶ 𝕍
(2)
n

→ ℤ4.

Hf (c, u) =
�
x∈�

(p)
n

�
cf (x)

pk
� ⟨u,x⟩n
p

, �q = e2�i∕q,
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– If p is an odd prime, then 

 where f ∗ is a function from � (p)
n  to ℤpk.

3  P‑ary bent functions. Examples and constructions

In this chapter, examples and constructions of p-ary (vectorial) bent functions are reviewed. 
In general, one distinguishes between primary bent function constructions, i.e., bent func-
tions, which are constructed from scratch, and secondary bent function constructions, 
where new bent functions are constructed from known bent functions or related functions. 
Crucial for the classification of (vectorial) bent functions is the concept of equivalence.

Extended affine equivalence Two functions f , g ∶ �
(p)
n → �

(p)
m  are called extended affine 

equivalent (EA-equivalent), if there exist a linear permutation L1 of � (p)
n  , a linear permuta-

tion L2 of � (p)
m

 , a linear map L3 ∶ �
(p)
n → �

(p)
m  , and an element c ∈ �

(p)
m  , such that

If L3 = 0 , then f, g are called affine equivalent, if further c = 0 , then linear equivalent.
The algebraic degree and essentially the Walsh spectrum are invariant under EA-equiv-

alence.13 In particular, if f in (5) is bent, so is g. Therefore, for the classification of (vecto-
rial) bent functions, the concept of EA-equivalence is essential, two (vectorial) bent func-
tions are considered different, if they are not EA-equivalent. In general, it is not easy to 
decide whether two bent functions of the same algebraic degree are EA-equivalent. For a 
group theoretic approach we refer to [48].

We remark that for classifying (vectorial) functions, the coarser CCZ-equivalence is 
used, [24]. However for Boolean functions, p-ary functions, and for bent functions, these 
two equivalence concepts coincide, see [8, 9].

As for Boolean bent functions, a complete classification of p-ary bent functions 
is illusive. There are plenty of primary classes of p-ary (vectorial) bent functions 
known, and with the use of the several known secondary constructions (and concat-
enations of secondary constructions), a huge amount of (vectorial) bent functions can 
be generated. As shown in Kantor [68, 69, Remark 4], already in the partial spread 
class from the Desarguesian spread, which will be recalled below, the number of 
inequivalent p-ary bent functions (which can then serve as ingredients in secondary 
constructions), grows exponentially with the dimension. In my opinion, due to the 
numerous possibilities of bent function constructions, presenting further bent for-
mulas is of limited interest, unless one can show that the obtained functions satisfy 
some exceptional properties. We concentrate here on some major primary construc-
tions, classes of (vectorial) bent functions with a neat representation (monomials, 

Hf (1, u) =

{
±�

f ∗(u)

pk
pn∕2 ∶ pn ≡ 1 mod 4;

±i�
f ∗(u)

pk
pn∕2 ∶ pn ≡ 3 mod 4,

(5)g(x) = (L2◦f◦L1)(x) + L3(x) + c.

13 If p and n are odd and a ∈ �p is a nonsquare, then the signs in the Walsh spectra of the bent functions f 
and af from � (p)

n  to �p are opposite. Hence in this case e.g. a regular bent function and a weakly regular but 
not regular bent function can be EA-equivalent. The precise effects of EA-equivalence transformations are 
listed in [31].

744 Cryptography and Communications (2022) 14:737–782



1 3

binomials), and on some p-ary versions of secondary constructions, which turned out 
to be useful to generate bent functions with properties that are specific for the case of 
p odd. We point to the literature on further constructions of p-ary bent functions in 
Section 3.4.

3.1  Primary constructions

Quadratic bent functions Quadratic functions, i.e., functions of algebraic degree 
2, are partially bent, hence plateaued. In the Boolean case, all quadratic s-plateaued 
functions form an EA-equivalence class. In particular, every quadratic Boolean bent 
function from � (2)

n  to �2 is EA-equivalent to the function x1x2 ⊕ x3x4 ⊕⋯⊕ xn−1xn 
from � n

2
 to �2.

The situation is different when p is odd. Omitting affine terms, every quadratic function 
Q(x) in multivariate form, i.e., represented as a function Q from � n

p
 to �p , can be written as

for some symmetric n × n-matrix over �p ( (x1,… , xn)
T denotes the transpose of the vector 

(x1,… , xn) ). The quadratic function Q is bent, if and only if A is nonsingular. With a coor-
dinate transformation on � n

p  , A can be transformed into diagonal form, with either (1,… , 1) 
or (d, 1,… , 1) for some nonsquare d ∈ �p in its main diagonal.

Theorem 3 For an odd prime p and a nonsquare d ∈ �p , let Q1,Q2 ∶ �
n
p
→ �p be the quad-

ratic functions Q1(x) = x2
1
⊕ x2

2
⊕⋯⊕ x2

n and Q2(x) = dx2
1
⊕ x2

2
⊕⋯⊕ x2

n . 

 (i) Q1 and Q2 are bent functions with 

 where Q∗
1
(x) = −(4)−1Q1(x) , and Q∗

2
(x) = −(4)−1(x2

1
∕d⊕ x2

2
⊕⋯⊕ x2

n
).

 (ii) If n is even, then every quadratic bent function Q ∶ �
(p)
n → �p is EA-equivalent to 

either Q1 or to Q2 . If n is odd, then every quadratic bent function Q ∶ �
(p)
n → �p is 

EA-equivalent to Q1.14

For vectorial quadratic bent functions, univariate representation seems most convenient. 
In particular, all in the literature explicitly given quadratic planar functions are in univari-
ate representation (see Section 3.3 below for some examples). We remark that, omitting affine 
terms, all quadratic functions on �pn , p odd, have a unique representation of the form

Q(x) = (x1,… , xn)A(x1,… , xn)
T

WQ1
(b) =

{
pn∕2�

Q∗
1
(b)

p ∶ p ≡ 1 mod 4,

inpn∕2�
Q∗

1
(b)

p ∶ p ≡ 3 mod 4,

WQ2
(b) =

{
−pn∕2�

Q∗
2
(b)

p ∶ p ≡ 1 mod 4,

−inpn∕2�
Q∗

2
(b)

p ∶ p ≡ 3 mod 4,

14 Multiplying Q2
 with a nonsquare a ∈ �p changes the signs in the Walsh spectrum, aQ2 can then be trans-

formed to Q1 with a coordinate transformation.
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Polynomials of the form (6) are called Dembowski-Ostrom polynomials15.

Maiorana‑McFarland (MMF) bent functions As already observed in [72], the Maiorana-
McFarland construction for p = 2 can be applied in the same way in odd characteristic.16 
The construction is essentially vectorial. Commonly, Maiorana-McFarland bent functions 
are represented in bivariate form.

Theorem 4 Let � be a function on the finite field �pm.

p -ary version: For g ∶ �pm → �p , the function f ∶ �pm × �pm → �p , f (x, y) = Trm
1
(x�(y)) + g(y) 

is bent if and only if � is a permutation. The bent function f is then regular, its dual 
f ∗(x, y) = Trm

1
(−y�−1(x)) + g(�−1(x)) is also a Maiorana-McFarland bent function.

vectorial version: For G ∶ �pm → �pm , the function F ∶ �pm × �pm → �pm , F(x, y) = x�(y) + G(y) 
is bent if and only if � is a permutation. All component functions are then regular.

Alternatively one can define a Maiorana-McFarland bent function f ∶ �pm × �pm → �p by

where fy ∶ �pm → �p is linear and fy ≠ fy′ if y ≠ y′ , or as

where fy ∶ �pm → �p are affine functions, and the supports of their Walsh spectra are pair-
wise disjoint. We note that a function from �pm → �p is affine, if and only if it is an m-pla-
teaued function, or equivalently, if and only if the support of the Walsh spectrum contains 
exactly one value. Hence in the version in Equation (7), every c ∈ �pm belongs to the sup-
port of the Walsh spectrum of exactly one fy.

Spread and partial spread (PS) bent functions Generalizations of the partial spread 
construction as given in Dillon [49] for p = 2 , have been presented in [69, 76]. First 
recall that a partial spread of the elementary abelian group � (p)

n  , n = 2m , is a collec-
tion S = {U1,U2,… ,UK} of m-dimensional subspaces of � (p)

n  , which pairwise intersect 
trivially. If K = pm + 1 , i.e., every nonzero element of � (p)

n
 is in exactly one subspace, 

then S is called a (complete) spread of � (p)
n  . The standard example is the Desargue-

sian spread, which for � (p)
n = �pm × �pm has the representation S = {U,Us ∶ s ∈ �pm} , 

with U = {(0, y) ∶ y ∈ �pm} , and for s ∈ �pm , Us = {(x, sx) ∶ x ∈ �pm}.

(6)
Q(x) =

∑
i,j=0,…,n−1

i≤j

ai,jx
pi+pj ∈ �pn [x].

f (x, y) = fy(x)⊕ g(y),

(7)f (x, y) = fy(x),

15 For p = 2 , slightly differently, the sum is over i, j with i < j , as the term x2j+2j = x2
j+1 is linear.

16 Boolean Maiorana-McFarland functions were introduced independently by Maiorana (unpublished) and 
McFarland [84] as a generalization of Rothaus’ bent functions x ⋅ y⊕ g(x) in [110].
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Theorem 5 [69, 76] 

 (i) Let S be a partial spread of � (p)
n  , n = 2m , with at least (p − 1)pm−1 subspaces. Sup-

pose that f ∶ �
(p)
n → �p is a function such that every nonzero element of �p has the 

union of pm−1 subspaces in S , without the 0, as the preimage set, and all other ele-
ments are mapped to 0. Then f is a bent function, a so called p-ary PS− bent function.

 (ii) Let S be a partial spread of � (p)
n

 , n = 2m , with at least (p − 1)pm−1 + 1 subspaces. For 
some fixed nonzero c ∈ �p , we take the union of pm−1 + 1 subspaces (including 0) 
as the preimage of c. For all remaining nonzero elements of �p , the preimage is the 
union of pm−1 subspaces, without the 0. All remaining elements of � (p)

n  , the function 
f maps to 0. Then f is a bent function, a so called p-ary PS+bent function.

Both classes of partial spread bent functions are regular.
A (complete) spread is a very powerful object for constructing bent functions, not only 

between elementary abelian groups, but remarkably, for bent functions from �
(p)
n  into any abe-

lian group of order pk , k ≤ n∕2 . For a proof of the subsequent theorem, we may refer to [89].

Theorem 6 Let U0,U1,… ,Upm be the subspaces of a spread of � (p)
n  , n = 2m , and let B be an abe-

lian group of order pk for some 1 ≤ k ≤ m . We obtain a bent function from � (p)
n  to B as follows. 

1. For every z ∈ B , the nonzero elements of exactly pm−k of the subspaces Uj , 1 ≤ j ≤ pm , 
are mapped to z.

2. The elements of U0 are mapped to a fixed c ∈ B.

We finally remark that one can obtain vectorial bent functions, and bent functions into 
other abelian groups, also from partial spreads of � (p)

n  with sufficiently many subspaces, 
see e.g. [3, 87].

Monomials and Binomials Besides from the big MMF and PS classes, there are not many 
primary constructions of p-ary bent functions. A few (non-quadratic) monomials and bino-
mials are known. As shown in [10], the following examples do not belong to the completed 
Maiorana-McFarland class, i.e., they are not EA-equivalent to any Maiorana-McFarland 
bent function. One more monomial we will recall in the section on planar functions below.

  
The bentness of this monomial over the finite field �3n was conjectured in [57], and then 

shown in [58, Theorem 1.4], see also [56]. In [38, Theorem 1], the vectorial bentness of the 
monomial is shown, i.e., it is shown that f1 is a component of an associated vectorial monomial 
bent function. We summarize the results in the following theorem, giving a p-ary and a vectorial 
version.

Theorem 7 Let n = 2m , m odd, a = �(3m+1)∕4 for a primitive element � of �3n.

(𝐢) 𝐟𝟏(𝐱) = Tr𝐧
𝟏

(
𝐚𝐱

𝟑𝐧−𝟏

𝟒
+𝟑𝐧+𝟏

)
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p -ary version. The function f1 ∶ �3n → �3 , f1(x) = Trn
1

(
ax

3n−1

4
+3n+1

)
 , is a weakly regular 

but not regular bent function.

vectorial version. The function F1 ∶ �3n → �3m , F1(x) = Trn
m

(
ax

3n−1

4
+3m+1

)
 , is a vecto-

rial bent function all of which component functions are weakly regular but not regular.

The bentness of this binomial is shown in [59], the vectorial version is Theorem 2 in 
[38].

Theorem 8 Let n = 4k for an arbitrary positive integer k.

p -ary version. The function f2 ∶ �pn → �p , f2(x) = Trn
1

(
xp

3k+p2k−pk+1 ⊕ x2
)
 , is a weakly 

regular but not regular bent function.

vectorial version. The function F2 ∶ �pn → �p2k,

is a vectorial bent function with all components weakly regular but not regular bent.

(iii) Functions with Dillon type exponents In [57], it is shown that the monomial function 
f3 ∶ �3n → �3 , n = 2m , f3(x) = Trn

1
(axd) , d = r(3m − 1) , is bent under a condition on a Kloost-

erman sum involving the coefficient a ∈ �3n
 . Exponents d of this form are called Dillon type 

exponents, yielding functions that are constant on the nonzero elements of the subspaces ��3m , 
� ∈ �

∗
3n . The collection of such subspaces forms the Desarguesian spread in univariate represen-

tation. These functions are included in the class of the partial spread functions, see Theorem 3.3 
in [76], and they are a component function of a vectorial spread bent function, see [38]. Further 
examples of bent functions with Dillon type exponents are dealt with in [66, 108, 114, 116, 124].

3.2  Secondary constructions

Secondary constructions of bent functions, i.e., constructions of new bent functions from 
known bent (or related) functions, provide the toolkit to generate a huge amount of new 
bent functions. The very difficult problem however, is to show whether obtained bent func-
tions are new (in terms of EA-equivalence). With secondary constructions, classes of bent 
functions with special properties can be obtained, which we do not see in the known pri-
mary constructions. We present here (the p-ary version17 for) three constructions in detail, 

(𝐢𝐢) 𝐟𝟐(𝐱) = Tr𝐧
𝟏

(
𝐱𝐩

𝟑𝐤+𝐩𝟐𝐤−𝐩𝐤+𝟏
⊕ 𝐱𝟐

)

F2(x) = Tr4k
2k

(
xp

3k+p2k−pk+1 ⊕ x2
)

17 Several, but not all, of the primary and secondary Boolean bent function construction procedures work 
for odd primes p as well. For instance, Niho bent functions, i.e., Dillon’s H-class [25, 49], only exist for 
p = 2 . The secondary construction of Boolean bent functions in [20, 91], does not work in this form for odd 
primes p.
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which turned out to be useful for the construction of bent and vectorial bent functions with 
properties, which are specific to p-ary bent functions.

Another procedure to obtain an new bent function from a given one, will be 
discussed in Section  5.3 in connection with the minimal distance between two 
bent functions. Bent functions obtained with certain partitions of � (p)

n  occur in 
connections with generalized bent functions and ℤpk-bent functions on Chapter 7. 
In Section 3.4 below, the further literature on p-ary bent function constructions is 
overviewed.

Direct sum and semidirect sum The simplest secondary construction is the 
direct sum of two functions f ∶ �

(p)
m → �p and g ∶ �

(p)
n → �p given by 

h(x, y) = f (x)⊕ g(y) . As easily derived, the Walsh transform of h at (a, b) ∈ �
(p)
m × �

(p)
n  

satisfies Wh(a, b) = Wf (a)Wg(b) . For the vectorial version of the direct sum, let F, 
G be two vectorial bent functions from � (p)

m  respectively from �
(p)
n  to �pk (without 

loss of generality we represent � (p)

k
 with �pk ). Then the function H ∶ �

(p)
m × �

(p)
n → �pk 

given as H(x, y) = F(x)⊕ G(y) is a vectorial bent function. The semi-direct sum 
introduced in [34] for p-ary functions, and in [38] as vectorial construction, can 
be seen as a generalization of the direct sum.

Theorem 9 p -ary version. Let f ∶ �
(p)
m → �p and g ∶ �

(p)
n → �p be bent, and let � be 

a function from �
(p)
m  to 

�
(p)
n

 . The function h ∶ �
(p)
m × �

(p)
n → �p

 defined as 
h(x, y) = f (x)⊕ g(y⊕𝜑(x)) is bent if and only if for all b ∈ �

(p)
n  the function 

Ψb ∶ �
(p)
m → �p , Ψb(x) = f (x)⊕ ⟨b,𝜑(x)⟩n is a bent function. The dual h∗ of h is then 

h∗(x, y) = Ψ∗
y
(x)⊕ g∗(y).

vectorial version. Let F ∶ �
(p)
m → �pk and G ∶ �

(p)
n → �pk be  vectorial bent func-

tions, and let � be a function from � (p)
m  to � (p)

n
 . The function H ∶ �

(p)
m × �

(p)
n → �pk 

defined as

is vectorial bent if and only if for all b ∈ �
(p)
n  and nonzero � ∈ �pk the function 

Gb,� ∶ �
(p)
m → �p

is a bent function.

Remark 1 If � is the zero function, then the condition in Theorem 9 trivially holds, and the 
semi-direct sum reduces to the direct sum.

The secondary construction of Boolean bent functions in Carlet [17] is the spe-
cial case of the semidirect sum with g(x) = x1x2 ⊕ x3x4 ⊕⋯⊕ xn−1xn.

Generalized Maiorana‑McFarland In [28, 30], a construction of p-ary bent 
functions is presented, which can be seen as a p-ary version of the construc-
tion of Boolean bent functions from semi-bent functions in [14, 41, 74]. The 
p-ary version we present here is from [31].

H(x, y) = F(x)⊕ G(y⊕𝜑(x))

Ψb,𝛼(x) = Trk
1
(𝛼F(x))⊕ ⟨b,𝜑(x)⟩n
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Theorem 10 Let gy ∶ �
(p)
n → �p , y ∈ �

(p)
s  , be a collection of ps functions all of which are 

s-plateaued such that the supports of the Walsh spectra {b ∈ �
(p)
n ∶ Wgy

(b) ≠ 0} are pair-
wise disjoint. Then f ∶ �

(p)
n × �

(p)
s → �p

is a p-ary bent function.

Remark 2 In the extreme case that s = m , hence all gy are affine functions, the con-
struction in Theorem  10 reduces to the Maiorana-McFarland construction as it is 
described in (7). Hence we refer to the construction in Theorem 10 as the general-
ized Maiorana-McFarland construction.

Remark 3 Looking at the construction from the perspective of the corresponding relative 
difference sets, it can be seen as an instance of the construction principle of relative differ-
ence sets in [47], see [2].

Sets of plateaued functions with the properties required for the generalized 
Maiorana-McFarland construction, one can obtain starting with bent functions, 
see [30]. A concrete realization, by which a bent function in n + 2 variables is 
obtained from an arbitrary set of p bent functions in n variables, is given in the 
following theorem, which we give in two versions since Theorem  10 also sup-
ports a construction of vectorial bent functions.

Theorem 11 [31, Theorem 2], [38, Theorem 3]

p -ary version. For j = 0,… , p − 1 , let gj be bent functions from � (p)
n  to �p . Then 

f ∶ �
(p)

n+2
→ �p

is a bent function. Its dual f ∗ is

vectorial version. For every y ∈ �pk let Gy be a vectorial bent function from � n

pk to �pk (with-
out loss of generality we here use these representations for the vector spaces). Then the 
function F ∶ �

n+2
pk

→ �pk defined as

is a vectorial bent function.

Generalized Rothaus construction In [85], a generalization of a construction 
in Rothaus [110], that also applies to p-ary functions, p odd, is presented. For 
the construction we need three bent functions f1, f2, f3 ∶ �

(p)
n → �p , for which linear 

combinations (not necessarily all) are also bent. One may simply employ three 
(linearly independent) components of a vectorial bent function.

f (x, y) = gy(x)

(8)f (x, xn+1, y) = gy(x)⊕ xn+1y

(9)f ∗(x, xn+1, y) = g∗
xn+1

(x)⊖ xn+1y.

F(x1,… , xn, xn+1, y) = Gy(x1,… , xn)⊕ yxn+1
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Theorem  12 Let f1, f2, f3 ∶ �
(p)
n → �p be linearly independent component functions of a 

vectorial bent function, and let a, b, c be elements of �p . The function g from � (p)
n × �

2
p
 to �p 

given by

is bent if and only if a⊕ b⊕ c ≠ 0
18.

For p = 2 , in which case g is bent whenever a⊕ b⊕ c = 1 , with the choice a = 1 , 
b = c = 0 , one obtains Rothaus’ construction of Boolean bent functions in [110]. We 
remark that for this case, it is sufficient that with f1, f2, f3 also f1 ⊕ f2 ⊕ f3 is bent.

3.3  Planar functions

Bent functions from � (p)
n

 to � (p)
n  , which only exist for odd primes p, are called pla-

nar functions. By the alternative definition of bent functions via derivatives, a 
function F ∶ �

(p)
n → �

(p)
n  is planar, if for every nonzero a ∈ �

(p)
n  the derivative 

DaF(x) = F(x⊕ a)⊖ F(x) is a permutation of � (p)
n  . Planar functions are particularly inter-

esting for their connections to projective planes or to commutative semifields. A lot of 
research therefore focused on planar functions. An excellent survey on the results on planar 
functions (and on APN functions), is the paper [106]. We hence here solely sketch the con-
nections to projective planes and commutative semifields, give some examples for planar 
functions, and refer to the literature.

The graph of a planar function is a relative difference set in � (p)
n × �

(p)
n

 with parameters 
(pn, pn, pn, 1) . Relative difference sets with parameters (v,  v,  v,  1) induce divisible 
(v, v, v, 1)-designs, which uniquely can be extended to projective planes of order v19. For 
details we refer to [106, Section 3.3], and the references therein.

The only known not quadratic planar functions are the Coulter-Matthews functions, 
[43], F ∶ �3n → �3n,

Any quadratic planar function, i.e., planar Dembowski–Ostrom polynomial, describes a 
commutative (pre)semifield (�pn ,+, ∗) (see [70, 73]), and vice versa, any commutative (pre)
semifield of odd order can be described by a planar Dembowski–Ostrom polynomial. The 
corresponding projective planes are then semifield planes, i.e., coordinatised by the com-
mutative semifield. For several results on planar functions and their connections to com-
mutative semifields we refer to [12, 44, 118]. Some examples of quadratic planar functions 
on �pn with neat polynomial representation (and the corresponding semifields) are the Gold 
functions F(x) = x2 (finite field), F(x) = xp

k+1 , n∕ gcd(n, k) odd (generalized twisted fields 
[1]), and the functions F(x) = x10 ± x6 ⊖ x2 , p = 3 , n odd [43, 51]. Some more examples 
are in [6] or in [11, 13] respectively in [7].

g(x, y, z) = f 2
1
(x)⊖ f1f2(x)⊕ f2f3(x)⊖ f1f3(x)⊕ af1(x)⊕ bf2(x)⊕ cf3(x)

⊕ (f2(x)⊖ f1(x))y⊕ (f3(x)⊖ f1(x))z⊕ yz

(10)F(x) = x
3t+1

2 , t is odd, and gcd(t, n) = 1.

18 For the bentness of g it is sufficient that 𝜆1f1(x)⊕ 𝜆2f2(x)⊕ 𝜆3f3(x) is bent for all �1, �2, �3 ∈ �p , for 
which 𝜆1 ⊕ 𝜆2 ⊕ 𝜆3 = a⊕ b⊕ c , see [85, Remark 1].
19 It is conjectured that v has to be a prime power.
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For more detailed information and an exhaustive list, we refer to Chapter 8 in [106], and 
to the references therein.

3.4  Some more examples

In this section, we point to the further p-ary bent function constructions, which one can 
find in the literature, without going into the details. I like to emphasize again, that with the 
large number of bent functions from primary constructions and the rich toolkit provided by 
secondary constructions (and concatenations of secondary constructions), one can easily 
generate huge quantities of (p-ary) bent functions, also bent functions, which do not belong 
to one of the major classes20 (which is not always easy to see).

As is observed in [102, 103], the construction in Carlet [18] of a new Boolean bent 
functions by altering the values of a Boolean bent function f ∶ �

(2)
n

→ �2 on an n/2-dimen-
sional affine subspace on which f is affine, has a p-ary version. This observation plays the 
key role in the research on the minimal distance between bent functions, which will be 
discussed in Section 5.3.

With similar principles, considering subspaces, Mandal et al. [79] presented p-ary gen-
eralizations of Carlet’s C and D class.

In [122, 123], (non-quadratic) p-ary bent functions are obtained by modifying a quad-
ratic bent monomial on a hyperplane

Bent functions of the form

where g ∶ �pn → �p is a (weakly regular) bent function, ui ∈ �
∗
pn , 0 ≤ i ≤ k − 1

 , are pre-
sented in [109]. We observe that (11) is of the shape (20) in Section 7.1. As we will see, 
(11) has an interpretation as a bent function with a partition, and can be analysed in con-
nection with the concept of generalized bent functions, which we will discuss in Chapter 7. 
Large classes of (p-ary) bent and vectorial bent functions can be obtained with partitions 
corresponding to generalized bent functions and ℤpk-bent functions, as will be presented in 
Chapter 7.

3.5  Some Questions

The primary constructions of bent functions in Section  3.1 are vectorial. Also for some 
secondary constructions we have vectorial versions. In fact it has not yet been shown from 
any Boolean or p-ary bent function to be lonely, i.e., to be not a component function of 
some vectorial bent function.

Question 1 Do lonely p-ary (or Boolean) bent functions exist, or is every p-ary (Boolean) 
bent function a component function of some vectorial bent function?

A similar question one can ask for vectorial bent functions F ∶ �
(p)
n → �

(p)
m  for m < n∕2 

when p = 2 , and m < n when p is odd. A related question, motivated by the fact that on the 

(11)f (x) = g(x)⊕ F(Trn
1
(u0x),Tr

n
1
(u1x),… ,Trn

1
(uk−1x)),

20 As we will see in Section 4.1, there are many possibilities to obtain non-weakly regular bent functions, 
which never belong to any of the primary classes introduced in this section.
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one hand some planar functions are known, on the other hand, some vectorial bent func-
tions from � (p)

n  to �
(p)

n∕2 (n even) are known, is the following.

Question 2 Do there exist vectorial bent functions from � (p)
n

 to � (p)
m  with n∕2 < m < n , 

which are not a projection21 of a planar function?

Spread bent functions are those bent functions which are constant on the subspaces of a spread 
(0 is taken out from all but one subspace), the bent functions which are affine on the subspaces of a 
spread form Dillon’s H class22, which for the Desarguesian spread in univariate representation is also 
known as the class of Niho bent functions, see [25]. The latter class only exists for p = 2 , [33]. On 
the other hand, some of the explicit examples of (non-quadratic) p-ary bent functions, like f1 and f2 in 
Section 3.1, are quadratic on every subspace of the Desarguesian spread (univariate representation).

Question 3 Can one characterize (non-quadratic) bent functions which are quadratic 
restricted to the subspaces of a spread?

The perhaps most famous problem on planar functions is

Question 4 [106, Problem 8.21] Find more non-quadratic planar functions, or show that 
the Coulter-Matthews functions (10) are the only ones.

4  Regularity and duality for p‑ary bent functions

A Boolean bent function is always regular. The situation is very different for p-ary bent 
functions, p odd, they inherit a much larger variety of properties. P-ary bent functions con-
tain the class of dual-bent functions as a proper subclass, which again contains the class of 
weakly regular bent functions as a proper subclass. A considerable amount of research on 
p-ary bent functions deals hence with regularity and duality. We emphasize that the classes 
of weakly regular, of non-weakly regular, and of dual-bent functions are invariant under 
EA-equivalence, cf. [31].

All classical constructions of bent functions presented in Chapter 3, yield weakly regu-
lar bent functions. The first sporadic examples of non-weakly regular bent functions, all 
ternary functions found with computer search, were published in [57, 59, 60, 113]: 

1. g1 ∶ �36 → �3 with g1(x) = Tr6
1
(�7x98) , where � is a primitive element of �36 , see [57],

2. g2 ∶ �34 → �3 with g2(x) = Tr4
1
(a0x

22 ⊕ x4) , where for a primitive element � of �34 , 
a0 ∈ {⊕𝜉10,⊖𝜉10,⊕𝜉30,⊖𝜉30} , see [59],

3. g3 ∶ �33 → �3 with g3(x) = Tr3
1
(x22 ⊕ x8) , or alternatively g̃3 ∶ �

3
3
→ �3 with 

g̃3(x1, x2, x3) = x2
2
x2
3
⊕ 2x2

3
⊕ x1x3 ⊕ x2

2 , see [113],
4. g4, g5 ∶ �36 → �3 with g4(x) = Tr6

1
(𝜉x20 ⊕ 𝜉41x92), g5(x) = Tr6

1
(𝜉7x14 ⊕ 𝜉35x70) , where � 

is a primitive element of �36 , see [60].

22 Spread bent functions with an affine term added, which are also affine on the subspaces of a spread, are 
excluded.

21 Seen a planar function on � (p)
n

 as an n-dimensional vector space of bent functions, one can consider a 
projection, i.e., delete some coordinates. This results in a vectorial bent function from � (p)

n  to � (p)
m  , where 

m < n can be chosen arbitrarily, which is a vectorial component function of the planar function.
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As it was observed in [31], the duals of the bent functions g1, g2, g5 are not bent, hence 
g1, g2, g5 are non-dual-bent functions, whereas the duals of g3, g4 are bent functions, [31].

Since then, some effort has been given to construct examples and classes of p-ary 
bent functions of various types, and also results on properties of component functions 
for vectorial bent functions have been presented. We here also refer to the survey paper 
[37].

4.1  Regularity

The sporadic ternary examples of non-weakly regular bent functions in low dimension, indicate 
that (as dimension increases) there may be infinitely many of such functions. The first confirma-
tion of this fact has been provided in [113] with a recursive argument employing the direct sum 
construction.

Proposition 1 [113] For some odd prime p, let f ∶ �
(p)
m → �p be a non-weakly regular bent 

function, and let g ∶ �
(p)
n → �p be weakly regular bent. The direct sum h(x, y) = f (x)⊕ g(y) 

from � (p)
m × �

(p)
n

 to �p is then a non-weakly regular bent function.

Note that this result easily follows from the identity Wh(a.b) = Wf (a)Wg(b) . With the 
sporadic examples and Proposition 1, one can now obtain non-weakly regular ternary bent 
functions in any dimension n ≥ 3.

The first explicit construction of non-weakly regular bent functions has been pre-
sented in [28], see also [30]. The functions belong to the generalized Maiorana-
McFarland class obtained with the secondary construction in Theorem  10, which 
was established in [28] for the purpose of constructing non-weakly regular bent 
functions.

The most suitable version for easily obtaining non-weakly regular bent functions, is the 
version in Theorem 11, in which a bent function f from � (p)

n+2
 to �p is constructed from bent 

functions fj , 0 ≤ j ≤ p − 1 , from � (p)
n  to �p . From the explicit expression (9) of the dual of f,

we see that f is non-weakly regular if some fj are regular, and some are weakly regular but 
not regular. This is easily achieved, by picking for fj , 0 ≤ j ≤ p − 1 , quadratic bent func-
tions. We arrive at

Theorem 13 The generalized Maiorana-McFarland construction gives weakly regular and 
non-weakly regular p-ary bent functions23 in any even or odd dimension n ≥ 3 and for 
every odd prime p.

We remark that the dual f ∗ also belongs to the generalized Maiorana-McFarland class, 
hence if all f

∗
j  are bent (i.e., all fj are dual-bent functions), then also f ∗ is bent. Therefore 

f is dual-bent. Several interesting examples of generalized Maiorana-McFarland bent func-
tions are in [31], among others, bent functions f for which the dual f ∗ has a different alge-
braic degree, which guarantees that f and f ∗ are EA-inequivalent.

f ∗(x, xm+1, y) = f ∗
xm+1

(x)⊖ xm+1y,

23 Note that f is weakly regular only if all of the bent functions fj are regular, or all are weakly regular but 
not regular. Hence, mostly one will obtain a non-weakly regular bent function.
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Having explicit constructions of non-weakly regular bent functions, the question if non-
weakly regular bent functions can be components of vectorial bent functions24, is natural. 
It is observed in [38], that the above sporadic example g1 of a ternary non-weakly regular 
bent function has the vectorial version G ∶ �36 → �33 , G(x) = Tr6

3
(�7x98) , � is a primitive 

element of �36 . Hence G is an example of a vectorial bent function with non-weakly regular 
component functions. Moreover, the components are also non-dual-bent functions.

The first constructions of vectorial bent functions with non-weakly regular com-
ponents for any odd prime p, have been presented in [38]. In [38, Section 3], the vecto-
rial version of Theorem  11 has been employed: For every y ∈ �pk , choose a vector 
(ay,1, ay,2,… , ay,n) ∈ (� ∗

pk
)n . The functions Gy from � n

pk to �pk of the form

are then vectorial bent. Using results on the Walsh transform for the planar function x2 (see 
[57, Corollary 3]) and an iterative argument, it is shown that, under some easy to satisfy 
condition, all component functions of the vectorial bent functions F ∶ �

n+2
pk

→ �pk obtained 
via Theorem 11 with the functions of the form Gy,

are non-weakly regular, yet dual-bent functions, see [38, Theorem 4].

Theorem 14 The vectorial version of the generalized Maiorana-McFarland construction in 
Theorem 11 can produce vectorial bent functions of which all components are non-weakly 
regular dual-bent functions.

A different construction of non-weakly regular bent functions in [85] uses the general-
ized Rothaus construction presented in Theorem  12. We refer to [85] for a comparison 
with the generalized Maiorana-McFarland construction. In the constructions in [85], pla-
nar functions, namely the Gold function and the Coulter-Matthews function, are employed. 
The following theorem is Corollary 1 and Corollary 2 in [85].

Theorem 15 Let p be an odd prime and n, k be integers such that n∕ gcd(n, k) is odd ( p = 3 
and n, k be integers such that gcd(2n, k) = 1 ), and let g ∶ �pn → �pn be the Gold function 
g(x) = xp

k+1 (the Coulter-Matthews function g(x) = x(3
k+1)∕2 ). For linearly independent 

elements �1, �2, �3 of �pn , not all of which are squares respectively nonsquares in �pn , and 
a, b, c ∈ �p such that a⊕ b⊕ c ≠ 0 , the function h ∶ �pn × �

2
p
→ �p,

is a non-weakly regular bent function.

Gy(x1, x2,… , xn) = ay,1x
2
1
⊕ ay,2x

2
2
⊕⋯⊕ ay,nx

2
n
,

(12)
F(x1,… , xn, xn+1, y) =Gy(x1,… , xn)⊕ yxn+1

=ay,1x
2
1
⊕ ay,2x

2
2
⊕⋯⊕ ay,nx

2
n
⊕ yxn+1

h(x, y, z) = (Trn
1
(𝛼1g(x))

2 ⊖ Trn
1
(𝛼1g(x))Tr

n
1
(𝛼2g(x))

⊕ Trn
1
(𝛼2g(x))Tr

n
1
(𝛼3g(x))⊖ Trn

1
(𝛼1g(x))Tr

n
1
(𝛼3g(x))

⊕ Trn
1
((a𝛼1 ⊕ b𝛼2 ⊕ c𝛼3)g(x))⊕ Trn

1
((𝛼2 ⊖ 𝛼1)g(x)y)

⊕ Trn
1
((𝛼3 ⊖ 𝛼1)g(x)z)⊕ yz

24 This question is quite opposite to Question 1 on the existence of lonely bent functions.
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4.2  Non‑dual‑bent functions

Similarly as for non-weakly regular bent functions, also non-dual-bent functions can be 
constructed recursively. As observed in [34, Theorem 3], besides from the direct sum, also 
the generalized Maiorana-McFarland construction can be used, see also [37, Theorem 2].

Theorem 16 

 (i) For z = 0,… , p − 1 , let gz be bent functions from � (p)
n  to �p . The generalized Maio-

rana-McFarland bent function f ∶ �
(p)
n × �

2
p
→ �p

 is dual-bent, if and only if for all 0 ≤ z ≤ p − 1 the function gz is dual-bent.
 (ii) The direct sum of a dual-bent function and a non-dual-bent function is a non-dual-

bent function.

With Theorem 16, and the non-dual-bent functions g1, g2, g5 presented at the beginning 
of this chapter, we can now obtain non-dual-bent functions for p = 3 and any dimension 
n ≥ 4 . What is missing, is a generic construction of non-dual-bent functions, possibly also 
yielding non-dual-bent functions for p other than 3. Such a construction was finally given 
in [34] using the semi-direct sum. With the vectorial version introduced in [38], we can 
simultaneously obtain non-dual-bent functions and vectorial bent functions with non-dual 
component functions.

To apply the semi-direct sum construction in Theorem 9, we identify � (p)
m  with �pm and 

�
(p)
n = �

(p)

2k
 with �pk × �pk . We employ the Gold planar function x2 , take for F ∶ �pm → �pk 

the function F(x) = Trm
k
(x2) , and for some �1, �2 in �pm such that 1, �1, �2 are linearly inde-

pendent over �pk , we choose � ∶ �pm → �pk × �pk as �(x) = (Trm
k
(�1x

2),Trm
k
(�2x

2)) . The vec-
torial bent function G ∶ �pk × �pk → �pk , is the Maiorana-McFarland bent function 
G(x, y) = xy . It is easily seen that the conditions for Theorem 9 are then satisfied. The sym-
bol �(z) in the following theorem, denotes the quadratic character of z ∈ �pm.

Theorem 17 [34, 38]

p -ary version. Let 1, �1, �2 ∈ �pm be linearly independent over �p . If

then the function f ∶ �pm × �
2
p
→ �p

is a non-dual-bent function.

vectorial version. Let m = 3k , and let {1, �1, �2} be a basis of �pm over �pk . Then the func-
tion F from �pm × �pk × �pk to �pk,

f (x, y, z) = gz(x)⊕ yz

(13)
||||||
∑

y1,y2∈�p

�(1 + y1�1 + y2�2)�
−y1y2
p

||||||
≠ p,

f (x, y1, y2) = Trm
1
(x2) + (y1 + Trm

1
(�1x

2))(y2 + Trm
1
(�2x

2))
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is a vectorial bent function. If for some nonzero � ∈ �pk we have

then F∗
�
 is not bent, and consequently F is a vectorial bent function, which has non-dual-

bent component functions.

The conditions in Theorem  17 are obtained by determining Wf ∗ (0) respectively 
WF∗

�
(0) . The Walsh transform of f ∗ respectively of F∗

�
 at 0 has not absolute value pn∕2 , if 

and only if Condition (13) respectively Condition (14) is satisfied. Note that, therefore, 
the conditions are sufficient (not even necessary) for f being non-dual-bent respectively 
F having non-dual-bent components.

Remark 4 Conditions (13), (14) combine the additive and the multiplicative structure of the 
finite field and are therefore not easy to analyse. With a random choice of � and of �1 and 
�2 , one would expect a chaotic behaviour of the character sums in (13) and (14). In particu-
lar, as experimental results indicate, its absolute value is mostly different from p respec-
tively pk , so that it is easy to find examples of non-dual-bent functions and vectorial bent 
functions with non-dual-bent component functions. For examples for p = 3, 5, 7, 11, 13 we 
refer to [34].

Remark 5 Though the classical constructions and explicit representations of p-ary bent 
functions describe (weakly ) regular bent functions, the results on recursive and explicit 
constructions presented in this chapter indicate that being non-weakly regular and being 
non-dual-bent is not at all an exceptional property for a p-ary bent function.

4.3  Some questions

The generalized Maiorana-McFarland construction, the Rothaus construction and the 
semi-direct sum can produce non-weakly regular bent functions.

Question 5 Can one find more secondary constructions of bent functions, which support 
the generation of non-weakly regular or non-dual-bent functions?

The generalized Maiorana-McFarland vectorial bent function with non-weakly 
regular components described in Section  4.1 has solely non-weakly regular compo-
nents, see [38, Theorem 4]. In view of Remark 4, it seems likely that all components 
of the vectorial bent function in Theorem 17 are not only non-weakly regular, but also 
non-dual-bent.

Question 6 Do vectorial bent functions of which some component functions are weakly 
regular and some are non-weakly regular exist?

F(x, y1, y2) = Trm
k
(x2) + (y1 + Trm

k
(�1x

2))(y2 + Trm
k
(�2x

2))

(14)
||||||

∑
y1,y2∈�pk

�(� + y1�1 + y2�2)�
−Trk(y1y2∕�)
p

||||||
≠ pk,
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Question 7 Do vectorial bent functions of which some component functions are dual-bent 
and some are non-dual bent functions exist?

The vectorial bent function with non-dual-bent components in Theorem  17, 
obtained with the semi-direct sum, maps from � (p)

n  to � (p)

k  with k = n∕5 . With 
n = 1 , the vectorial bent function with non-weakly regular components in (12) is 
F(x1, x2, y) = ayx

2
1
⊕ yx2 , hence maps from � 3

pk to �pk.

Question 8 What is the largest dimension k for which vectorial bent functions from � (p)
n

 to 
�
(p)

k  with non-weakly regular (non-dual-bent) component functions exist?

By the alternative definition of bent functions, Definition 2 (iii), a function is bent, if 
and only if its graph is a relative difference set.

Question 9 Can the property of being non-weakly regular respectively non-dual-bent be 
related to properties of the relative difference set?

5  Further properties of p‑ary bent functions

Properties of Boolean and p-ary functions, which are frequently investigated in con-
nection with bentness, are the algebraic degree and normality. In this chapter we 
summarize the main results on these properties for p-ary bent functions, in particu-
lar, we highlight the differences between the Boolean and the p-ary case, p odd. We 
add a short discussion on the minimal distance between bent functions (see [71, 
102]), again pointing to some differences between the cases of p = 2 and p odd. 
We finish this chapter with some results on codes related to p-ary (vectorial) bent 
functions.

5.1  Algebraic degree

It is already shown in the paper of Rothaus [110], that a Boolean bent func-
tion f ∶ �

(2)
n

→ �2 can have algebraic degree at most n/2. Examples of bent func-
tions attaining this maximal algebraic degree are easy to construct, for instance in 
the Maiorana-McFarland class. It is also well known, that every Boolean PS− bent 
function from � (2)

2m
 to �2 attains the maximal possible algebraic degree m. Moreo-

ver, a Boolean PS+ bent function from � (2)

2m
 to �2 can have algebraic degree smaller 

than m, only if the corresponding partial spread with 2m−1 + 1 subspaces cannot be 
extended to a larger partial spread. An example is the quadratic bent function, see 
[49, Theorem 6.3.12].

A similar result holds for weakly regular p-ary bent functions.

Theorem  18 [62, Proposition 4.5] Let f ∶ �
(p)
n → �p be a weakly regular bent function, 

(n, p) ≠ (1, 3)25. Then f has algebraic degree at most (p − 1)n∕2.

25 The exceptions when (n, p) = (1, 3) , are the (quadratic) bent functions cx2 on �3 (affine term omitted).
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As in the Boolean case, one easily can obtain examples for bent functions of alge-
braic degree (p − 1)n∕2 (for instance in the Maiorana-McFarland class). A slight 
difference we see for partial spread bent functions. For odd primes p, every partial 
spread bent function f ∶ �

(p)
n → �p , without exception, attains the maximal possible 

algebraic degree (p − 1)n∕2 , see [3].
The weak regularity plays an important role in Theorem  18. For non-weakly regular 

bent functions, a slightly larger bound applies.

Theorem 19 [62, Proposition 4.4] For the algebraic degree deg(f ) of a non-weakly regular 
bent function f ∶ �

(p)
n → �p we have

The first (and as far as we are aware of, the only) construction of bent functions which 
attain the bound in Theorem 19, has been given in [29, 30], using the generalized Maio-
rana-McFarland construction:

With Lagrange interpolation, an explicit formula for (8) consists of sums of algebraic 
degree (p − 1) + deg gy . If for some ỹ ∈ �p , the bent function gỹ ∶ �

(p)
n → �p has maximal 

degree (p − 1)n∕2 + 1 , and the functions gy are chosen such that the maximal degree term does 
not cancel, then the resulting bent function in dimension n + 2 has maximal possible degree 
(p − 1)(n + 2)∕2 + 1 . For p = 3 , the quadratic bent function cx2 on �3 has the maximal possible 
algebraic degree. Hence, recursively we can generate ternary bent functions in odd dimension 
1 + 2k with maximal possible algebraic degree. For examples and an explicit formula for any 
odd dimension, see [30].

Question 10 Do (non-weakly regular) bent functions f ∶ �
(p)
n → �p with algebraic degree 

(p − 1)n∕2 + 1 exist for p ≥ 5 , or for even n?

The (non-weakly regular) ternary bent functions of maximal algebraic degree obtained 
with the generalized Maiorana-McFarland construction described as above, belong to the class 
of dual-bent functions.

Question 11 Do bent functions f ∶ �
(p)
n → �p with algebraic degree (p − 1)n∕2 + 1 exist 

in the class of non-dual-bent functions?

5.2  Normality

The definition of k-normality for p-ary functions below, is based on the accordant defini-
tions for Boolean functions in [40, 52].

Definition 6 A function f ∶ �
(p)
n → �p is called k-normal, if there exists a k-dimensional affine sub-

space of � (p)
n

 restricted to which f is constant. If f is affine on a k-dimensional affine subspace of � (p)
n  , 

then f is called weakly k-normal. When n is even and k = n∕2 , then f is called (weakly) normal.

Remark 6 A function f ∶ �
(p)
n → �p is weakly normal, if and only if there exists an a ∈ �

(p)
n  

such that f (x)⊖ ⟨a, x⟩n is normal. Weak normality is hence in connection with bentness 
the essential property.

deg(f ) ≤
(p − 1)n

2
+ 1.
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Normality for Boolean bent functions has been thoroughly investigated, see [16, 19, 40, 
52, 74]. A Boolean bent function from � (2)

n  to �2 can be (weakly) k-normal for k at most n/2, 
[40]. Interestingly, most classical examples of Boolean bent functions attain this bound, the 
existence of non-(weakly) normal Boolean bent functions has been an open question for 
some time, see [52]. In fact, all Boolean bent functions in dimension 6 are normal, but in 
the meantime, examples of non-weakly normal bent functions have been found for dimen-
sions n = 10, 12 ([74]), and n = 14 ([16]), employing an algorithm for testing normality in 
small dimension, [16]. A recursive procedure in [16] then guarantees that there are non-
weakly normal Boolean bent functions in any (even) dimension n ≥ 10.

The situation is somewhat different for bent functions from � (p)
n

 to �p , p odd. As it is 
shown in [32], a p-ary bent function, which is weakly regular but not regular, cannot be 
weakly normal. Together with the observation that for a p-ary function f, which is weakly 
k-normal, we must have pk ≤ max

b∈�
(p)
n
|Wf (b)| (see [88, Corollary 1] for odd p, and [40, 

Theorem 1] for p = 2 ), we have the following theorem.

Theorem  20 [32, 88] Let f ∶ �
(p)
n → �p be a p-ary bent function, and suppose that f is 

weakly k-normal. If n is even, then k is at most n/2, moreover, if f is weakly regular but not 
regular then k can be at most n∕2 − 1.

If n is odd, then k can be at most (n − 1)∕2.

As in the Boolean case, many p-ary bent functions attain these bounds. Note that the 
large classes of completed Maiorana-McFarland functions and of the PS+ bent functions 
are normal by definition.

– A quadratic bent function Q ∶ �
(p)
n → �p , p odd, is normal if n is even and Q is regular, 

(n∕2 − 1)-normal if n is even and Q is weakly regular but not regular, and (n − 1)∕2

-normal if n is odd, see [32, 88].
– The regular Coulter-Matthews bent functions are normal, [32, Theorem 7].
– The generalized Maiorana-McFarland construction yields weakly regular and non-

weakly regular bent functions which are weakly normal if n is even, and (weakly) 
(n − 1)∕2-normal if n is odd (if not non-weakly normal bent functions are used for the 
construction).

– The non-dual-bent function g2 ∶ �34 → �3 , g2(x) = Tr4
1
(�10x22 + xd) , � primitive ele-

ment of �34 , is normal, [32, Example 1].

Employing a generalization for odd characteristic of the algorithm in [16], in [88] the exist-
ence of p-ary bent functions which do not attain the bound on k-normality is confirmed. 
More precisely, for some weakly regular p-ary bent functions in odd dimension it is shown 
that they are not (n − 1)∕2-normal, and some non-weakly regular bent functions in even 
dimension are shown to be not normal (e.g. g1, g5 in our list in Chapter 4).

Question 12 Find regular p-ary bent functions in even dimension, which are not weakly 
normal.26 Find weakly regular but not regular bent functions in even dimension, that are 
not (n∕2 − 1)-weakly normal.

26 Recall that for Boolean bent functions, which are always regular, the existence of not weakly normal 
functions is confirmed for all (even) dimensions n ≥ 10.
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Question 13 Analyse normality for more of the known classes of p-ary bent functions. For 
instance, confirm that - as experimental results indicate - the weakly regular but not regular 
Coulter-Matthews bent functions in even dimension n are (n∕2 − 1)-normal.

The question on the typical behaviour of p-ary (and Boolean) bent functions with 
respect to normality seems not easy to be answered. Are (most) bent functions affine on 
affine subspaces of large dimension, or do they behave like arbitrary p-ary (and Boolean) 
functions27, bent functions that are (weakly) k-normal for a large value of k are only easier 
to find?

5.3  Minimal distance

In [18], Carlet introduced the following secondary construction of Boolean bent functions: 
Let f ∶ �

(2)
n

→ �2 be a weakly normal bent function, i.e., there exists an n/2-dimensional 
affine subspace E of � (2)

n
 restricted to which f is an affine function. Let IE denote the char-

acteristic function of E, i.e., IE(x) = 1 if x ∈ E , otherwise IE(x) = 0 . Then the function 
g(x) = f (x)⊕ IE(x) is bent. This construction was further analysed in [71] for Boolean 
functions, and then in [102, 103] for p-ary functions, resulting in an analysis of the mini-
mal distance between bent functions. The main results for the Boolean and the p-ary case 
(in even dimension n) are essentially the same:

Theorem 21 [71, 102, 103] Let p be a prime and let n be even.

– The Hamming distance d(f , g) = |{x ∈ �
(p)
n ∶ f (x) ≠ g(x)}| between two bent functions 

f , g ∶ �
(p)
n → �p , is at least pn∕2.

– If two bent functions f , g ∶ �
(p)
n → �p have Hamming distance d(f , g) = pn∕2 , then there 

exists an affine subspace E of dimension n/2, on which f is affine, and g(x) = f (x)⊕ cIE 
for some c ∈ �

∗
p  . Conversely, if a bent function f ∶ �

(p)
n → �p is weakly normal, i.e., 

affine on an n/2-dimensional affine subspace E, then g(x) = f (x)⊕ cIE is bent.
– If a bent function f ∶ �

(p)
n → �p is weakly normal, hence affine on an n/2-dimensional 

affine subspace E, then there are p − 1 bent functions which differ from f only on this 
subspace.

In [71], properties of the graph of the minimal distance between bent functions28 are 
investigated, like connectedness and vertices of maximal degree. Apparently, the isolated 
vertices are the bent functions which are not weakly normal, among which are, in the case 
of p odd, all bent functions which are weakly regular but not regular.

Question 14 Are there comparable results on the minimal distance between bent functions 
for weakly regular but not regular bent functions, or for p-ary bent functions in odd dimen-
sion n?

28 The vertices of this graph are the bent functions from � (p)
n

 to �p , and two bent functions f, g are adjacent 
if they have Hamming distance pn∕2.

27 In average, Boolean and p-ary functions are deeply non-normal. For details we refer to Theorem 3 and 
Proposition 1 in [19] for the Boolean case, and to [88, Proposition 1] for the case of odd primes p.
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5.4  Coding theoretical results

For a (vectorial) function F ∶ �
(p)
n → �

(p)
m  , let CF be the linear code containing the 

first order Reed-Muller code and the code formed by the component functions of F 
as a subcode. If F is given in univariate form as a function from �pn to �pm (for sim-
plicity we then suppose that m divides n), then

In the multivariate representation, i.e., if F is given as a function from �
n
p  to �

m
p  , the code CF 

is the linear code generated by the rows of the matrix

Clearly, the code CF has codewords of length pn , the dimension of CF is at most 
k = n + m + 1 . We remark that in some papers, variants of the code CF are considered. For 
instance, in [54, 93], for a function on �pn , the code

for a primitive element � of �pn , is considered.29

Besides from the parameters of a linear code, length, dimension and minimum dis-
tance, which determine the error correcting capabilities of the code, the weight dis-
tribution is of interest for calculating the error probabilities of the error detecting and 
error correcting. Linear codes with few weights have applications in several areas, 
like sharing schemes, authentication codes (we refer to [75] and references therein).

There are several results on parameters and on the weight distribution of the code 
CF (and variants) for special (classes of) functions F. We summarize below results 
on codes corresponding to some major classes of functions F in odd characteristic 
(in which we are interested in this survey), and refer to [54, 93, 119], and some ref-
erences therein for further reading.

Parameters and weight distribution for codes obtained with (vectorial) bent func-
tions from � (p)

n  to � (p)
m  , p odd, with (weakly) regular components can be derived 

using the value distribution for (weakly) regular bent functions in Theorem 1. For 
the results on codes obtained from p-ary bent functions we may refer to [93]30.

As it is common, we call a linear code with codewords of length � , dimension k, 
and minimal distance d, a (�, k, d)-linear code. The weight enumerator polynomial for 
a code C is the polynomial WC(z) =

∑�

i=0
Ajz

j , where the coefficient Aj is the number 
of codewords of weight j.

CF = {c𝛼,𝛽,c ∶ 𝛼 ∈ �pm , 𝛽 ∈ �pn , c ∈ �p} with

c𝛼,𝛽,c = {(Trm
1
(𝛼F(x))⊕ Trn

1
(𝛽x)⊕ c) ∶ x ∈ �pn}.

⎡⎢⎢⎣

1

x

F(x)

⎤⎥⎥⎦x∈� n
p

.

(15)
C̃F = {c̃𝛼,𝛽 = (Trn

1
(𝛼F(1)⊕ 𝛽),Trn

1
(𝛼F(𝛾)⊕ 𝛽𝛾),…

…Trn
1
(𝛼F(𝛾p

n−2)⊕ 𝛽𝛾p
n−2)) ∶ 𝛼, 𝛽 ∈ �pn}

29 Note that C̃F is a punctured version of the subcode of CF with the codewords c�,�,0.
30 In [93], the code C̃F is investigated.
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Theorem 22 Let n be even, let p be an odd prime, and let F ∶ �
(p)
n → �

(p)
m  be a (vectorial) 

bent function. 

 (i) I f  a l l  component  funct ions  o f  F are  regular ,  then CF  i s  a 
(pn, n + m + 1, pn − pn−1 − pn∕2−1)-linear code with weight enumerator polynomial 

 (ii) If all component functions of F are weakly regular but not regular, then CF is a 
(pn, n + m + 1, pn − pn−1 − pn∕2−1)-linear code with weight enumerator polynomial 

Theorem  23 Let n be odd, let p be an odd prime, and let F ∶ �
(p)
n → �

(p)
m

 be a (vecto-
rial) bent function. If all component functions of F are weakly regular, then CF is a 
(pn, n + m + 1, (p − 1)pn−1 − p(n−1)∕2)-linear code with weight enumerator polynomial

In [54], the weight distribution of C̃F for all known planar functions F is determined. We 
recall that, with the exception of the Coulter-Matthews function, all known planar functions 
are quadratic, and can - linear and constant term omitted - uniquely be represented by a Dem-
bowski-Ostrom polynomial (6). The component functions of quadratic functions are neces-
sarily weakly regular, the weak regularity of the components of the Coulter-Matthews pla-
nar function is shown in [58, 112]. The weight distribution of the corresponding codes hence 
depends on the quantities of regular and weakly regular but not regular components.

Theorem 24 [54, Theorem 2] Let F ∶ �
(p)
n → �

(p)
n  be any Dembowski-Ostrom planar func-

tion, or the Coulter-Matthews planar function ( p = 3 ), and let WC̃F
(z) be the weight enu-

merator polynomial for the code C̃F given as in (15). 

 (i) If n is odd, then 

 (ii) If n is even, then 

WCF
(z) = 1 + (pm − 1)pnz(p−1)(p

n∕2−1)pn∕2−1 + p(pn − 1)z(p−1)p
n−1

+ (p − 1)(pm − 1)pnzp
n−pn−1+pn∕2−1 + (p − 1)zp

n

.

WCF
(z) = 1 + (p − 1)(pm − 1)pnzp

n−pn−1−pn∕2−1 + p(pn − 1)z(p−1)p
n−1

+ (pm − 1)pnz(p−1)(p
n∕2+1)pn∕2−1 + (p − 1)zp

n

.

WCF
(z) = 1 + (pm − 1)

p − 1

2
pnz(p−1)p

n−1−p(n−1)∕2+

((pn − 1)p + (pm − 1)pn)z(p−1)p
n−1

+

(pm − 1)
p − 1

2
pnz(p−1)p

n−1+p(n−1)∕2 + (p − 1)zp
n

.

WC̃F
(z) = 1 + (pn − 1)(pn−1 + 1)z(p−1)p

n−1

+
pn − 1

2
(pn−1 + p(n−1)∕2)(p − 1)z(p−1)p

n−1−p(n−1)∕2

+
pn − 1

2
(pn−1 − p(n−1)∕2)(p − 1)z(p−1)p

n−1+p(n−1)∕2 .
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Question 15 Prove or disprove that the weight distribution of WC̃F
(z) must be as in Theo-

rem 24 for every planar function F ( F(0) = 0).

Note that showing that the Coulter-Matthews planar functions are the only non-quad-
ratic planar functions (Question 4) would also solve Question 15.

A different approach is applied in Ding [50], where cyclic codes with generator poly-
nomial (xpn−1 − 1)∕ gcd(S(x), xp

n−1 − 1) are investigated, where S(x) =
∑pn−2

i=0
six

i with 
si = Trn

1
(F(� i + 1)) for a primitive element � of �pn and a function F on �pn . It is pointed out 

that some codes from planar functions (and APN functions) F are optimal.

6  Bent functions and difference sets

A main motivation for research on bent functions are their strong connections to difference 
sets, generalizations of difference sets, and related objects. Recall that, by Definition 2 (iii), 
a bent function can be seen as a relative difference set.

Another generalization of difference sets are partial difference sets.

Definition 7 Let G be a finite group of order � . A k-subset D of G is called a (�, k, �,�) 
partial difference set (PDS) of G, if every nonzero element of D can be written as a differ-
ence of two elements of D in exactly � ways, and every nonzero element of G ⧵ D can be 
written as such a difference in exactly � ways. If additionally −D = D and 0 ∉ D , then D is 
called a regular partial difference set.

Note that a partial difference set with � = � , is a (conventional) difference set. For back-
ground on partial difference sets we refer to [77, 78].

Regular partial difference sets yield strongly regular graphs.

Definition 8 A k-regular graph G with 
�
 vertices is called strongly regular with parameters 

(�, k, �,�) , if any two adjacent vertices have exactly � common neighbours, and any two 
non-adjacent vertices have exactly � common neighbours.

Recall that for a subset D of a finite group G with −D = D , the Cayley graph of D is the 
graph of which the vertices are the elements of G, and x, y ∈ G are adjacent, if and only if 
x − y ∈ D.

WC̃F
(z) = 1 + (pn − 1)z(p−1)p

n−1

+
pn − 1

2
(pn−1 + (p − 1)pn∕2−1)z(p−1)(p

n−1−pn∕2−1)

+
pn − 1

2
(pn−1 − (p − 1)pn∕2−1)z(p−1)(p

n−1+pn∕2−1))

+
pn − 1

2
(pn−1 + pn∕2−1)(p − 1)z(p−1)p

n−1−pn∕2−1

+
pn − 1

2
(pn−1 − pn∕2−1)(p − 1)z(p−1)p

n−1+pn∕2−1 .

764 Cryptography and Communications (2022) 14:737–782



1 3

Theorem 25 [78, Proposition 1.1] Let D be a k-subset of a finite group G of order � . The 
Cayley graph of D is a strongly regular graph with parameters (�, k, �,�) , if and only if D 
is a regular (�, k, �,�) partial difference set of G.

Remark 7 Observe that the property −D = D is important to obtain an undirected graph G 
as Cayley graph. The condition 0 ∉ D avoids that G has loops. However, as is easily seen, if 
D is a partial difference set, then so are D ∪ {0} and D ⧵ {0}.

There are rich connections between bent functions and some classes of difference sets. 
We recall again that a function between two finite abelian groups A and B is a bent func-
tion, if and only if its graph is a (splitting) relative difference set in A × B relative to B. 
Therefore, the study of bent functions is also a study of relative difference sets.

Remarkable is the following well-known relation between Boolean bent functions and 
difference sets in the elementary abelian 2-group.

Theorem 26 [49, Theorem 6.2.10] A Boolean function f ∶ �
(2)
n

→ �2 is bent, if and only if 
the support of f, supp(f ) = {x ∈ �

(2)
n

∶ f (x) = 1}31, is a (2n, 2n−1 ± 2n∕2−1, 2n−2 ± 2n∕2−1)

-difference set in �
(2)
n .

Difference sets with these parameters are called Hadamard difference sets. It is shown 
in [80], that every nontrivial difference set32 in an elementary abelian 2-group � (2)

n
 is a 

Hadamard difference set (n must be even). Therefore, Boolean bent functions and differ-
ence sets in the elementary abelian 2-group are the same objects.

Seeing a (Hadamard) difference set of � (2)
n

 as a partial difference set with � = � , with 
the connection to strongly regular graphs in Theorem 25, Theorem 26 can also be stated 
in terms of strongly regular graphs. The following corollary is Lemma 12 in [4] and Theo-
rem 3 in [5].

Corollary 1 A Boolean function f ∶ �
(2)
n

→ �2 is bent, if and only if the Cayley graph of the 
support of f is a strongly regular graph with the property that � = �.

We remark that −D = D trivially holds in characteristic 2, the Cayley graphs considered 
in [4, 5] may have loops.

Theorem 26 and Corollary 1 do not at all apply in a similar way to p-ary bent functions, 
p > 2 . But there are several interesting attempts in the literature to obtain generalizations, 
p-ary versions - though much weaker type of results - which shall be summarized in this 
chapter.

6.1  Partial difference sets from p‑ary bent functions

Connections between bent functions and partial difference sets were extended to ter-
nary bent functions in 2011 in [112], and then to p-ary bent functions for arbitrary odd 

32 Every finite group G contains the trivial difference sets, G, ∅ , {z} , G ⧵ {z} , where z is any element of G.

31 The complementary set, i.e., the set {x ∈ �
(2)
n

∶ f (x) = 0} , is then a (2n, 2n−1 ∓ 2n∕2−1, 2n−2 ∓ 2n∕2−1)-dif-
ference set.
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primes p in [42] and [55]. Differently from the Boolean case, special properties have to 
be imposed to p-ary bent functions in order to yield partial difference sets.

For a p-ary function f ∶ �
(p)
n → �p with f (0) = 0 (otherwise we may add a constant), 

we define

The following theorem is [112, Theorem  1] for the ternary case and [42, Theorem  1,2] 
respectively [55, Theorem 3.5] for arbitrary odd primes p.

Theorem 27 [42, 55, 112] Let n = 2m be even, and f ∶ �
(p)
n → �p be a weakly regular p-

ary bent function, and suppose that there exists an integer l with gcd(p − 1, l − 1) = 1 , such 
that

for all � ∈ �p (which also implies that f (0) = 0 and f (−x) = f (x) ). Then Df

0
 , Df

S
 and Df

N
 are 

(�, k, �,�) partial difference sets with

for Df

0
 , and

for Df

S
 and Df

N
 , where � = 1 if f is regular and � = −1 if f is weakly regular but not regular.

Remark 8 For ternary functions f, the sets D
f

S and D
f

N are the preimage sets of 1 and 2, 
respectively. Hence f is completely determined by Df

0
 , Df

S
 and Df

N . This does not at all apply 
if p > 3 . There are many other functions, mostly not bent, with the same Df

0
,D

f

S
,D

f

N
 . The 

conditions in the proposition above are therefore certainly only sufficient.

Remark 9 Though the conditions in Theorem 27 on p-ary bent functions are quite strong, 
they are satisfied by many of the classical examples (like quadratic bent functions, the 
Coulter-Matthews bent function, some Maiorana-McFarland functions), see [112].

Remark 10 Strongly regular graphs (or partial difference sets) with parameters 
(n2, r(n − �), �n + r2 − 3�r, r2 − �r) are called of Latin square type if � = 1 , and of negative 
Latin square type if � = −1 , see [78]. The partial difference sets in Theorem 27 are hence 
of (negative) Latin square type.

(16)

D
f

0
= {x ∈ �

(p)
n

⧵ {0} ∶ f (x) = 0},

D
f

S
= {x ∈ �

(p)
n

∶ f (x) is a nonzero square in �p},

D
f

N
= {x ∈ �

(p)
n

∶ f (x) is a nonsquare in �p}.

(17)f (�x) = �lf (x)

� = p2m, k = (pm − �)(pm−1 + �),

� = (pm−1 + �)2 − 3�(pm−1 + �) + �pm, � = (pm−1 + �)pm−1,

� = p2m, k =
1

2
(pm − pm−1)(pm − �),

� =
1

4
(pm − pm−1)2 −

3�

2
(pm − pm−1) + pm�,

� =
1

2
(pm − pm−1)

(
1

2
(pm − pm−1) − �

)
,
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In [65], the results in Theorem 27 have been generalized to some larger classes of sets. 
In accordance with [65], we call a function satisfying the property (17) an l-form.

For an integer l, let Hl = {xl ∶ x ∈ �
∗
p
} be the multiplicative subgroup of � ∗

p
 containing 

all l-th powers of � ∗
p  , let

and for some � ∈ �
∗
p
 , let

where �Hl is the coset of Hl containing � . We state the main results of [65] in terms of 
partial difference sets. In [65], all results are equivalently given in terms of strongly regular 
graphs.

Theorem 28 [65] For an odd prime p, an even integer n, and some l ∈ {1, 2,… , p − 1} , 
with gcd(l − 1, p − 1) = 1 and l ≠ p − 1 if p > 3 , let f ∶ �

(p)
n → �p be a p-ary bent function 

and an l-form (hence f (0) = 0 , f (−x) = f (x)).

l = 2 . In this case the following is equivalent. 

(a) f is weakly regular.
(b) One of Df

0
 , D

f

S
= D

f

Hl
 , D

f

N
= D

f

�Hl
 for some nonsquare � ∈ �

∗
p  , is a PDS.

(c) All of the sets Df

0
 , Df

S
 , Df

N
 are PDSs.

l ≠ 2 . In this case the following is equivalent. 

(a) f is regular.
(b) One of Df

0 , D
f

�Hl
 for some � ∈ �

∗
p
 , is a PDS.

(c) All of the sets Df

0
 , Df

�Hl
 , � ∈ �

∗
p
 are PDSs.

Furthermore, any union of sets from {D
f

0
;D

f

�Hl
, � ∈ �

∗
p
} is a PDS.

Remark 11 The parameters for D
f

0 (and for Df

S
,D

f

N
 ) are given in Theorem 27. The param-

eters for D�Hl
 are (�, k, �,�) =

where hl = |Hl| = (p − 1)∕ gcd(l, p − 1) and � = 1 if f is regular, and � = −1 if f is weakly 
regular but not regular (only relevant for l = 2 ), see [65, Proposition IV.4]. Again these par-
tial difference sets are of (negative) Latin square type.

Association schemes Another combinatorial object, which one can obtain from some par-
tial difference sets respectively strongly regular graphs from p-ary bent functions, are asso-
ciation schemes. Recall that for a set of vertices V and binary relations R0 = id,R1,… ,Rr , 
the configuration (V;R0,R1,… ,Rr) is called an association scheme of class r on V, if the 
following holds:

– V × V = R0 ∪ R1 ∪⋯ ∪ Rr and Ri ∩ Rj = � for i ≠ j;
– For each i, there exists a j such that R⋆

i
= Rj , where R⋆ = {(x, y) ∈ V × V ∶ (y, x) ∈ R} 

(if R⋆
i
= Ri for all i, then we call the association scheme symmetric);

D
f

�Hl
= {x ∈ �

(p)
n

∶ f (x) ∈ �Hl},

D
f

�Hl
= {x ∈ �

(p)
n

∶ f (x) ∈ �Hl},

(pn, hl(p
n−1 − �pn∕2−1), h2

l
pn−2 + �pn∕2 − 3�hlp

n∕2−1, h2
l
pn−2 − �hlp

n∕2−1),
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– For i, j and (x, y) ∈ V × V  let 

 Then for each k and (x, y) ∈ Rk , the integer �i,j(x, y) is constant �ki,j (independent from 
(x, y) ∈ Rk

).
The constants �ki,j are called the intersection numbers of the association scheme. Given an 
association scheme, we can take unions of the relations Ri, i ≠ 0 , and form schemes with 
larger sets, called fusion. If any fusion again results in an association scheme, then the 
association scheme is called amorphic.

Let {G1,G2,… ,Gr} be an edge-decomposition of the complete graph on a vertex set V 
of size v. If all Gi

 , 1 ≤ i ≤ r , are strongly regular, all of Latin square type or all of negative 
Latin square type, then this decomposition is an r-class (symmetric) amorphic association 
scheme on V, see [46, Theorem 3], (the binary relations are naturally defined via adjacency 
on the graphs).

As a consequence of these relations, we obtain association schemes from some classes 
of weakly regular bent functions, see [112, Theorem 3], [42, Theorem 4] and [55, Corol-
lary 3.7]:

Theorem 29 [42, 55, 112] Let n = 2m be even, and let f ∶ �
(p)
n → �p be a weakly regular 

p-ary bent function, and suppose that there exists an integer l with gcd(p − 1, l − 1) = 1 , 
such that f (�x) = �lf (x) for all � ∈ �p . Then the Cayley graphs of Df

0
 , Df

S and Df

N induce an 
amorphic association scheme of class 3 on � (p)

n .

For further results on association schemes from p-ary bent functions we refer to Theo-
rem B in [65] (obtained from Theorem 28), or to [107].

Vectorial bent functions and PDSs In [36, 39], some attempts were made to extend the 
connections between bent functions and partial difference sets to vectorial functions. It 
appears that the concept of duality for vectorial bent functions, which was introduced in 
[35], plays an important role. Let F ∶ �

(p)
n → �

(p)
m  be a vectorial bent function, i.e., the set 

of the component functions {Fa(x) = ⟨a,F(x)⟩m ∶ a ∈ �
(p)
m ⧵ {0}} forms - together with 

the 0-function - an m-dimensional vector space of bent functions. We suppose that all com-
ponents are weakly regular. Then the set of the duals {F∗

a
∶ a ∈ �

(p)
m ⧵ {0}} is a set of bent 

functions, but in general not a vector space. In general this set is not closed under addition, 
in general, for two (dual-) bent functions f1, f2 for which f1 ⊕ f2 is also bent, the function 
f ∗
1
⊕ f ∗

2  is not even a bent function. On the other hand, there are some classes of vectorial 
bent functions, for which the dual functions of the components again form a vector space 
of bent functions.

Definition 9 [35] A vectorial bent function F ∶ �
(p)
n → �

(p)
m  is called a vectorial dual-bent 

function, if the set of the dual functions of the component functions of F (together with the 
zero function) forms a vector space of bent functions of the same dimension m. The dual 
functions of the component functions of F are then the component functions of some vec-
torial bent function F∗ from � (p)

n
 to 

�
(p)
m

 , called a vectorial dual of F.
For some examples of vectorial dual-bent functions we refer to [35].

�i,j(x, y) = |{z ∈ V ∶ (x, z) ∈ Ri, (z, y) ∈ Rj}|.
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Theorem 30 [36, 39] For a prime p and an even integer n, let F ∶ �
(p)
n → �

(p)
m  be a vecto-

rial dual-bent function with F(0) = 0 and F(−x) = F(x) . If p is odd, suppose that all com-
ponent functions are regular ( � = 1 ) or weakly regular but not regular ( � = −1 ). The set

is a (�, k, �,�) partial difference set in � (p)
n

 of (negative) Latin square type, with 
k = pn−m + �(pn∕2 − pn∕2−m) − 1 , � = pn−2m + �pn∕2−m , � = pn−2m + �(pn∕2 − pn∕2−m) − 2.

Remark 12 A Boolean bent function f, seen as a 1-dimensional vector space of bent func-
tions is trivially vectorial dual-bent, and trivially f (−x) = f (x) . The PDS Df

0
 (as well as the 

the complementary set {x ∈ �
(2)
n

∶ f (x) = 1} ) reduces then to a Hadamard difference set, 
and we can see Theorem  26 as a special case33. Conversely the partial difference sets 
D

f

0
,DF

0
 (and their complementary sets) in Theorems 27, 28, 30 can be seen as some gener-

alization for odd p of the Hadamard difference sets in Theorem 26.
A weakly regular bent function f (of which the dual f ∗ is always also bent), seen as 

a vectorial function from � (p)
n

 to �p , has the constant multiples cf, 1 ≤ c ≤ p − 1 , as com-
ponent functions. In general, the p-ary bent functions f ∗, (2f )∗,… , ((p − 1)f )∗ are not the 
component functions (i.e., the multiples) of one of them, say f ∗ . In general, the sum of two 
of them is not even a bent function, see Example 3 in [35]. Hence for p ≠ 2 , a p-ary dual-
bent function is in general not vectorial dual-bent.

Proposition 2 Let f ∶ �
(p)
n → �p be a weakly regular bent function which is an l-form, i.e., 

there exists an integer l with gcd(l − 1, p − 1) = 1 , such that f (�x) = �lf (x) for all � ∈ �p . 
Then f is a vectorial dual-bent function.

Proposition 2, by which Theorem 27 for the case D
f

0 follows from Theorem 30, indicates 
that there is a connection between vectorial dual-bentness and l-forms, which we can gen-
eralize to vectorial functions as follows. For some divisor s of n, let � (p)

n
 be a vector space 

over the finite field �ps . For instance, � (p)
n = �pn , or �

(p)
n = �pm × �pm , where s divides m. We 

call a function F from � (p)
n  to �ps a (vectorial) l-form, if F(�x) = �lF(x) for all � ∈ �ps . As 

pointed out in [39], all known classes of vectorial dual-bent functions F from � (p)
n  to �ps are 

EA-equivalent to such a vectorial version of an l-form.

It is shown in [39, Section 4], that vectorial dual-bentness and the property of inducing 
partial difference sets are both invariant under linear equivalence. This holds for l-forms 
solely for p-ary functions, but not necessarily for vectorial l-forms, which indicates that 
rather than the l-form property, the duality properties of a vectorial bent function decide 
on the differential properties of DF

0  (and perhaps of DF
S
 , DF

N , defined for F ∶ �
(p)
n → �ps as 

in (16) with the squares and non-squares of the finite field �ps).

Some questions on partial difference sets from p-ary bent functions also concern con-
nections between l-forms and vectorial dual-bentness, see also the problems in [39].

DF
0
= {x ∈ �

(p)
n

⧵ {0} ∶ F(x) = 0}

33 Of course, differently from Theorem  26, the Theorems 27, 28, 30 give only sufficient conditions for 
PDSs.
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Question 16 Converse of Proposition 2: Does vectorial dual-bentness of a weakly regular 
bent function f ∶ �

(p)
n → �p (seen as 1-dimensional vectorial function) imply that f is an 

l-form for some l?

Question 17 Vectorial version of Proposition 2: Is every vectorial bent function 
F ∶ �

(p)
n → �ps , which is an l-form, always vectorial dual-bent?

Question 18 Let F ∶ �
(p)
n → �ps be a vectorial dual-bent function. Are then DF

S
 , DF

N
 partial 

difference sets (a positive answer has been given for one special Maiorana-McFarland bent 
function in [39]).

Question 19 Is there a generalization of the results on Df

Hl
 , Df

�Hl

 in Theorem 28 for vecto-
rial bent l-forms?

6.2  Bent functions and edge‑weighted graphs

Alternative attempts to generalize the connection between Boolean bent functions and 
(Hadamard) difference sets to p-ary bent functions are made by Joyner and Melles (and co-
authors) in the series of papers [27, 67, 90]. Differently from the approach in Section 6.1, 
where properties are imposed on the bent functions in order to yield partial difference sets, 
Joyner et al. adapt the definitions of partial difference sets and strongly regular graphs.

Let f be a function from � (p)
n  to �p with f (x) = f (−x) . The Cayley graph of f is defined 

to be the regular edge-weighted graph whose vertex set is � (p)
n  and u, v ∈ �

(p)
n  are adjacent 

with edge weight c if f (u − v) = c ≠ 0.34 The definition of edge-weighted strongly regular 
graphs is more sophisticated. First, for an edge-weighted graph, we denote with N(u) the 
set of all neighbours of a vertex u, and with N(u, a) the set of all neighbours v of u, for 
which the edge (u, v) has weight a. With this notation, |N(u1, a1) ∩ N(u2, a2)| is the number 
of common neighbours v of the vertices u1, u2 for which the edge (u1, v) has weight a1 and 
the edge (u2, v) has weight a2.

Definition 10 (see Definition 23 in [67]) Let G be a connected edge-weighted graph, which 
is regular as an unweighted graph. We let the weight set be W = {1, 2,… , p − 1} . Then G 
is called edge-weighted strongly regular with parameters (�, k, �,�) , k = (k1, k2,… , kp−1) , 
� = (�a1,a2,a3 )ai∈W , � = (�a1,a2

)ai∈W , if it consists of � vertices, every vertex u has ka neigh-
bours v for which the edge (u, v) has weight a ∈ W , and for vertices u1 ≠ u2 and a1, a2 ∈ W 
we have

Remark 13 [67, Lemma 24] If in Definition 10, the sum 
∑

a1.a2∈W
�a1,a2,a3 is a fixed � , inde-

pendent from a3 , then the graph G is strongly regular as unweighted graph with parameters 
(�, k, �,�) with k =

∑
a∈W ka , � =

∑
a1,a2

�a1,a2.

An appropriate definition of a weighted partial difference set is given as follows.

|N(u1, a1) ∩ N(u2, a2)| =
{

�a1,a2,a3 ∶ u1 ∈ N(u2, a3),

�a1,a2
∶ u1 ∉ N(u2).

34 Observe that the Cayley graph is k-regular with k = |supp(f )|.
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Definition 11 (see Definition 21 in [67]) Let G be a finite abelian group of order � and D be 
a subset of G, which is a disjoint union D = D1 ∪… ∪ Dr , where Dj has order kj , 1 ≤ j ≤ r , 
and let � = (�i,j,l)1≤i,j,l≤r and � = (�i,j)1≤i,j≤r . Then D is called a weighted (�, k, �,�) partial 
difference set, if the following holds:

– For all 1 ≤ i, j, l ≤ r , every nonzero element of Dl can be written as a difference of 
d1 ∈ Di

 , d2 ∈ Dj in exactly �i,j,l ways, and every nonzero element of G ⧵ D can be writ-
ten in �i,j ways as such a difference.

– For each i, there exists a j such that −Di = Dj.

If −Di = Di for all 1 ≤ i ≤ r , then the weighted partial difference set D is called symmetric.
Remark 14 [67, Lemma 22] If in Definition 11, the sum 

∑
i,j �i,j,l is a fixed � , independent 

from l, then D is a (conventional) partial difference set with parameters (�, k, �,�) with 
k =

∑
i ki , � =

∑
i,j �i,j.

In [27], a one-to-one correspondence between weighted partial difference sets and edge-
weighted strongly regular graphs is shown, which generalizes Proposition 1.1 in [78] on 
the connection between PDSs and strongly regular graphs, and connects weighted partial 
difference sets with association schemes.

Theorem 31 [27, Theorem 29], [67, Theorem 31] Let G be a finite abelian group of order � , 
and let D be subset of G, which is the disjoint union D = D1 ∪ D2 ∪⋯ ∪ Dr . Suppose that 
0 ∉ D and −Di = Di for all 1 ≤ i ≤ r . The following are equivalent: 

 (i) D is a (symmetric) weighted partial difference set with parameters (�, k, �,�) , where 
k = (k1,… , kr) with ki = |Di| , � = (�i,j,l)1≤i,j,l≤r and � = (�i,j)1≤i,j≤r.

 (ii) The Cayley graph G of D is a strongly regular edge-weighted graph with parameters 
(�, k, �,�) as in (i).

 (iii) F o r  1 ≤ i ≤ r  ,  l e t  Ri = {(x, y) ∈ G × G ∶ x − y ∈ Di}  , 
a n d  l e t  R0 = {(x, y) ∈ G × G ∶ x − y = 0}  ,  a n d 
Rr+1 = {(x, y) ∈ G × G ∶ x − y ∈ G ⧵ (D ∪ {0})} . Then (G;R0,R1,… ,Rr,Rr+1) is a 
symmetric association scheme.

By Theorem  31, again connections between bent functions and weighted partial dif-
ference sets can alternatively be formulated in terms of edge-weighted strongly regular 
graphs.

The following theorem gives - opposite to the results in Section 6.1 - a sufficient condi-
tion for the bentness of a p-ary function in terms of properties of weighted partial differ-
ence sets.

Theorem 32 [67, Theorem 49] For an odd prime p and an even integer n, let f ∶ �
(p)
n → �p 

be a p-ary function with f (x) = f (−x) and f (0) = 0 . Let

D
f

i
= {x ∈ �

(p)
n

∶ f (x) = i}, 1 ≤ i ≤ p − 1,

D
f

0
= �

(p)
n

⧵ ({0} ∪ D
f

1
∪⋯ ∪ D

f

p−1
) = {x ∈ �

(p)
n

, x ≠ 0 ∶ f (x) = 0}.
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Suppose that |Df

i
| = pn−1 ± pn∕2−1 (hence |Df

0
| = pn−1 ± (p − 1)pn∕2−1 − 1 ), and 

D = D
f

1
∪⋯ ∪ D

f

p−1 is a weighted partial difference set, such that the corresponding asso-
ciation scheme is amorphic. Then f is bent.

Remark 15 In [67], examples are given, which show that there are non-bent functions 
for which (with the above definitions) the edge-weighted Cayley graph is edge-weighted 
strongly regular, and that there are (regular) bent functions, whose Cayley graphs are not 
edge-weighted strongly regular.

7  Generalized and ℤpk‑bent functions

In line with the increasing interest in functions from elementary abelian groups �
(p)
n  to 

cyclic groups ℤpk , in this last chapter we present the major results on bentness for this 
class of functions, which were developed in several papers by several groups of authors. 
We refer to [3, 61, 81–83, 86, 87, 89, 94, 95, 115], and references therein. We are likewise 
interested in the case p = 2 , and in the case of p odd.

Let f be a function from � (p)
n  to the cyclic group ℤpk . Then we can write f as

for some uniquely determined functions ai ∶ �
(p)
n → �p

 , i = 0,… , k − 1 . As it turned out, 
the bentness of f and bentness of corresponding Boolean or p-ary functions are strongly 
related. We start with the more general class of the generalized bent functions.

7.1  Generalized bent functions

Since the introduction of generalized bent functions by Schmidt in [111] (2009), huge pro-
gress has been made in the research on this class of functions. By now, generalized bent 
functions are quite well understood interesting objects, comprising rich structures.

Clearly, for k = 1 , a generalized bent function is simply a p-ary bent function. For 
p = 2 , a function f ∶ 𝕍

(2)
n

→ ℤ22 , f (x) = a0(x) + a1(x)2 , is generalized bent, if and only if 
a1

 and a1 ⊕ a0 are Boolean bent functions when n is even, and if and only if a1 and a1 ⊕ a0 
are semi-bent with complementary Walsh support when n is odd. In the general case, the 
situation becomes more complicated.

By several groups of authors it is observed - in various generality - that for a generalized 
bent function f ∶ 𝕍

(p)
n → ℤpk given as in (18), the affine space of p-ary (Boolean) functions

is an affine space of bent functions if p is odd or p = 2 and n is even, and an affine space 
of semi-bent functions if p = 2 and n is odd. Sufficient conditions for the affine space A(f ) 
to correspond to a generalized bent function f can be given in terms of Walsh coefficients 
of the bent respectively semi-bent functions in A(f ) . The quite strong conditions are a bit 
technical. We refer to Theorem 7 in [115], for p = 2 (see also [81, Theorems 8, 11]), and to 
Theorem 8 in [94] for odd p (or p = 2 and n even).

(18)f (x) = a0(x) + a1(x)p +⋯ + ak−1(x)p
k−1,

A(f ) = ak−1 ⊕ ⟨a0,… , ak−2⟩
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Remark 16 The detailed analysis of the Walsh coefficients of the bent respectively semi-
bent functions in A(f ) also enables the determination of the dual f ∗ (as given in Theo-
rem  2) of a generalized bent function f. By [61, Theorem  1], the dual of a generalized 
bent function f ∶ 𝕍

(2)
n

→ ℤ2k , n even, given as f (x) = a0(x) + 2a1(x) +⋯ + 2k−1ak−1(x) , is 
f ∗(x) = b0(x) + 2b1(x) +⋯ + 2k−1bk−1(x) , where

The expression for the dual f ∗ of a generalized bent function f ∶ 𝕍
(2)
n

→ ℤ2k when n is odd, 
is somewhat more involved. We refer to Theorem 29 in [94].

The most comprehensive characterization of generalized bent functions is a description 
via partitions of � (p)

n  , presented by Mesnager et  al. in [94, Theorem  16]. For a function 
f ∶ 𝕍

(p)
n → ℤpk given as in (18), we obtain the partition P = {A(d) ∶ 0 ≤ d ≤ pk−1 − 1} of 

�
(p)
n  , where

(some of the sets A(d) may be empty). Then we have the following theorem.

Theorem 33 Let p be an odd prime and n be a positive integer, or let p = 2 and n be an 
even positive integer, and let f ∶ 𝕍

(p)
n → ℤpk be given as in (18). Then f is generalized bent, 

if and only if ak−1(x)⊕ C(x) is bent for every p-ary respectively Boolean function C(x), 
which is constant on the subsets A(d) in (19) of the partition P.

Remark 17 Theorem 33 can be stated equivalently as follows: The function f ∶ 𝕍
(p)
n → ℤpk 

given as f (x) = a0(x) + a1(x)p +⋯ + ak−1(x)p
k−1 is generalized bent, if and only if for very 

function F ∶ �
k−1
p

→ �p , the p-ary function

is bent.

Remark 18 For a generalized bent function given in the form (18), the set of p-ary 
(Boolean) functions ak−1(x)⊕ C(x) , C(x) constant on the subsets of the partition P as 
described above, forms an affine space of bent functions A(ak−1,P) of dimension |P| . 
Hence, one can see the generalized bent function as a p-ary respectively Boolean bent 
function a(x) with a corresponding partition P

35, which gives rise to a large affine space of 
bent functions.

Remark 19 As pointed out in [89, Theorem 3], any (nonempty) subset of a partition P for a 
bent function a ∶ �

(p)
n → �p , n even, must have cardinality at least pn∕2 , and a subset which 

achieves this lower bound is an affine subspace of � (p)
n  . Therefore, the number of subsets in 

such a partition P is upper bounded by pn∕2 . It is shown in [89, Theorem 4], that partitions 
for Maiorana-McFarland bent functions a(x) achieve this upper bound, hence provide affine 
spaces of bent functions A(a,P) with maximal possible dimension pn∕2.

bk−1(x) = a∗
k−1

(x), and bj(x) = a∗
k−1

(x)⊕ (ak−1 ⊕ aj)
∗(x), 0 ≤ j ≤ k − 2.

(19)A(d) =

{
x ∈ �n ∶

k−2∑
i=0

ai(x)p
i = d

}
,

(20)ak−1(x)⊕ F(a0(x),… , ak−2(x))

35 In [95], the bent function a(x) is then called admissible for the partition P.
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Remark 20 In [95], results of similar type are presented for generalized plateaued func-
tions, i.e., for functions f ∶ 𝕍

(p)
n → ℤpk for which Hf (1, u) has absolute value p(n+s)∕2 or 0 

for all u ∈ �
(p)
n  , and a fixed integer s depending on f.

An alternative neat characterization of generalized bent functions for p = 2 is given in 
[61].

Theorem  34 Let n be even, and f ∶ 𝕍
(2)
n

→ ℤ2k
 be given as 

f (x) = a0(x) + 2a1(x) +⋯ + 2k−1ak−1(x) for some Boolean functions aj , 0 ≤ j ≤ k − 1 , and 
let A(f ) be the affine space of Boolean functions,

Then f is generalized bent, if and only if all functions in A(f ) are Boolean bent functions, 
and for any three functions b0, b1, b2 ∈ A(f ) we have

Remark 21 Triples of Boolean bent functions b0, b1, b2 , for which the sum b0 ⊕ b1 ⊕ b2 
is bent as well, and the sum of the duals b∗0 ⊕ b∗

1
⊕ b∗

2 equals the dual of the sum 
(b0 ⊕ b1 ⊕ b2)

∗ , have been employed in a secondary construction of Boolean bent func-
tions, [20]. In fact, in [91, Theorem 4], it is shown that for three bent functions b0, b1, b2 
for which the sum is bent, the Boolean function b0b1 ⊕ b0b2 ⊕ b1b2 is bent if and only 
(21) applies. It is easily verified that for a generalized bent function f ∶ 𝕍

(2)
n

→ ℤ2k given 
as f (x) = a0(x) + a1(x)2 +…+ ak−1(x)2

k−1 , and three bent functions b0, b1, b2 ∈ A(f ) , the 
bent function b0b1 ⊕ b0b2 ⊕ b1b2 is in A(ak−1,P).

Theorems 33 and 34 are not applicable in this form for p = 2 and n odd, in which case 
A(f ) is an affine space of semi-bent functions. A version of Theorem 34 for n odd is given 
in [61], based on the observation that for three semi-bent functions b0, b1, b2 ∶ �

(2)
n

→ �2 , 
for which the sum is also semi-bent, the Boolean function b0b1 ⊕ b0b2 ⊕ b1b2 is semi-bent, 
if and only if certain conditions on the Walsh coefficients of b0, b1, b2 are satisfied (see [61, 
Theorem 2]. The version of Theorem 34 for odd n requires some more detailed conditions 
on the Walsh transforms of the semi-bent functions in A(f ) , see [61, Corollary 3].

In [94], for p = 2 , a connection between generalized bent functions in even dimension 
and in odd dimension is given.

Theorem 35 [94, Theorem 24] For a function f ∶ 𝕍
(2)
n

→ ℤ2k , n odd, given in the form (18) 
as f (x) = a0(x) + a1(x)2 +⋯ + ak−1(x)2

k−1 , let f̃ ∶ 𝕍
(2)
n

× 𝔽2 → ℤ2k be given as

Then f is generalized bent, if and only if f̃  is generalized bent.

With this connection between the case of n odd and n even, one can transfer some 
results for the case n even to the case n odd, see Theorem 25 and Corollary 26 in [94].

We conclude this section with some remarks on classification of generalized bent func-
tions. Formal expressions (18), which satisfy the condition for generalized bent functions 
are easy to obtain. For instance, f (x) = pk−1a(x) is a generalized bent function from � (p)

n  to 
ℤpk for every p-ary bent function a ∶ �

(p)
n → �p . However, one would not consider a(x) and 

A(f ) = ak−1 ⊕ ⟨ak−2,… , a0⟩.

(21)(b0 ⊕ b1 ⊕ b2)
∗ = b∗

0
⊕ b∗

1
⊕ b∗

2
.

f̃ (x, z) = a0(x) + a1(x)2 +⋯ + ak−3(x)2
k−3 + z2k−2 + (ak−1(x)⊕ ak−2(x)z)2

k−1.
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pk−1a(x) as different objects. Given the affine space A(f ) = ak−1 ⊕ ⟨a0,… , ak−2⟩ of bent 
functions corresponding to a generalized bent function f represented as in (18), with any 
other representation of the same affine space, another formal expression for a generalized 
bent function is obtained. Many more expressions one should be able to obtain from the 
much larger affine space A(ak−1,P)

36. A very general approach to classify generalized bent 
functions would be via p-ary bent functions a(x) and their corresponding partitions P , i.e., 
via the affine space A(a,P).

Question 20 For classes of bent functions other than the Maiorana-McFarland class and 
the class of spread bent functions37, find corresponding partitions P with cardinality |P| as 
large as possible. Can the maximal possible cardinality pn∕2 of a partition be achieved by 
bent functions other than a Maiorana-McFarland function?

For three bent functions b0, b1, b2 in the affine space A(f ) of a generalized bent function, 
the bent function b0b1 ⊕ b0b2 ⊕ b1b2 ∈ A(ak−1,P) has in general a different algebraic 
degree. Hence, in general, A(ak−1,P) contains bent functions from different EA-equiva-
lence classes.

Question 21 Examine which classes of bent functions are contained in the affine space 
A(a,P) of some given bent function a(x) and a corresponding partition P.

The p-ary bent functions corresponding to all so far considered constructions of gener-
alized bent functions are (weakly) regular bent functions.

Question 22 Examine partitions P for non-weakly regular bent functions a, i.e., for gener-
alized bent functions for which A(a,P) contains non-weakly regular bent functions. What 
is the largest cardinality a partition P for a non-weakly regular bent function a(x) can have?

In many secondary bent function constructions, a new bent function is obtained from 
some bent functions (sometimes in the same number, sometimes in a larger number of 
variables).

Question 23 Can we infer information on a partition for a bent function obtained with a 
secondary construction, from the partitions of the bent functions used in the construction?

7.2  ℤpk‑bent functions

ℤpk-bent functions respectively relative difference sets in 𝕍
(p)
n × ℤpk , are much harder to 

find than bent functions between elementary abelian groups or generalized bent functions.
Clearly, when k = 1 , then ℤpk-bent functions reduce to conventional p-ary bent functions, if 

f (x) = a0(x) + a1(x)p +⋯ + ak−1(x)p
k−1 is ℤpk-bent, then F(x) = (a0(x), a1(x),… , ak−1(c)) 

is a vectorial bent function, but the converse does not hold.38

36 As easily confirmed, A(f ) is a subspace of A(ak−1,P).
37 Partitions for spread bent functions are naturally obtained from the spread, see the discussions in [89].
38 In the case of p = 2 , 

k = 2
 , f (x) = a0(x)⊕ a1(x)2 is ℤ4

-bent if and only if F(x) = (a0(x), a1(x)) is a vec-
torial bent function.
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As is easily observed, f ∶ 𝕍
(p)
n → ℤpk is ℤpk-bent if and only if ptf (x) is generalized bent 

for all 0 ≤ t ≤ k − 1 . With the sufficient and necessary conditions for generalized bent-
ness in Section 7.1, we get quite strong conditions on a sequence of affine spaces of p-ary 
respectively Boolean functions.

One construction which yields ℤpk-bent functions, is the ubiquitous spread construction, 
we recalled in Theorem 6, as with this construction one can generate bent functions from 
�
(p)
n  , n even, into any abelian group of order pk , k ≤ n∕2.39

In [87], for p = 2 , and in [3], for odd primes p, a first construction of ℤpk-bent functions 
is presented, obtained from partitions of � (p)

n = �pm × �pm , m = n∕2 , which have similar 
properties as spreads, but provable40 do not come from (partial) spreads:

Let m,  k be integers such that k divides m and gcd(pm − 1, pk + p − 1) = 1 . Set 
e = pk + p − 1 , and let d be the multiplicative inverse of e modulo pm − 1 . For an element 
s ∈ �pm define

Then U, U∗
s  , s ∈ �pm , form a partition of �pm × �pm.

Similarly, for an element s ∈ �pm,

For an element � of �pk , let then

With these definitions, we obtain two partitions of �pm × �pm,

into pk + 1 subsets, which exhibit similar properties as spreads. For k = m , both partitions 
reduce to the Desarguesian spread.

The following theorem summarizes Theorems 2, 3 in [87] for p = 2 , and Theorem 7, 
Corollary 4 in [3] for arbitrary p.

Theorem 36 Let m, k be integers, such that k divides m and gcd(pm − 1, pk + p − 1) = 1 , let 
e = pk + p − 1 , and d such that de ≡ 1 mod pm − 1 . 

 I. Let f be a p-ary function from �pm × �pm to �p , for which every c ∈ �p has the union 
of exactly pk−1 of the sets A(�) (respectively B(�) ) in its preimage set. Further suppose 
that f is constant c0 on U (respectively V) for some c0 ∈ �p . Then f is a regular p-ary 
bent function. Conversely, every p-ary bent function that is constant on the elements 

Us ∶= {(x, sxe) ∶ x ∈ �pm}, U
∗
s
= Us ⧵ {(0, 0)}, and U = {(0, y) ∶ y ∈ �pm}.

Vs ∶= {(xds, x) ∶ x ∈ �pm}, V
∗
s
= Vs ⧵ {(0, 0)}, and V = {(x, 0) ∶ x ∈ �pm}.

A(�) =
⋃
s∈�pm
Trm
k
(s)=�

U∗
s

and B(�) =
⋃
s∈�pm
Trm
k
(s)=�

V∗
s
.

Γ1 = {U,A(�);� ∈ �pk}

Γ2 = {V ,B(�);� ∈ �pk},

39 As pointed out in [87], ℤpk-bent functions can more generally be obtained from partial spreads with suf-
ficiently many subspaces.
40 The argument is via the algebraic degree of the involved bent functions.
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of Γ1 (respectively Γ2 ) is of this form. The duals of the bent functions of Γ1 are bent 
functions of Γ2 , and vice versa.

 II. Let F ∶ 𝔽pm × 𝔽pm → ℤpk such that every c ∈ ℤpk has exactly one of the sets A(�) 
(respectively B(�) ) in its preimage set, and F is constant c0 on U (respectively on V) 
for some c0 ∈ ℤpk . Then F is a ℤpk-bent function. If k < m , then F is not obtained from 
some (partial) spread.

Remark 22 Similar as for spreads, the partitions Γ1,Γ2 , not only yield bent functions 
between elementary abelian groups and ℤpk-bent functions, but also bent functions from 
�pm × �pm into any abelian group B of order pk . The bentness property is inhered in the 
partition.

Remark 23 In [3], a partition Ω of � (p)
n

 is called a bent partition, if every p-ary respectively 
Boolean function, for which the preimage set of any element of �p is the union of exactly 
|Ω|∕p subsets of Ω , is always bent (in a variant of the definition, one element �̃ ∈ �p has 
one subset more in its preimage set). It is then shown, that from any such bent partition one 
obtains ℤpk-bent functions.41

Question 24 Is the largest possible k for a ℤpk-bent function that one, which is achieved 
with the spread construction, i.e., k = n∕2 . Is the spread construction the only construction 
of ℤpk

-bent functions for k = n∕2?

From a ℤpk-bent function f we obtain a sequence of generalized bent functions ptf  , 
0 ≤ t ≤ k − 2 , and hence a sequence of affine spaces (of the form A(a,P) as introduced 
above). This may give rise to a large variety of (vectorial) bent functions.

Question 25 Can one say something about the classes of (vectorial) bent functions inher-
ent in a given ℤpk-bent function. For instance, the set of p-ary (Boolean) bent functions 
from Γ1,Γ2 contains many Maiorana-McFarland functions. Are there other classes, which 
ones?

For all so far known ℤpk-bent functions, k ≥ 2 , the inherent bent functions are regular 
bent functions.

Question 26 Similar as for generalized bent functions, one can ask for existence of ℤpk

-bent functions, k ≥ 2 , for which (some of) the corresponding bent functions are non-
weakly regular. What would be the largest possible k for such ℤpk-bent functions?

Acknowledgements The author thanks Sabancı University for the hospitality during several research visits. 
The author also wishes to thank the reviewer and the associate editor for valuable comments, which helped 
to improve the paper.

41 Some questions on bent partitions are collected in section “Perspectives” of [3].
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