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Abstract
Some recent research articles (Zhang et  al. in Lecture Notes in Computer Science, 10194, 
298-313. (2017), Zhang et al. in Discret. Appl. Math. 285(1), 458-472. (2020)) addressed an 
explicit specification of indicators that specify bent functions in the so-called C and D classes, 
derived from the Maiorana-McFarland ( M ) class by C. Carlet in 1994 (Carlet in In Lecture 
Notes in Computer Science 765, 77–101. (1993)). Many of these bent functions that belong 
to C or D are provably outside the completed M class. Nevertheless, these modifications are 
performed on affine subspaces, whereas modifying bent functions on suitable subsets may pro-
vide us with further classes of bent functions. In this article, we exactly specify new families 
of bent functions obtained by adding together indicators typical for the C and D class, thus 
essentially modifying bent functions in M on suitable subsets instead of subspaces. It is shown 
that the modification of certain bent functions in M gives rise to new bent functions which are 
provably outside the completed M class. Moreover, we consider the so-called 4-bent concat-
enation (using four different bent functions on the same variable space) of the (non)modified 
bent functions in M and show that we can generate new bent functions in this way which do 
not belong to the completed M class either. This result is obtained by specifying explicitly the 
duals of four constituent bent functions used in the concatenation. The question whether these 
bent functions are also excluded from the completed versions of PS , C or D remains open and 
is considered difficult due to the lack of membership indicators for these classes.

Keywords C class · D class · Completed Maiorana-McFarland class M# · CD class · 
Weakly normal bent functions · Bent duals · 4-bent decomposition

Mathematics Subject Classification (2010) 94A60 · 06E30

1 Introduction

An important class of Boolean functions was introduced by Rothaus [4] in 1976, which 
are defined in even number of variables having the maximum possible Hamming distance 
to the set of all affine functions. These functions are called bent functions. Bent functions 
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have been exhaustively studied in the past four decades because of their applications in 
cryptography, coding theory, graph theory, association schemes, etc. For more details on 
bent functions, their characterizations and design methods we refer to the textbooks [5–9].

When considering classes of bent functions, there are two primary classes referred to as 
partial spread ( PS ) class due to Dillon [9] and the Maiorana-McFarland ( M ) class [10]. 
The term primary refers to the design that does not employ known bent functions to gener-
ate new ones (giving rise to the so-called secondary methods), it rather uses a suitable set 
of affine functions (typical for the Maiorana-McFarland method [10]) or a collection of dis-
joint n/2-dimensional subspaces to construct a bent function on GF(2)n (typical for the par-
tial spread class introduced by Dillon [9]). Another generic class, denoted by N  , was pro-
posed by Dobbertin [11] and it includes both M and a subclass of PS commonly denoted 
PSap . In 1993, Carlet [3] introduced two additional secondary classes of bent functions, 
denoted by C and D , which are derived through a suitable modification of bent functions in 
the M class. One explicit class derived by Carlet, containing instances that do not belong 
to M or PS , is named D0 and its cardinality is of approximately the same size as of M . 
This does not substantially help in achieving a complete classification of bent functions, as 
the two primary classes stand only for a portion of ≈ 276 of bent functions on � 8

2
 , whereas 

their totality is around 2106 [12]. In recent articles [1, 2, 13], the analysis of these two sec-
ondary classes has been taken further towards specifying a sufficient set of conditions so 
that the resulting bent functions are also provably outside M# , where the superscript “ # ” in 
general denotes a completed version of the considered class. Due to the hardness of overall 
conditions, ensuring that at the same time the specified bent functions are indeed in C or D 
and additionally outside M# (possibly also outside PS# ) is a rather difficult task. In [14], 
the authors extend the results in [2] to vectorial bent functions and introduce the concept 
of weakly and strongly outside a completed (given) primary class (more specifically M#).

In the first part of this article, we further extend the initiative taken in [15], where it was 
shown that under certain conditions it is possible to construct a superclass of bent functions 
that stems from D0 and C , named as the SC class. This class of functions uses the addition 
of indicators typical to D0 and C and therefore their overall effect is a modification of a bent 
function on a suitable subset instead on a subspace. We show that, apart from adding the 
indicators of D0 and C , the only remaining possibility of ensuring the bentness of the result-
ing functions corresponds to the addition of suitable indicators used in the definition of C and 
D classes ( \, for instance adding indicators of D0 and D cannot give bent functions), which 
results in a superclass CD of bent functions. We then give sufficient conditions which ensure 
that bent functions in CD lie outside M# and provide two generic methods for specifying 
these objects, see Proposition 2 and 3. We also partially address the normality of these func-
tions and in this context we further refine the constraints on functions in CD to be outside the 
completed PS+ class. This problem of finding non(weakly)-normal bent functions is intrinsi-
cally difficult and it remains open whether there are instances of bent functions in CD which 
are non(weakly)-normal.

In the second part of this article, we consider the problem of specifying suitable selec-
tions of four bent functions so that their concatenation is again a bent function. This 
approach is closely related to the so-called 4-decomposition [16] of bent functions. More 
precisely, there are three possibilities of decomposing bent functions on � n

2
 as four restric-

tions to the cosets of some (n − 2)-dimensional linear subspace. In general, these restric-
tions are either all bent, semi-bent or 5-valued spectra functions [16]. We show that suit-
able (n − 2)-variable bent functions in C,D, CD and M can be concatenated to provide new 
bent functions in n variables. Most notably, the resulting bent functions are also provably 
outside the M# class. The bentness of these functions is established using the necessary 
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and sufficient condition given in [17] that the duals of its restrictions must satisfy. This 
implies that for the first time, we explicitly determine the duals of certain functions in C and 
D (implying the exact specification of the duals of bent functions in SC and CD ), which is 
in general considered as a difficult problem. Moreover, the fact that the 4-bent concatena-
tion, that employs bent functions stemming from different classes, gives instances of bent 
functions provably outside the M# class is quite interesting. More precisely, we believe 
that the gap between the total space of bent functions and their portion that comes from 
the primary classes (as mentioned above) exactly originates in the lack of understanding 
of 4-bent decomposition. In other words, having only three possibilities of concatenating 
suitable objects on an (n − 2)-dimensional space to achieve the bentness on � n

2
 , we need to 

analyze the behaviour and class inclusion of these objects in more depth.
This article is organized as follows. In Sect. 2, we recall some relevant notions and defi-

nitions related to Boolean functions and in particular we specify the main primary and sec-
ondary classes of bent functions. A superclass of bent functions which employs the addi-
tion of indicators typical to classes C and D , named CD , is introduced in Sect. 3. In Sect. 4, 
we specify sufficient conditions for bent functions in CD to lie outside the completed M 
class and provide two generic methods (Propositions 2 and 3) of constructing such func-
tions. We then consider the problem of concatenating four suitable (n − 2)-variable bent 
functions, taken form different classes, for the purpose of generating new bent functions in 
n variables. It is shown that our superclass CD provides such instances and furthermore the 
resulting bent functions are again provably outside the completed M class. This is achieved 
by specifying explicitly the duals of certain functions in C and D which also allows us to 
determine the duals of bent functions in SC and CD . Some concluding remarks are given in 
Sect. 6.

2  Preliminaries

With |S| we denote the cardinality of a finite set S. The vector space � n
2
 is the space of 

all n-tuples � = (x1,… , xn) , where xi ∈ �2 . For � = (x1,… , xn), � = (y1,… , yn) ∈ �
n
2
 

the usual scalar (dot) product over �
2
 is defined as � ⋅ � = x1y1 ⊕⋯⊕ xnyn . With � n∗

2
 we 

denote the set � n
2
⧵ {�n} and with � ∗

2n
 we denote the multiplicative cyclic group of a finite 

filed �2n which consists of the 2n − 1 nonzero elements of �2n . For convenience, we will 
sometimes identify the vector space � n

2
 with �2n . Any element � ∈ �

n
2
 uses a bold face letter, 

whereas the standard letters are reserved for finite field elements. Throughout the paper, if 
t|m then we treat �2t as a subfield of �2m . A polynomial F(x) ∈ �2n [x] is called a permutation 
polynomial, if the induced evaluation {F(x) ∶ x ∈ �2n} permutes the elements of �2n.

Moreover, any (n, n)-function F can be uniquely expressed as a univariate polynomial 
of degree at most 2n − 1:

For the 2-adic expansion i = i0 + i12 + i22
2 +⋯ + in−12

n−1 , the algebraic degree of F is 
defined as

F(x) =

2n−1∑

i=0

aix
i, ai ∈ �2n .

deg( f ) = max{wt(i) ∶ ai ≠ 0, 0 ≤ i < 2n},
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where wt(i) is the Hamming weight of i = (i0, i1,… , in−1) (the number of nonzero coeffi-
cients ij∈ �2 , j = 0,… , n − 1).

For x ∈ �2n the (relative) trace Trn
k
(x) ∶ �2n → �2k of x over �2k , where k is a divisor of n, 

is defined by

If k = 1 , then Trn
1
 is called the absolute trace. For an (n, m)-function F = ( f1,… , fm) , 

where f1,… , fm ∶ �2n → �2 are the coordinate functions of F, all the 2m − 1 nonzero linear 
combinations of the coordinates fi are called component functions of F, i.e. the functions 
F�(x) = Trm

1
(�F(x)) , � ∈ �

∗
2m

 . The function WF ∶ 𝔽2n × 𝔽
∗
2m

→ ℤ defined by

is called the (extended) Walsh-Hadamard transform of the function F. Specially, if m = 1 , 
then F ∶= f  is a Boolean function and we denote the Walsh-Hadamard transform of f with 
Wf  . If Wf (u) = ±2

n

2 for all u ∈ �2n , then f is a bent function and n is necessarily even. The 
set of all Boolean functions on � n

2
 is denoted by Bn.

When f ∈ Bn is bent, then the Boolean function f ∗ , defined through Wf (u) = 2
n

2 (−1) f
∗(u) 

for any u ∈ �2n , is also bent and is called the dual of f. For a Boolean function f ∈ Bn , the 
inverse Walsh-Hadamard transform of f at any point u ∈ �2n is defined by

Two (n, m)-functions F and G are called extended affine equivalent (EA-equivalent) if there 
exist some affine permutation L1 on �2n , some affine permutation L2 on �2m and some affine func-
tion A ∶ �2n → �2m such that F = L2◦G◦L1 + A . They are called Carlet-Charpin-Zinoviev 
equivalent (CCZ-equivalent) (introduced in [18] and later named CCZ-equivalence in [19]) if 
there exists some affine automorphism L = (L1, L2) of �2n × �2m , where L1 ∶ �2n × �2m → �2n and 
L2 ∶ �2n × �2m → �2m are affine functions, such that y = G(x) if and only if L2(x, y) = F◦L1(x, y) . 
It is well known that EA-equivalence is a special case of CCZ-equivalence [19]. In the Boolean 
case, the CCZ-equivalence coincides with EA-equivalence which is given as follows. Given an 
arbitrary Boolean function f ∈ Bn , its affine equivalence class includes a set of functions {g} 
obtained by

where A ∈ GL(n, �2) (the group of invertible matrices under composition), �, � ∈ �
n
2
 and 

d ∈ �2.

Definition 1 A class of bent functions { f } ∈ Bn is complete if it is globally invariant under 
the action of the general affine group (the group of all invertible affine transformations over 
�2 ) and under the addition of affine functions. The completed class is the smallest possible 
class that properly includes the class under consideration.

The following theorem will be useful when considering the inclusion/exclusion of bent 
Boolean functions in the completed class M#.

Trn
k
(x) = x + x2

k

+⋯ + x2
k(n∕k−1)

.

WF(�, u) ∶= WF�
(u) =

∑

x∈�2n

(−1)Tr
m
1
(�F(x))+Trn

1
(ux), u ∈ �2n , � ∈ �

∗
2n
,

(−1) f(u) =
∑

x∈F2n

Wf (x)(−1)
Trn

1
(ux).

g(�) = f (A�⊕ �)⊕ � ⋅ �⊕ d,
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Theorem 1 [9] An n-variable bent function f, n = 2m , belongs to M# if and only if there 
exists an m-dimensional linear subspace V of � n

2
 such that the second order derivatives

vanish for any �, � ∈ V .

2.1  Bent functions in C and D

The Maiorana-McFarland class M is the set of n-variable ( n = 2m ) Boolean functions of the form

where � is a permutation on �m
2

 , and g is an arbitrary Boolean function on �m
2

 . From this 
class, Carlet [3] derived the C class of bent functions that contains all functions of the form

where L is any linear subspace of �m
2

 , �L⟂ is the indicator function of the space 
L⟂ = {� ∈ �

m
2
∶ � ⋅ � = 0, ∀� ∈ L} , and � is any permutation on �m

2
 such that:

The permutation � and the subspace L are then said to satisfy the (C) property, or for 
short (�−1, L) has property (C).

Another class introduced by Carlet [3], called D , is defined similarly as

where � is a permutation on �m
2

 and E1,E2 two linear subspaces of �m
2

 such that �(E2) = E⟂
1
 . 

Quite recently, a set of sufficient conditions for bent functions in C and D to lie outside the 
completed M class was derived in [1, 2]. These conditions involve the concept of linear 
structures which is defined below.

Definition 2 An n-variable Boolean function f is said to have a linear structure if there 
exists a nonzero � ∈ �

n
2
 such that f (�⊕ �)⊕ f (�) is a constant function.

Theorem  2 [Theorem  1] [2] Let n = 2m ≥ 8 be an even integer and let 
f (�, �) = 𝜋(�) ⋅ �⊕ �L⊥ (�) , where L is any linear subspace of �m

2
 and � is a permutation on �m

2
 

such that (�−1, L) has property (C). If (�−1, L) satisfies: 

 (C1) dim(L) ≥ 2;
 (C2) � ⋅ � has no nonzero linear structure for all � ∈ �

m∗

2
,

then f is a bent function in C outside M#.
Similar conditions concerning class D were deduced in [2]:

D�D� f (�) = f (�)⊕ f (�⊕ �)⊕ f (�⊕ �)⊕ f (�⊕ �⊕ �)

f (�, �) = � ⋅ 𝜋(�)⊕ g(�), for all �, � ∈ �
m
2
, (M)

(1)f (�, �) = � ⋅ 𝜋(�)⊕ �L⟂ (�), (C),

(C) 𝜙(�⊕ L) is a flat (affine subspace), for all � ∈ �
m
2
, where 𝜙 ∶= 𝜋−1.

(2)f (�, �) = � ⋅ 𝜋(�)⊕ �E1
(�)�E2

(�), (D),
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Theorem  3 [Theorem  2] [2] Let n = 2m ≥ 8 be an even integer and let 
f (�, �) = 𝜋(�) ⋅ �⊕ �E1

(�)�E2
(�) , where � is a permutation on �m

2
 , and E1,E2 are two lin-

ear subspaces of �m
2

 such that �(E2) = E⟂
1
 . If (�,E1,E2) satisfies: 

 (D1) dim(E1) ≥ 2 and dim(E2) ≥ 2;
 (D2) � ⋅ � has no nonzero linear structure for all � ∈ �

m∗

2
;

 (D3) deg(�) ≤ m − dim(E2),

then f is a bent function in D outside M#.

3  New classes of Boolean bent functions

In this section, we recall the definition of the class SC introduced in [15] and investigate 
the possibility of defining similar classes via suitable mixtures of indicators typical for C 
and D . Nevertheless, any choice of these indicators must preserve the bent property of the 
resulting functions which consequently leads to only one new superclass of bent functions 
called CD . We again emphasize that using the addition of two indicators (corresponding to 
subspaces) essentially implies a modification of bent functions in M on subsets rather than 
affine subspaces.

3.1  Bent functions in SC

Let g ∶ �2m × �2m → �2 be a bent Boolean function in M defined by g(x, y) = Trm
1
(x�(y)) , 

where � is a permutation on �2m . Furthermore, let

be the Dirac symbol, that is, �0(x) = 1 if x = 0 and 0 otherwise, which is essentially the 
indicator of the m-dimensional subspace {0} × �2m . Then, (x, y) ↦ g(x, y) + �0(x) is a bent 
function in the class D0 , which is outside M# provided that � is not affine on any hyper-
plane of �2m [Proposition 2] [3]. Notice that when L is a linear subspace of �2m , then

where �(L) is the basis of L, is the indicator function of L⟂ in finite field notation.
In [15], the authors introduced a new superclass of bent functions constructed from the 

classes C and D0 , and it is defined as follows.

Definition 3 [15] Let � be a permutation on �2m and let L ⊂ �2m be a linear subspace 
of �2m such that (�−1, L) satisfies the (C) property. Then, the class of bent functions 
f ∶ �2m × �2m → �2 containing all functions of the form

is called SC and is a superclass of D0 and C.

�0(x) = x2
m−1 + 1

�L⟂ (x) =
∏

�∈�(L)

(Trm
1
(�x) + 1),

(3)f (x, y) = Trm
1
(x�(y)) + a01L⟂ (x) + a1�0(x), ai ∈ �2, (SC),
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Furthermore, it was shown that (under certain conditions) the functions in SC are out-
side the class M#.

Theorem 4 [15] Let � be a permutation on �2m , L ⊂ �2m be a linear subspace of �2m such 
that (�−1, L) satisfies the (C) property, dim(L) ≥ 2 and Trm

1
(��) has no non-zero linear 

structures for all � ∈ �
∗
2m

 . Then, the function f ∶ �2m × �2m → �2 defined by

where �S(x) = �L⟂ (x) + �0(x) , is a bent function in SC outside M#.

Motivated by this construction, we will consider the existence of other superclasses: 
SD (superclass of D and D0 ), CD (superclass of C and D ) and SCD (superclass of C, D 
and D0 ). It turns out that only the class CD contains bent functions, whereas the other 
classes do not.

3.2  Bentness of Boolean functions in the class SD

As before, we consider g ∶ �2m × �2m → �2 defined as g(x, y) = Trm
1
(x�(y)) , where � is a 

permutation on �2m , which is a bent function in M . We now show that if E1,E2 ≠ {0} are 
two linear subspaces of �2m such that �(E2) = E⟂

1
 (we do not consider the possibilities 

E1 × E2 = {0} × �2m or �2m × {0} ), then Boolean functions of the form, constituting the 
SD class,

cannot be bent.

Theorem 5 Let � be a permutation on �2m and E1,E2 ⊂ �2m be two linear subspace of �2m 
such that �(E2) = E⟂

1
 . Then, the function f ∶ �2m × �2m → �2 defined by

is not bent.

Proof Let us first compute Wf (0, 0) as:

Since g(x, y) = Trm
1
(x�(y)) + �E1

(x)�E2
(y) is a bent function in D , we have that either 

Wg(0, 0) = 2m or −2m.
Assuming that Wg(0, 0) = 2m , then

f (x, y) = Trm
1
(x�(y)) + �S(x), x, y ∈ �2m ,

(4)f (x, y) = g(x, y) + �E1
(x)�E2

(y) + �0(x), x, y ∈ �2m , (SD),

f (x, y) = Trm
1
(x�(y)) + �E1

(x)�E2
(y) + �0(x)

Wf (0, 0) =
∑

x∈� ∗
2m

∑

y∈�2m

(−1)Tr
m
1
(x�(y))+�E1 (x)�E2 (y) +

∑

y∈�2m

(−1)�E2 (y)+1

=
∑

x∈� ∗
2m

∑

y∈�2m

(−1)Tr
m
1
(x�(y))+�E1 (x)�E2 (y) −

∑

y∈�2m

(−1)�E2 (y)

=
∑

x∈�2m

∑

y∈�2m

(−1)Tr
m
1
(x�(y))+�E1 (x)�E2 (y) − 2

∑

y∈�2m

(−1)�E2 (y)

= Wg(0, 0) − 2 ⋅ (2m − |E2|).
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The requirement that Wf (0, 0) = ±2m implies that |E2| = 0 or 2m . However, E2 ≠ ∅ and 
obviously dimE2 < m , thus this case is not possible.

On the other hand, if Wg(0, 0) = −2m then we necessarily have

Requiring that Wf (0, 0) = ±2m , implies that |E2| = 2m+1 or 2m , both of which are again not 
possible. Hence, Wf (0, 0) ≠ ±2m , that is, f is not a bent function.

Remark 1 Similarly, using the ideas as in the proof of Theorem 5, one can show that func-
tions of the form (constituting the SCD class)

cannot be bent.

3.3  Bentness of Boolean functions in the class CD

In this section, we consider the remaining case which corresponds to the mixture of indica-
tors stemming from C and D . Let g ∶ �2m × �2m → �2 , defined by g(x, y) = Trm

1
(x�(y)) ∈ M , 

be a bent Boolean function, where � is a permutation on �2m . Let L ⊂ �2m be a linear sub-
space of �2m such that (�−1, L) satisfies the (C) property, and let E1,E2 ≠ {0} be two linear 
subspaces of �2m such that �(E2) = E⟂

1
 . We consider the bentness of Boolean functions f in 

2m variables, being members of the class CD (see Definition 4), of the form

Then, the primary task is to find conditions which ensure that the function f given 
by Eq. (5) is bent. Let us consider the Walsh coefficient Wf (a, b) for arbitrary but fixed 
(a, b) ∈ �2m × �2m . Furthermore, we denote with C(x, y) ∶= Trm

1
(x�(y)) + �L⟂ (x) and 

M(a, b) = C(x, y) + Trm
1
(ax + by) . Then,

Since E⟂
1
= �(E2) , we have that Trm

1
(x�(y)) = 0 for (x, y) ∈ E1 × E2 . It follows now that

Wf (0, 0) = 2m − 2 ⋅ 2m + 2|E2| = −2m + 2|E2|.

Wf (0, 0) = −2m − 2 ⋅ 2m + 2|E2| = −3 ⋅ 2m + 2|E2|.

f (x, y) = g(x, y) + �L⟂ (x) + �E1
(x)�E2

(y) + �0(x) (SCD),

(5)f (x, y) = g(x, y) + �L⟂ (x) + �E1
(x)�E2

(y), x, y ∈ �2m .

Wf (a, b) =
∑

x,y∈�2m

(−1)M(a,b)+�E1 (x)�E2 (y)

=
∑

x∈E1

∑

y∈�2m

(−1)M(a,b)+�E2 (y) +
∑

x∉E1

∑

y∈�2m

(−1)M(a,b)

= −
∑

x∈E1

∑

y∈E2

(−1)M(a,b) +
∑

x∈E1

∑

y∉E2

(−1)M(a,b) +
∑

x∉E1

∑

y∈�2m

(−1)M(a,b)

= −2
∑

x∈E1

∑

y∈E2

(−1)M(a,b) +
∑

x∈E1

∑

y∈�2m

(−1)M(a,b) +
∑

x∉E1

∑

y∈�2m

(−1)M(a,b)

=
∑

x,y∈�2m

(−1)M(a,b) − 2
∑

x∈E1

∑

y∈E2

(−1)M(a,b) = WC(a, b) − 2
∑

x∈E1

∑

y∈E2

(−1)M(a,b)

= WC(a, b) − 2
∑

x∈E1

∑

y∈E2

(−1)Tr
m
1
(x�(y))+�L⟂ (x)+Tr

m
1
(ax+by).
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Furthermore, if we denote K = E1 ∩ L⟂ , it is easy to see that

where �i = dim(Ei) and � = dim(K) . Since K ⊂ E1 , it follows that E⟂
1
⊂ K⟂ , and therefore 

E⟂
1
× E⟂

2
⊂ K⟂ × E⟂

2
 . Obviously, when (a, b) ∉ K⟂ × E⟂

2
 , we have that Wf (a, b) = WC(a, b) . 

Let us now consider the following cases:
Case 1: Suppose that (a, b) ∈ E⟂

1
× E⟂

2
 . Since we want that f is a bent function, we 

have the following situations: 

 (I) If Wf (a, b) = WC(a, b) , then 

 (II) I f  Wf (a, b) = −WC(a, b)  ,  t h e n  −2WC(a, b) = −2m+1 + 2�+�2+2.  S i n c e 
WC(a, b) = ±2m , we have 

 The first case is not possible since a power of two is strictly larger than zero, and 
the second one leads to � = �1.

Case 2: Suppose that (a, b) ∈ (K⟂ ⧵ E⟂
1
) × E⟂

2
 . Again, requiring that f is bent leads to the 

following cases: 

 (I) If Wf (a, b) = WC(a, b) , then 

 which is not possible.
 (II) If Wf (a, b) = −WC(a, b) , then −2WC(a, b) = 2�+�2+2. Since the right-hand side of 

the equality is positive, so must be the left-hand side. Thus, we must have that 
WC(a, b) = −2m and in this case � = � − 1.

From Case 1 and 2, we obtain bent Walsh coefficients only when � = �1 or � = �1 − 1 . 
These observations are summarized below, where Theorem  6 corresponds to the case 
� = �1 − 1 and Theorem 7 refers to the case � = �1.

Theorem 6 Let � be a permutation on �2m , L ⊂ �2m be a linear subspace of �2m such that 
(�−1, L) satisfies the (C) property, and let E1,E2 ≠ {0} be two linear subspaces of �2m such 
that �(E2) = E⟂

1
 and dim(E1 ∩ L⟂) = dim(E1) − 1 . Then, the function f ∶ �2m × �2m → �2 

defined by

(6)Wf (a, b) = WC(a, b) − 2 ⋅

(
∑

x∈E1

∑

y∈E2

(−1)Tr
m
1
(ax+by) − 2

∑

x∈E1∩L
⟂

∑

y∈E2

(−1)Tr(ax+by)

)
.

(7)
∑

x∈E1

∑

y∈E2

(−1)Tr
m
1
(ax+by) =

{
2�1+�2 , (a, b) ∈ E⟂

1
× E⟂

2

0, otherwise
,

(8)
∑

x∈K

∑

y∈E2

(−1)Tr
m
1
(ax+by) =

{
2�+�2 , (a, b) ∈ K⟂ × E⟂

2

0, otherwise
,

WC(a, b) = WC(a, b) − 2�1+�2+1 + 2�+�2+2 ⇔ 2�1+�2+1 = 2�+�2+2 ⇔ � = �1 − 1.

−2m+1 = −2m+1 + 2�+�2+2 or 2m+1 = −2m+1 + 2�+�2+2.

WC(a, b) = WC(a, b) + 2�+�2+2 ⇔ 2�+�2+2 = 0,
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where C(x, y) = Trm
1
(x�(y)) + �L⟂ (x) , is bent. Moreover, it holds that

Proof Suppose that (a, b) ∉ (E1 ∩ L)⟂ × E⟂
2
 . From Eqs. (6)-(8), it is easy to see that 

Wf (a, b) = WC(a, b) . Suppose that (a, b) ∈ E⟂
1
× E⟂

2
 . Again, (6)-(8) implies that

Lastly, if (a, b) ∈ ((E1 ∩ L)⟂ ⧵ E⟂
1
) × E⟂

2
 , the sum (7) is equal to zero, and thus from Eqs.  

(6) and (8) it follows that

Using Parseval’s equation, it is straightforward to show that WC(a, b) = 2m , for all 
(a, b) ∈ (E1 ∩ L)⟂ × E⟂

2
 . Thus,

In other words, the function f is bent.

Theorem  7 Let � be a permutation on �2m , E1,E2 ≠ {0} be two linear subspaces of 
�2m such that �(E2) = E⟂

1
 and (�−1,E⟂

1
) satisfies the (C) property. Then the function 

f ∶ �2m × �2m → �2 defined by

where C(x, y) = Trm
1
(x�(y)) + �E1

(x) , is bent. Moreover, it holds that

Proof We note that (6) becomes

Using Parseval’s equation, it is straightforward to show that WC(a, b) = −2m for all 
(a, b) ∈ E⟂

1
× E⟂

2
 . Thus,

In other words, the function f is bent.

Definition 4 Let � be a permutation on �2m , L ⊂ �2m be a linear subspace of �2m such that 
(�−1, L) satisfies the (C) property, and let E1,E2 ≠ {0} be two linear subspaces of �2m such 
that �(E2) = E⟂

1
 . If dim(E1 ∩ L⟂) = dim(E1) − 1 or E1 = L⟂ , then the class of bent func-

tions f ∶ �2m × �2m → �2 containing all functions of the form

f (x, y) = C(x, y) + �E1
(x)�E2

(y),

Wf (a, b) =

{
−WC(a, b), (a, b) ∈ ((E1 ∩ L)⟂ ⧵ E⟂

1
) × E⟂

2

WC(a, b), otherwise
.

Wf (a, b) = WC(a, b) − 2 ⋅ (2�1+�2 − 2 ⋅ 2�1−1+�2 ) = WC(a, b).

Wf (a, b) = WC(a, b) − 2 ⋅ 2�1+�2 = WC(a, b) − 2m+1.

Wf (a, b) = 2m − 2m+1 = −2m = −WC(a, b).

f (x, y) = C(x, y) + �E1
(x)�E2

(y),

Wf (a, b) =

{
−WC(a, b), (a, b) ∈ E⟂

1
× E⟂

2

WC(a, b), otherwise
.

Wf (a, b) = WC(a, b) + 2
∑

x∈E1

∑

y∈E2

(−1)Tr
m
1
(ax+by) =

{
WC(a, b) + 2m+1, (a, b) ∈ E⟂

1
× E⟂

2

WC(a, b), otherwise
.

Wf (a, b) = −2m + 2m+1 = 2m = −WC(a, b).
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is called CD and is a superclass of C and D.

Remark 2 Let us consider the sum of the indicators �L⟂ (x) + �E1
(x)�E2

(y) defined above. We 
note that

where Δ denotes the symmetric difference. Moreover, the cardinality of S is equal to

where dim(L⟂) = � and dim(Ei) = �i , i = 1, 2 . It is easy to verify that S is neither a linear 
nor an affine subspace of �2n , rather a set of elements in �2n.

3.4  Modifying bent functions on subsets

For convenience of the reader, we know provide certain explanations related to the mod-
ification of bent functions in the Maiorana-McFarland class which appears to be highly 
suitable for specifying instances outside the completed class M# . These modifications 
efficiently destroy the structure of bent functions in M , which allows us to show that 
modified bent functions cannot be viewed as a concatenation of linear functions (up to 
EA-equivalence).

It is well-known that the M class can be viewed as a concatenation of affine func-
tions when f is given as f (�, �) = �(�) ⋅ � + g(�) , for �, � ∈ �

m
2

 . In particular, when 
f (�, �) = �(�) ⋅ � then f is a concatenation of all linear functions on �m

2
 (there are exactly 

2m linear functions on �m
2

 ). More specifically, for any fixed �∗ ∈ �
m
2

 the restriction of f to 
the affine subspace �m

2
× {�∗} becomes �∗ ⋅ � where �∗ = �(�∗) . This also implies that the 

weight of such bent functions is 22m−1 − 2m−1 since the linear function l(�) = 0 is used.
Now, let us consider the class D0 of Carlet [3] given by f �(�, �) = �(�) ⋅ � + �0(�) , 

where �0(�) is the indicator of the m-dimensional subspace {�m} × �
m
2

 . It is obvious that 
the effect of adding �0(�) to f (�, �) = �(�) ⋅ � is essentially a modification of any linear 
function li (representing f as a concatenation of linear functions so that f = l1||l2||⋯ ||l2m ) 
so that for f ′ instead of having li(�m) = 0 we have li(�m) = 1 . Since this modification is per-
formed on each linear function li , we conclude that the bent functions in D0 are of weight 
22m−1 + 2m−1 and can be viewed as a concatenation of these modified linear functions (at 
zero) which are now of algebraic degree m. This appears to be the main reason behind the 
fact that certain instances in D0 are provably outside the completed classes M# and PS# 
[3], for a suitably chosen permutation � over �m

2
.

On the other hand, the class SC given as f (�, �) = �(�) ⋅ � + �L⟂ (�) + �0(�) corresponds 
to the modification performed on f (�, �) = �(�) ⋅ � + �0(�) ∈ D0 through addition of the 
indicator �L⟂ (�) . In other words, we are now affecting already modified linear functions (as 
explained above) further. It can be easily verified, similarly to Remark 2, that �L⟂ (�) + �(�) 
forms a subset in �m

2
× �

m
2

 and cannot be an affine subspace. Assuming that dim(L⟂) = d , 

(9)f (x, y) = Trm
1
(x�(y)) + a0�L⟂ (x) + a1�E1

(x)�E2
(y), ai ∈ �2, (CD),

�L⟂ (x) + �E1
(x)�E2

(y) = 1

⇔(x, y) ∈ (L⟂ × �2m ) ⧵ (E1 × E2) ∨ (x, y) ∈ (E1 × E2) ⧵ (L
⟂ × �2m )

⇔(x, y) ∈ (L⟂ × �2m )△ (E1 × E2) ∶= S,

(10)|S| = 2m+� + 2�1+�2 − 2�2+1 ⋅ |L⟂ ∩ E1|,
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the indicator �L⟂ (x) further modifies the values (of already modified linear functions at 
zero) at exactly 2d points. Since this modification is again performed at value � = �m , the 
overall effect of having both indicators is essentially the modification of (original) linear 
functions at 2d − 1 points. As such a modification applies to all � ∈ �

m
2

 , we have performed 
a modification at exactly 2m(2d − 1) points. A similar reasoning applies to the class CD 
given in Definition 4, which will be shown to contain members outside M# in the next 
section.

Finally, we remark that the conditions in Theorems 2 and 3 (referring to the exclu-
sion from M# ) are only sufficient and not necessary. In certain cases, even permutations 
whose components admit linear structures may give rise to bent functions outside M# , 
see for instance [Theorem 12] [2]. It appears natural that the above described modifica-
tions efficiently destroy the concatenation structure of bent functions in M so that the 
resulting functions cannot belong to the completed PS class but this remains an open 
problem.

4  Sufficient conditions for functions in CD to be outside M#

In this section, we present sufficient conditions for functions in the CD class to be provably 
outside M# . We also partially address the normality of these functions and the main con-
clusion is that the choice of indicators must be further refined in order to possibly identify 
instances within CD class which are weakly non-normal. Consequently, this would imply 
that such functions lie outside the completed PS+ class.

The following proposition is proved useful for our main result.

Proposition 1 Let V be a subspace of � n
2
 . Then, we have

Proof We know that deg(�V (�)) = n − dim(V) . Further, if �, �, �⊕ � ∉ V  , then

that is, deg(D�D�(�V (�))) = n − dim(V) − 2 . If either � ∈ V  , � ∈ V  , or �⊕ � ∈ V  then

We are now able to prove that, under certain conditions, functions in CD are provably 
outside M#.

Theorem 8 Let � be a permutation on �m
2

 , L ⊂ �
m
2

 be a linear subspace of �m
2

 such that 
(�−1, L) satisfies the (C) property, and let E1,E2 ≠ {�m} be two linear subspaces of �m

2
 

such that �(E2) = E⟂
1
 . Furthermore, we assume that either dim(E1 ∩ L⟂) = dim(E1) − 1 or 

E1 = L⟂ . Let f ∶ �
m
2
× �

m
2
→ �2 be defined by

deg(D�D�(�V (�))) =

{
n − dim(V) − 2, if �, �, �⊕ � ∉ V

0, otherwise
.

D�D�(�V (�))) = �V (�)⊕ �V (�⊕ �)

⊕ �V (�⊕ �)⊕ �V (�⊕ �⊕ �)

= �V∪(V⊕�)∪(V⊕�)∪(V⊕�⊕�)(�),

D�D�(�V (�))) = 0.

f (�, �) = � ⋅ 𝜋(�)⊕ �L⟂ (�)⊕ �E1
(�)�E2

(�).
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If (�−1, L) and (�,E1,E2) satisfy the properties (C1) and (D1) − (D3) , respectively, then 
f is a bent function in CD outside M#.

Proof From Theorems 6 and 7, it follows that f is bent. From Theorem 1, it suffices to show 
that there is no m-dimensional subspace V of �m

2
× �

m
2
∶= �

n
2
 on which the second-order 

derivative D�D�( f ) vanishes, for any nonzero �, � ∈ V .
The second-order derivative of f with respect to � = (�1, �2) and � = (�1, �2) in 

V ⊂ �
m
2
× �

m
2

 , can be written as

We know that E1 × E2 is a subspace of � n
2
 and therefore � n

2
=

⋃
�i∈U

(E1 × E2)⊕ �i , where 

U is a set of (disjoint) coset representatives w.r.t. E1 × E2 and consequently (
�i ⊕ (E1 × E2)

)
∩
(
�j ⊕ (E1 × E2)

)
= � for any �i ≠ �j ∈ U . Any � ∈ �

n
2
 can then be 

written as � = �[1] ⊕ �[2] , where �[1] ∈ E
1
× E

2
 and �[2] ∈ U . Thus, we have

If |{�[2] ∈ U ∶ (�[1] ⊕ �[2]) ∈ V}| > 2 , then we select two nonzero vectors �, � ∈ V  
such that �[2],�[2] ∈ U , where � = �[1] ⊕ �[2] and � = �[1] ⊕ �[2] . Thus, we have 
�[2] ⊕ �[2] ∈ U , that is, �[2] ⊕ �[2] ∉ E

1
× E

2
 . From Proposition 1 and (12), we have that

Since the properties (D1) and (D3) are satisfied, we have that deg
(
D�D�(𝜋(�) ⋅ �)

)
< m − 2 

and deg
(
D�1

D�1
�L⟂ (�)

)
≤ dim(L) − 2 < m − 2 . From Eq. (11), it follows that

If |{�[2] ∈ U ∶ (�[1] ⊕ �[2]) ∈ V}| ≤ 2 , then |V ∩ (E1 × E2)| ≥ 2m−1 (since |V| = 2m ). From 
property (D1) and �(E2) = E⟂

1
 , we have

Moreover, we have that

which can be justified as follows. For instance, assuming that |V ∩ (E1 × �m)| < 2 then 
|V ∩ (E1 × E2)|≤|E2| , which is in contradiction with |V ∩ (E1 × E2)| ≥ 2m−1 > |E2| . Hence, 
we can select two nonzero vectors �, � ∈ V ∩ (E1 × E2) such that � = (�1, �m), � = (�m, �2).

From Eq. (11), we have that

since �, � ∈ V ∩ (E1 × E2) and therefore D�D��E1
(�)�E2

≡ 0 . As the property (D2) is satis-
fied, it holds that �1 ⋅ D�2

� ≢ const. Thus, for any m-dimensional subspace V of �m
2
× �

m
2

 
we can find nonzero �, � ∈ V  such that D�D� f ≢ 0.

(11)
D�D�f (�, �) = � ⋅

(
D�2

D�2
𝜋(�)

)
⊕ �1 ⋅ D�2

𝜋(�⊕ �2)

⊕ �1 ⋅ D�2
𝜋(�⊕ �2)⊕ D�1

D�1
�L⟂ (�)⊕ D�D��E1

(�)�E2
(�).

(12)D�D��E
1

(�)�
E
2

(�) = D�[2]D�[2]�E
1

(�)�
E
2

(�).

deg
(
D�D��E1

(�)�E2
(�)

)
= m − 2.

D�D� f≢ 0.

|V ∩ (E1 × E2)| ≥ 2m−1 > |E1| and |V ∩ (E1 × E2)| ≥ 2m−1 > |E2|.

|V ∩ (E1 × �m)| ≥ 2 and |V ∩ (�m × E2)| ≥ 2,

D�D� f (�, �) = �1 ⋅ D�2
𝜋(�)⊕ D�D��E1

(�)�E2
(�)

= �1 ⋅ D�2
𝜋(�),

1241



Cryptography and Communications (2022) 14:1229–1256 

1 3

Proposition 2 Let n = 2m , m even, and s be a positive divisor of m such that m/s is odd. 
Let �(y) = yd be a permutation on �2m such that d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3 . 
Let L = ⟨1, �,… , �s−1⟩ , where � is a primitive element of �2s , E2 = ⟨�

2s−1

3 , �
2(2s−1)

3 ⟩ and 
E1 = E⟂

2
 . Then, the function f ∶ �2m × �2m → �2 defined by

is a bent function in CD outside M#.

Proof From [Theorem 9] [2] we know that (�−1, L) satisfies the (C) property. Since m is 
even and m/s is odd, we must have that s is even. Thus, 22 − 1 = 3|2s − 1 and further-
more E2 is not only a vector space but also corresponds to a subfield {0, 1, �

2s−1

3 , �
2(2s−1)

3 } 
of �2s . Since � is a monomial permutation, it must map every subfield to itself, thus 
�(E2) = E2 = E⟂

1
 . Since wt(d) ≥ 3 , from [Proposition 5] [2], we have that Trm

1
(u�(y)) admits 

no linear structures, for any u ∈ �
∗
2m

 . Since dim(E2) = 2 , we have that dim(E1) = m − 2 . 
Hence, the conditions (C1) and (D1) − (D3) of Theorems 2 and 3, respectively, are satis-
fied. From Theorem 8, it follows that f is a bent function in CD outside M#.

Example 1 Let m = 6 , s = 2 and d = 38 . One can easily verify that d(2s + 1) ≡ 1 (mod 2m − 1) . 
With respect to the notation in Proposition 2, we have that for E2 = �22 and E1 = E⟂

2
 the func-

tion f ∶ �26 × �26 → �2 defined by

is a bent function in CD and is outside M#.

Remark 3 Especially, for m = 6 , we inspected all possible choices for L,E1 and E2 such that 
either dim(L) = dim(E2) = 2 or 3, (�−1, L) satisfies the (C) property and �(E2) = E⟂

1
 , where 

�(y) = y38 is a fixed permutation on �26 . Using the mathematical software Sage, we were 
able to construct 500 functions f ∈ CD of the form (9) for the fixed permutation � given 
above. Furthermore, all of them are outside M# . With the same notation as in the example 
above, we could also confirm that the function f is pairwise EA-inequivalent to the func-
tions f1(x, y) = Tr6

1
(xy38) + �E1

(x) ∈ C and f2(x, y) = Tr6
1
(xy38) + �E1

(x)�E2
∈ D . The ques-

tion whether (some of) these functions induce distinct EA-equivalent classes is left open.

We now provide one more example of bent functions in CD outside M# , for larger n.

Example 2 Let m = 9 and d = 284 . We note that d(23 + 1) mod (29 − 1) = 1 , wt(d) = 4 
and d mod (23 − 1) = 4 . Let L = ⟨1, �, �2⟩ and E2 = ⟨�, �2⟩ , where � is a primitive ele-
ment of �23 such that �3 + � + 1 = 0 . From [Theorem 9] [2], we know that (�−1, L) satis-
fies the (C) property. We further observe that E2 is a 2-dimensional subspace of �26 . Let us 
show that �(E2) = E2 . From �3 = � + 1 we have that �4 = � + �2 . Because � is an element 
in the small field �23 , we consider its exponent modulo 23 − 1 . Thus, we have that:

f (x, y) = Trm
1
(xyd) + �L⟂ (x) + �E1

(x)�E2
(y), x, y ∈ �2m ,

f (x, y) = Tr6
1
(xy38) + �E1

(x)(1 + �E2
(y)), x, y ∈ �26 ,

0d = 0,

�d = �4 = � + �2,

(�2)d = (�2)4 = �8 = �,

(� + �2)d = (�4)d = �16 = (�8)2 = �2.
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In other words, �(E2) = E2 = E⟂
1
 . Since wt(d) ≥ 3 , from [Proposition 5] [2], we have that 

Trm
1
(u�) does not admit linear structures, for any u ∈ �

∗
2m

 . Since dim(E2) = 2 , we have that 
dim(E1) = m − 2 . Hence the conditions (C1) and (D1) − (D3) of Theorems 2 and 3, respec-
tively, are satisfied. From Theorem 8, it follows that the function f ∶ �29 × �29 → �2 defined by

is a bent function in CD outside M# , where �S(x, y) = 1 if and only if (x, y) ∈ S and 
S = (L⟂ × �2m )△ (E1 × E2) (see Remark 2), and equals 0 otherwise. From Eq. (10), it is 
clear that �S modifies the truth table of g(x, y) at 29+6 = 215 positions. Furthermore, S is 
neither a linear nor an affine subspace.

With the same notation as in Example 2, Table 1 illustrates the bentness and alge-
braic degree of the Boolean function f ∶ �29 × �29 → �2 defined as

for all possible values a0, a1, a2 ∈ �2.

Proposition 3 Let n = 2m , m = 3l is odd and r be a positive integer such that gcd(r, 3l) = 3 
and d(2r + 1) ≡ 1 (mod 2m − 1) with wt(d) ≥ 3 . Let L = ⟨1, �, �2⟩ and E2 = ⟨�, �2⟩ and 
E1 = E⟂

2
 , where � is a primitive element of �23 such that �3 + � + 1 = 0 . Then the function 

f ∶ �2m × �2m → �2 defined by

is a bent function in CD outside M#.

Proof Because gcd(r, 3l) = 3 and m∕3 = l is odd, by [Theorem 9] [2], we have that (�,L) 
satisfies the (C) property, where �(x) = x2

r+1 is a permutation of �2m and L = ⟨1, �, �2⟩ . 
Furthermore, since �(x) = xd is the inverse of � and wt(d) ≥ 3 , we know that Trm

1
(u�) has 

no nonzero linear structures for any u ∈ �
∗
2m

 . Now, we prove that d mod (23 − 1) = 4 . It 
is well-known that gcd(2a − 1, 2b − 1) = 2gcd(a,b) − 1 . Thus, gcd(23l − 1, 23 − 1) = 23 − 1 . 
Furthermore, if a ≡ b (mod N) and M|N, then a ≡ b (mod M) . Hence, we have that 
d(2r + 1) ≡ 1 (mod 23 − 1) . Since (23 − 1)|(2r − 1) = (2r + 1 − 2) , we have that 
2r + 1 ≡ 2 (mod 23 − 1) . From the last two congruences, we conclude that 2d ≡ 1 (mod 7) 
and it is easy to compute that d ≡ 4 (mod 7) . From �3 = � + 1 we have that �4 = � + �2 . 

f (x, y) = Tr9
1
(xyd) + �S(x, y), x, y ∈ �29 ,

(13)f (x, y) = Tr9
1
(xyd) + a0�L⟂ (x) + a1�E1

(x)�E2
(y) + a2�0(x),

f (x, y) = Trm
1
(xyd) + �L⟂ (x) + �E1

(x)�E2
(y), x, y ∈ �2m ,

Table 1  Class inclusion in M# 
of the Boolean function f defined 
by Eq. (13)

(a
0
, a

1
, a

2
) ∈ �

3

2
Algebraic degree Bent Class

(0, 0, 0) 5 yes M

(0, 0, 1) 9 yes D
0
⧵M#

(0, 1, 0) 9 yes D ⧵M#

(0, 1, 1) 9 no -
(1, 0, 0) 5 yes C ⧵M#

(1, 0, 1) 9 yes SC ⧵M#

(1, 1, 0) 9 yes CD ⧵M#

(1, 1, 1) 9 no -
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Because � is an element in the small field �23 , we consider its exponent modulo 23 − 1 . 
Thus, we have that:

In other words, �(E2) = E2 = E⟂
1
 . Since dim(E2) = 2 , we have that dim(E1) = m − 2 . 

Hence, the conditions (C1) and (D1) − (D3) of Theorems 2 and 3, respectively, are satis-
fied. From Theorem 8, it follows that the function f ∶ �29 × �29 → �2 defined by

is a bent function in CD outside M#.

Using the software Wolfram Mathematica, we could confirm this result, and addi-
tionally some suitable values of r and d for different m are listed below.

m r d

9 3 284
9 6 228
15 3 18204
15 6 18652
15 9 14116
15 12 14564
21 3 1165084
21 6 935652
21 9 1197788
21 12 899364
21 15 1161500
21 18 932068

4.1  Addressing the normality of functions in CD

In [20], it has been shown that if a Boolean function f in 2m variables is in the completed 
PS

+ class, then it is weakly normal. In other words, if a function is weakly non-normal 
then it lies outside the completed PS+ class. Recall that a function f ∶ �

2m
2

→ �2 is called 
normal (weakly normal) if there exists a flat of dimension m in � 2m

2
 such that f is constant 

(affine) on this flat. In this section, we discuss the weak normality of the functions in CD 
and propose an interesting research problem regarding them.

Remark 4 Depending on the choice of L,E1 and E2 , the functions in CD are weakly normal 
in the majority of cases when �(E2) = E2 = E⟂

1
.

0d = 0,

�d = �4 = � + �2,

(�2)d = (�2)4 = �8 = �,

(� + �2)d = (�4)d = �16 = (�8)2 = �2.

f (x, y) = Trm
1
(xyd) + �L⟂ (x) + �E1

(x)�E2
(y), x, y ∈ �2m ,
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If dim(E1 ∩ L⟂) = dim(E1) − 1 or E1 = L⟂ , we can have four possible situations 
E1 = L⟂, L⟂ ⊂ E1,E1 ⊂ L⟂ and dim(E1) = dim(L⟂) ∧ dim(E1 ∩ L⟂) = dim(E1) − 1 . We 
will consider these cases depending if �(E2) = E2 or �(E2) ≠ E2 . 

1. Suppose that �(E2) = E2 = E⟂
1
 . 

(a) L⟂ = E1 . If we consider an m-dimensional subspace E1 × E2 of �2m × �2m , we have 
that 1 + �E2

(y) = 0 for all y ∈ E2 . Thus, �E1
(x)(1 + �E2

(y)) is always equal to 0. On 
the other hand, because of the choice of E1 and E2 , we have that Trm

1
(x�(y)) = 0 

because x ∈ E1 and �(E2) = E⟂
1
 . Thus, f |E1×E2

≡ 0.
(b) L⟂ ⊂ E1 . If we take � ∈ �2m ⧵ E1 , we have that �L⟂ (x) = �E1

(x) = 0 for all x ∈ � + E1 . 
Thus, �L⟂ (x) + �E1

(x)�E2
(y) vanishes on the m-dimensional flat (� + E1) × E2 . Further-

more, for (x, y) ∈ (� + E1) × E2 (w.l.o.g. say x = � + e1 ) we have: 

 Since �(E2) = E2 we have that {Trm
1
(��(y)) ∶ y ∈ E2} = {Trm

1
(�y) ∶ y ∈ E2} , 

which is obviously the truth table of an affine function. Thus, f |(�+E1)×E2
 is affine.

(c) E1 ⊂ L⟂ . If we take � ∈ L⟂ ⧵ E1 , we have that �L⟂ (x) = 1 and �E1
(x) = 0 for 

all x ∈ � + E1 . Thus, �L⟂ (x) + �E1
(x)�E2

(y) = 1 on the m-dimensional flat 
(� + E1) × E2 . Similarly as in 2., Trm

1
(x�(y)) is affine on this flat. Thus, f |(�+E1)×E2

 
is affine.

(d) dim(E1) = dim(L⟂) = m − �, dim(E1 ∩ L⟂) = m − � − 1  . 
Let U = E1 + L⟂ be the direct sum of E1 and L⟂ .  It holds that 
dim(U) = dim(E1) + dim(L⟂) − dim(E1 ∩ L⟂) = m − � + 1 . On the other hand, 
dim(E2) = � . 

i If � = 2 (all of the known constructions of functions in D outside M# have 
dim(E2) = 2 ), then dim(U) = m − 1 . Let � ∈ �2m ⧵ U . If we consider the flat 
A = (� + U) × {0, �} , where � ∈ E2 , we have that �L⟂ (x) + �E1

(x)�E2
(y) = 0 and 

Trm
1
(x�(y)) is affine for all (x, y) ∈ A . Thus, f |A is affine.

ii Suppose 𝜇 > 2 . Again, we have that dim(U) = m − � + 1 and dim(E2) = � . 
Let W be any (� − 1)-dimensional subspace of E2 . Then, �L⟂ (x) + �E1

(x)�E2
(y) 

vanishes on A = (�, 0) + (U ×W) , where � ∉ U . Let us consider the function 
Trm

1
(x�(y)) . If x ∈ � + U , then w.l.o.g. x = � + xu for some xu ∈ U . We have 

that: 

 We note that if xu ∈ U ⧵ E1 , then Trm
1
(xu�(y)) is not necessarily an affine func-

tion and thus we cannot be certain if f is affine on A.
   To summarize, we have that f is weakly normal for the situations (a)-(d-i). In the case 

(d-ii), the question whether f is weakly normal remains open.

The case when �(E2) ≠ E2 , seems to be more difficult to analyse which leads to the follow-
ing open problem.

Trm
1
(x�(y)) = Trm

1
((� + e1)�(y)) = Trm

1
(��(y)) + Trm

1
(e1�(y))

⏟⏞⏞⏞⏟⏞⏞⏞⏟
=0 (same as in 1.)

= Trm
1
(��(y)).

Trm
1
((� + xu)�(y))) = Trm

1
(��(y)) + Trm

1
(xu�(y)).
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Open problem With the same notation as in Definition 4, suppose that either �(E2) ≠ E2 
or �(E2) = E2 with dim(E1) = dim(L⟂) = m − � , 𝜇 > 2 . Is the function f defined by Eq. (9) 
weakly normal?

Remark 5 Apart from the exclusion from the PS class, it would be of interest to investigate 
whether bent functions in CD may also lie outside the completed classes C# and D# . Appar-
ently, by the definition of CD , the members of CD cannot lie in C or D but due to the lack of 
indicators for the membership in their completed versions there is no rigorous conclusion 
concerning this question. Most likely, only certain instances of functions in CD are outside 
C
# and D# . This however remains to be shown and appears to be a difficult task.

5  Bent duals of functions in SC and CD and their application

In 1993, Carlet determined the bent duals of functions in D0 [Corollary 1] [3] and D [Prop-
osition 1] [3]. In this section, we determine explicitly the bent duals of certain instances of 
functions in C not covered by Carlet’s result. We also present another approach to deter-
mine the duals of certain functions in D and show that these can be constructed from the C 
and M class. The duals of certain functions in SC and CD are also specified and it is shown 
that these can be used to construct bent functions in Bn+2 by concatenating four suitable 
bent functions in Bn that stem from these classes. Moreover, we show that the resulting 
bent functions are outside the M# class.

We recall that, by [Corollary 1] [3], the following result gives us the bent duals of func-
tions in D0.

Proposition 4 [3] Let n = 2m and � be a permutation on �2m . Let f ∶ �2m × �2m → �2 be a 
bent function in the D0 class defined by

Then, its dual f ∗ is also a bent function in 2m variables defined by f ∗(x, y) = y�−1(x) + �0(y).

Throughout this section we will be using the notion of (PU) property, which is defined 
as follows [21].

Definition 5 Let g ∈ Bn be any Boolean function. We say that g satisfies the property (PU) 
with the defining set U = {u1,… , ut} ⊆ �2n if there exists g1,… , gt ∈ Bn such that 
g
�
x +

∑t

i=1
wiui

�
= g(x) +

∑t

i=1
wigi(x) for any � = (w1,… ,wt) ∈ �

t
2
 . Equivalently, g is 

said to satisfy the property (PU) with the defining set U = {u1,… , ut} ⊆ �2n if Dui
Duj

g ≡ 0 
for any 1 ≤ i < j ≤ t.

5.1  Bent duals of certain functions in C and D.

In what follows, we determine the bent duals of certain instances of bent functions in C and 
D.

(14)f (x, y) = x�(y) + �0(x), x, y ∈ �2m .
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Proposition 5 (C instance) Let f ∶ �2m × �2m → �2 be a bent function defined by

where � is a primitive element of �2s , I ⊂ {0,… , s − 1} , s is a positive divisor of m such that 
m/s is odd, d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3 . Then, the dual f ∗ ∶ �2m × �2m → �2 
of f is defined by

Proof By [Lemma 4.15] [21], it holds that the function (x, y) ↦ Trm
1
(x2

s+1y) satisfies the 
(PU) property with the defining set U = {(�i, 0) ∶ i = 0,… , s − 1} (we note that the general 
condition is that for all (u1, u2), (v1, v2) ∈ U ⊂ �2s × �2s it holds that u1v2 + u2v1 = 0 and 
Trm

1
(u2

1
v2 + v2

1
u2) = 0 ). Thus, by [Theorem 4.17] [21], its dual is defined by

Notice that 
∏

i∈I(Tr
m
1
(�ix) + 1) corresponds to the indicator function �2m ∋ x ↦ �L⟂ (x) 

where L = ⟨�i ∶ i ∈ I⟩ . Furthermore, by [Theorem  5.8-(ii)] [22], we can take 
L = ⟨c1,… , cl⟩ where ci ∈ �

∗
2s

 for i = 1,… , l , so that (�−1, L) satisfies the (C) property, 
where � is defined as above.

To determine the duals of functions in the D class, we will use a secondary construction 
of bent functions in bivariate form introduced in [21]:

Construction 1 [21] Let U = {�i = (u1,i, u2,i) ∶ 1 ≤ i ≤ t} ⊆ �2m × �2m , where 1 ≤ t ≤ m . 
Let g ∶ �2m × �2m be any bent function function whose dual g∗ satisfies the (PU) property 
with the defining set U. Let F(X1,… ,Xt) be any reduced polynomial in �2 [X1,… ,Xt] . 
Then the function f ∶ �2m × �2m → �2 defined by

is bent and its dual (by [Theorem 2.3] [23]) is defined by

Let �(y) = yd and E2 be a vector subspace corresponding to a subfield in �2s , where s 
is a positive divisor of m such that m/s is odd, d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3 . 
The following lemma shows that the duals g∗ of bent functions g in 2m variables, defined 
by g(x, y) = Trm

1
(xyd) + �E2

(y), x, y ∈ �2m , satisfy the (PU) property with the defining set 
U = {0} × �(E2) , where �(E2) is a basis of E2.

Lemma 1 Let E2 be a vector space in �2m which corresponds to a subfield in �2s , where s is 
a positive divisor of m such that m/s is odd, d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3 . Let 
g ∶ �2m × �2m → �2 be a bent function defined by

Then, its dual is defined by

(15)f (x, y) = Trm
1
(xyd) +

∏

i∈I

(Trm
1
(�ix) + 1), x, y ∈ �2m ,

f ∗(x, y) = Trm
1
(x2

s+1y) +
∏

i∈I

(Trm
1
(y(�ix + �ix2

s

+ �2i)) + 1), x, y ∈ �2m .

f ∗(x, y) = Trm
1
(x2

s+1y) +
∏

i∈I

(Trm
1
(y(�ix + �ix2

s

+ �2i)) + 1), x, y ∈ �2m .

f (x, y) = g(x, y) + F(Trm
1
(u1,1x + u1,2y),… , Trm

1
(ut,1x + ut,2y))

(16)f ∗(x, y) = g∗(x, y) + F(D�1
g∗(x, y),… ,D�t

g∗(x, y)).

g(x, y) = Trm
1
(xyd) + �E2

(y), x, y ∈ �2m .
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and furthermore DaDbg
∗ ≡ 0 for all a, b ∈ U = {0} × �(E2) or �(E2) × {0}.

Proof Obviously, the function g is a Maiorana-McFarland function of the form 
g(x, y) = Trm

1
(x�(y)) + h(y) with �(y) = yd and h(y) = �E2

(y) . Thus, its dual is of the form

Let a, b ∈ U and x, y ∈ �2m be arbitrary. Clearly,

By [Lemma 4.15] [21], it holds that DaDbTr
m
1
(yx2

s+1) = 0 . On the other hand, because 
�E2

(x2
s+1) depends only on x, it is easy to note that DaDb�E2

(x2
s+1) = 0 for all x ∈ �2m if 

a, b ∈ {0} × E2 . Hence, g∗ satisfies the (PU) property with the defining set U = {0} × �(E2) . 
On the other hand, if U = �(E2) × {0} , then

Now if x ∈ E2 , then x2
s+1, (x + a)2

s+1, (x + b)2
s+1, (x + a + b)2

s+1 ∈ E2 for all 
a, b ∈ �(E2) and thus DaDb�E2

(x2
s+1) = 0 . If x ∉ E2 , as E2 is a field and x ↦ x2

s+1 is 
a monomial permutation, the elements of E2 are mapped to itself and thus x2s+1 ∉ E2 . 
Furthermore, since a ∈ �(E2) , it must hold that x + a ∉ E2 and similarly as before 
(x + a)2

s+1 ∉ E2 . The same argument holds for (x + b)2
s+1 and (x + a + b)2

s+1 . Thus, 
DaDb�E2

(x2
s+1) = 0 for all x ∈ �2m.

Now, as a direct consequence of Construction 1 and Lemma 1, we have the follow-
ing result which is used to provide the dual of certain instances of bent functions in D , 
namely in Theorem 10.

Proposition 6 With the same notation as in Lemma 1, let f ∶ �2m × �2m → �2 be defined by

where g(x, y) = Trm
1
(xyd) + �E2

(y) and E1 = E⟂
2
 . Then, f is bent and its dual is defined by

Proof By Lemma 1, g∗ satisfies the property (PU) with the defining set �(E2) × {0} . Thus, 
by Construction 1, the function f defined by

is bent. Let us compute the first order derivative of g∗ in (�, 0) for � ∈ �(E2).

g∗(x, y) = Trm
1
(x2

s+1y) + �E2
(x2

s+1),

g∗(x, y) = Trm
1
(y�−1(x)) + h(�−1(x)) = Trm

1
(x2

s+1y) + �E2
(x2

s+1), x, y ∈ �2m .

DaDbg
∗(x, y) = DaDbTr

m
1
(yx2

s+1) + DaDb�E2
(x2

s+1).

DaDb�E2
(x2

s+1) = �E2
(x2

s+1) + �E2
((x + a)2

s+1) + �E2
((x + b)2

s+1) + �E2
((x + a + b)2

s+1).

f (x, y) = g(x, y) + �E1
(x), x, y ∈ �2m ,

f ∗(x, y) = g∗(x, y) +
∏

�∈�(E2)

(Trm
1
(y(�x2

s

+ �x + �2)) + 1), x, y ∈ �2m .

f (x, y) = g(x, y) +
∏

�∈�(E2)

(Trm
1
(�x) + 1) = g(x, y) + �E1

(x)
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Thus, by Construction 1, the dual f ∗ of f is defined by

In [24] the author determines the duals for functions obtained by the following sec-
ondary construction of bent functions.

Theorem  9 [Theorem  4] [24] Let n be any positive even integer. Let f1, f2 and f3 
be three bent functions on � n

2
 . Denote by f4 the function f1 + f2 + f3 and by � the func-

tion f1f2 + f1f3 + f2f3 . Now, if f4 is bent and if f ∗
4
= f ∗

1
+ f ∗

2
+ f ∗

3
 , then � is bent and 

�∗ = f ∗
1
f ∗
2
+ f ∗

1
f ∗
3
+ f ∗

2
f ∗
3
.

We will now prove that certain functions in D can be expressed in terms of Theo-
rem 9 and as a direct consequence we will be able to determine the duals of the corre-
sponding functions in SC and CD.

Theorem  10 (D instances) With the same notation as in Theorem  9, let n = 2m , s 
be a positive divisor of m such that m/s is odd, and d a positive integer such that 
d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3 . Let E2 be a subfield of �2s and E1 = E⟂

2
 . Let 

fi ∶ �2m × �2m → �2 , i = 1, 2, 3, 4 , be defined by:

Then, using � = f1f2 + f1f3 + f2f3 , the function �(x, y) = Trm
1
(xyd) + �E1

(x)�E2
(y) is bent 

and its dual is defined by

Proof Firstly, by Proposition 6, we have that f4 is bent and its dual f ∗
4
 is defined by

From Proposition 5 and Lemma 1, it is easy to compute that f ∗
1
+ f ∗

2
+ f ∗

3
= f ∗

4
 . Thus, by 

Theorem 9, the function � is bent. Furthermore,

D(�,0)g
∗(x, y) = g∗(x, y) + g∗(x + �, y)

= Trm
1
(x2

s+1y) + �E2
(x2

s+1) + Trm
1
((x + �)2

s+1y) + �E2
((x + �)2

s+1)

= Trm
1
(y(�x2

s

+ �x + �2).

f ∗(x, y) = g∗(x, y) +
∏

�∈�(E2)

(Trm
1
(y(�x2

s

+ �x + �2)) + 1), x, y ∈ �2m .

f1(x, y) = Trm
1
(xyd),

f2(x, y) = Trm
1
(xyd) + �E1

(x),

f3(x, y) = Trm
1
(xyd) + �E2

(y),

f4(x, y) = f1(x, y) + f2(x, y) + f3(x, y).

(17)�∗(x, y) = Trm
1
(x2

s+1y) +
∏

�∈�(E2)

(Trm
1
(�x2

s+1) + 1)(Trm
1
(y(�x + �x2

s

+ �2)) + 1).

(18)

f ∗
4
= Trm

1
(x2

s+1y) +
∏

�∈�(E2)

(Trm
1
(�x2

s+1) + 1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�1(x)

+
∏

�∈�(E2)

(Trm
1
(y(�x + �x2

s

+ �2)) + 1)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�2(x,y)

.
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that is � ∈ D , and its dual is defined by:

The above results are used in the next section for specifying the duals of bent func-
tions in SC and CD.

5.2  Duals of bent functions in SC and CD

Using a similar approach as in Proposition 6, we will show that certain functions 
(“parts” of functions in SC and CD ) satisfy the (PU) property with some defining set, 
and consequently we will be able to determine the duals of the corresponding functions 
in SC and CD.

Proposition 7 (SC case) Let f ∶ �2m × �2m → �2 be a bent function defined by

where � is a primitive element of �2s , I ⊂ {0, 1,… , s − 1} , s is a positive divisor of 
m such that m/s is odd, d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3 . Then, the dual 
f ∗ ∶ �2m × �2m → �2 of f is defined by

Proof Let g(x, y) = Trm
1
(xyd) + �0(x) . Then, by Proposition 4, we have that 

g∗(x, y) = Trm
1
(yx2

s+1) + �0(y) . We will prove that g∗ satisfies the (PU) property with the 
defining set U = {�i ∶ i ∈ I} × {0} . Let a, b ∈ U and x, y ∈ �2m be arbitrary. Then,

because the first summand is equal to zero by [Lemma 4.15] [21] and the second summand 
is equal to zero since the y-coordinate of a and b is equal to zero. Thus, by [Theorem 4.17] 
[21], the function f is indeed bent and its dual is defined by

Using a similar method, we determine the duals of bent functions in CD.

�(x, y) = f1(x, y) f2(x, y) + f1(x, y) f3(x, y) + f2(x, y) f3(x, y)

= Trm
1
(xyd) + Trm

1
(xyd)�E1

(x) + Trm
1
(xyd) + Trm

1
(xyd)�E2

(y)+

+ Trm
1
(xyd) + Trm

1
(xyd)�E2

(y) + Trm
1
(xyd)�E1

(x) + �E1
(x)�E2

(y)

= Trm
1
(xyd) + �E1

(x)�E2
(y),

�∗(x, y) = f ∗
1
(x, y) f ∗

2
(x, y) + f ∗

1
(x, y) f ∗

3
(x, y) + f ∗

2
f ∗
3
(x, y)

= Trm
1
(x2

s+1y) + �1(x)�2(x, y)

= Trm
1
(x2

s+1y) +
∏

�∈�(E2)

(Trm
1
(�x2

s+1) + 1)(Trm
1
(y(�x + �x2

s

+ �2)) + 1).

(19)f (x, y) = Trm
1
(xyd) +

∏

i∈I

(
Trm

1
(�ix) + 1

)
+ �0(x), x, y ∈ �2m ,

f ∗(x, y) = Trm
1
(x2

s+1y) +
∏

i∈I

(
Trm

1
(y(�ix + �ix2

s

+ �2i)) + 1
)
+ �0(y), x, y ∈ �2m .

DaDbg
∗(x, y) = DaDb(Tr

m
1
(x2

s+1y)) + DaDb(�0(y)) = 0,

f ∗(x, y) = Trm
1
(x2

s+1y) +
∏

i∈I

(
Trm

1
(y(�ix + �ix2

s

+ �2i)) + 1
)
+ �0(y), x, y ∈ �2m .

1250



Cryptography and Communications (2022) 14:1229–1256 

1 3

Theorem 11 (CD case) With the same notation as in Theorem 10, let � ∶ �2m × �2m → �2 be 
defined by �(x, y) = Trm

1
(xyd) + �E1

(x)�E2
(y), x, y ∈ �2m . Let L ⊂ E2 be any subspace of �2m 

of dimension at least 2. Then, the function f ∶ �2m × �2m → �2 defined by

is bent and its dual is defined by

where �(L) is the basis of L.

Proof Let a, b ∈ �(L) × {0} and x, y ∈ �2m be arbitrary. From Theorem  10, we have that 
DaDb�

∗(x, y) = DaDbTr
m
1
(x2

s+1y) + DaDb�1(x)�2(x, y) , where �1,�2 are defined by Eq. 
(18). By [Lemma 4.15] [21], we have that DaDbTr

m
1
(x2

s+1y) = 0 . Let 𝜆 ∈ �(L) ⊂ E2 be 
arbitrary. Then,

and thus �2(x) = �2(x + a) = �2(x + b) = �2(x + a + b) . Hence,

Because x ↦ x2
s+1 is a monomial permutation and E2 is a field, it holds that 

(x + �)2
s+1 ∈ E2 if and only if x + � ∈ E2 , and for � ∈ E2 , it is equivalent to the fact that 

x ∈ E2 . Thus, as a, b ∈ �(L) ⊂ E2 , we have that

for all x, y ∈ �2m . Hence, �∗ satisfies the (PU) property with the defining set �(L) × {0} . 
Consequently, by Construction 1, the function f is bent and its dual is defined by Eq. (20).

5.3  Two bent 4‑decompositions

In [16], the authors completely describe the 4-decomposition ( f1, f2, f3, f4) , where 
fi ∈ Bn−2 , of a bent function f ∈ Bn in terms of the second order derivatives. More pre-
cisely, the notation ( f1, f2, f3, f4) means that f1,… , f4 ∈ Bn−2 are defined on the four cosets 
of V = ⟨�, �⟩⟂ , thus fi are defined on �n ⊕ V , �⊕ V , �⊕ V , (�⊕ �)⊕ V  , respectively. 
Such a decomposition is called a bent 4-decomposition when all fi ( i ∈ [1, 4] ), are bent; a 
semi-bent 4-decomposition when all fi ( i ∈ [1, 4] ) are semi-bent; a 5-valued 4-decomposi-
tion when all fi ( i ∈ [1, 4] ) are 5-valued spectra functions so that Wfi

∈ {0,±2(n−2)∕2,±2n∕2} 

f (x, y) = �(x, y) +
∏

�∈�(L)

(Trm
1
(�x) + 1), x, y ∈ �2m ,

(20)f ∗(x, y) = �∗(x, y) +
∏

�∈�(L)

(Trm
1
(y(�x + �x2

s

+ �2)) + 1), x, y ∈ �2m ,

�2(x + �, y) =
∏

�∈�(E2)

(Tr1m(y(�x2
s

+ �� + �x + �� + �2)) + 1) = �2(x, y)

DaDb�1(x)�2(x, y) = �1(x)�2(x, y) + �1(x + a)�2(x + a, y)

+ �1(x + b)�2(x + b, y) + �1(x + a + b)�2(x + a + b, y))

= �2(x, y)(�1(x) + �1(x + a) + �1(x + b) + �1(x + a + b)

= �2(x, y)(�E2
(x2

s+1) + �E2
((x + a)2

s+1)+

�E2
((x + b)2

s+1) + �E2
((x + a + b)2

s+1)).

DaDb�1(x)�2(x, y) = �2(x, y)(�E2
(x2

s+1) + �E2
(x2

s+1) + �E2
(x2

s+1) + �E2
(x2

s+1)) = 0,
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[16]. These are the only possibilities and we strictly have that all the restrictions fi have the 
same spectral profile.

For our purpose, we are only interested in bent 4-decomposition and its characterization 
in terms of the duals of fi . Notice that the canonical decomposition of f corresponds to the 
choice of �, � ∈ �

n
2
 given by � = (0, 0,… , 0, 0, 1) and � = (0, 0,… , 0, 1, 0) in which case 

the restrictions fi are given as: f1(�) = f (�, 0, 0) , … , f4(�) = f (�, 1, 1) , where � ∈ �
n−2
2

 . In 
this case, we use a shorthand notation f = f1|| f2|| f3|| , f4 to denote this canonical decom-
position of f.

Theorem 12 [17] Let f ∈ Bn be a bent function, for even n ≥ 4 . Let �, � ∈ �
∗
2n

 be two dis-
tinct elements and V = ⟨�, �⟩⟂ . If we denote by ( f1,… , f4) the 4-decomposition of f with 
respect to V, then ( f1,… , f4) is a bent 4-decomposition if and only if f ∗

1
+ f ∗

2
+ f ∗

3
+ f ∗

4
= 1.

Using this result, we show that bent functions stemming from M, C,D0 and SC form 
a bent 4-decomposition. To satisfy the conditions of Theorem  1, we note that f1 is 
defined by f1(x, y) = Trm

1
(xyd) + 1 instead of Trm

1
(xyd) , so that the sum f ∗

1
+ f ∗

2
+ f ∗

3
+ f ∗

4
 

equals 1 (otherwise it would be 0).

Theorem 13 Let n = 2m , s be a positive divisor of m such that m/s is odd, and d a posi-
tive integer such that d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3 . Let f1 ∶ �2m × �2m → �2 be 
defined by f1(x, y) = Trm

1
(xyd) + 1 , and f2, f3 and f4 be defined by Eqs. (14), (15) and (19), 

respectively. Then, f = ( f1,… , f4) is a bent function in n + 2 variables.

Proof Firstly, we note that f ∗
1
(x, y) = Trm

1
(x2

s+1y) + 1 , x, y ∈ �2m . From Propositions 5, 4 
and 7 it is easy to compute that f ∗

1
(x, y) + f ∗

2
(x, y) + f ∗

3
(x, y) + f ∗

4
(x, y) = 1 for all x, y ∈ �2m . 

Thus, by Theorem 1 it holds that f = ( f1,… , f4) is a bent 4-decomposition, i.e., it follows 
that f is a bent function in n + 2 variables.

Remark 6 Explicitly, let f = ( f1, f2, f3, f4) be defined as in Theorem 1, then by [Corollary 
1] [25], we can write f ∶ �2m × �2m × �22 → �2 as

which corresponds to the concatenation f = f1|| f2|| f3|| f4 . Let f1, f2, f3, f4 and f be defined 
as in Theorem 13, then Eq. (21) evaluates to:

Moreover, it turns out that bent functions described in Theorem 13 do not belong to 
the completed M class. For convenience, we use the vector space representation below.

Theorem 14 Let n = 2m be even and f ∈ Bn be given as in Theorem 13 so that

If � ⋅ � has no nonzero linear structures for any � ∈ �
m
2
⧵ {�m} , then f is outside M#.

Proof For convenience, we denote � = (�1, �2, a3, a4), � = (�1, �2, 
b3, b4) ∈ �

m
2
× �

m
2
× �2 × �2 . Let V be an arbitrary (m + 1)-dimensional subspace of � n+2

2
 . 

(21)
f (x, y, z1, z2) = f1(x, y) + z1( f1 + f3)(x, y) + z2( f1 + f2)(x, y), x, y ∈ �2m , z1, z2 ∈ �2 ,

f (x, y, z1, z2) = Trm
1
(xyd) + z1�L⟂ (x) + z2�0(x) + z1 + z2 + 1, x, y ∈ �2m , z1, z2 ∈ �2 .

(22)f (�, �, z1, z2) = 𝜙(�) ⋅ �⊕z1�L⟂ (�)⊕z2𝛿0(�)⊕z1⊕z2⊕1, �, � ∈ �
m
2
, z1, z2 ∈ �2.
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It is sufficient to show that for an arbitrary (m + 1)-dimensional subspace V of � n+2
2

 one can 
always find two vectors �, � ∈ V such that D(�1,�2,a3,a4)

D(�1,�2,b3,b4)
f (�, �, z1, z2) ≠ 0 for some 

(�, �, z1, z2) ∈ �
n+2
2

.
We have

where
T(�) = a3D�1

�L⟂ (�⊕ �1)⊕ b3D�1
�L⟂ (�⊕ �1)⊕ a4D�1

𝛿0(�⊕ �1)⊕ b4D�1
𝛿0(�⊕ �1).

There are three cases to be considered. 

1. Let |{� ∈ �
m
2
∶ (�, �, z1, z2) ∈ V}| > 2 . We can select two vectors �, � ∈ V  such that 

�1 ≠ �m, �1 ≠ �m and �1 ≠ �1 . From Eq. (23), we have 

 where 
M(x, y, z1) = D�2

D�2
(𝜙(�)) ⋅ �⊕D�2

(𝜙(�⊕�2)) ⋅ �1⊕D�2
(𝜙(�⊕�2)) ⋅ �1⊕z1D�1

D�1
�L⟂ (�)⊕T(�). 

As D�1
D�1

�0 ≢ 0 , it must hold that D�D� f ≢ 0.
2. Let |{� ∈ �

m
2
∶ (�, �, z1, z2) ∈ V}| = 2 . We select � = (�1, �2, a3, a4) ∈ V such that �1 ≠ �m . 

Since |V| = 2m+1 , we can select � = (�1, �2, b3, b4) ∈ V such that �1 = �m and �2 ≠ �m . 
Notice that �1 = �m implies that D�2

(𝜙(�⊕�2)) ⋅ �1 = 0 . From Eq. (23), we deduce that 

 As � ⋅ � has no nonzero linear structures for any � ∈ �
m
2
⧵ {�m} , then D�2

�(�) ⋅ �1 
is not a constant function. Thus, we have found two elements �, � ∈ V  such that 
D�D�f ≢ 0.

3. Let |{� ∈ �
m
2
∶ (�, �, z1, z2) ∈ V}| = 1 . We have |{� ∈ �

m
2
∶ (�, �, z1, z2) ∈ V}| ≥ 2m−1 . 

For any � = (�m, �2, a3, a4) ∈ V  such that �2 ≠ �m , we have D�2
�i ≢ const. , 

D�2
�j ≢ const. and D�2

(𝜙i ⊕𝜙j) ≢ const. , where 1 ≤ i ≠ j ≤ m and � = (�1,… ,�m) , 
since � ⋅ � has no nonzero linear structure for any � ∈ �

m
2
⧵ {�m} . Furthermore, 

 since the maximum cardinality 

 is attained if both D�2
�i and D�2

�j are affine. Hence, we can select two vectors 
�, � ∈ V  such that D�2

D�2
� ≢ �m . Since 

 we conclude that D(�1,�2,a3,a4)
D(�1,�2,b3,b4)

f ≢ 0.

Similarly as in Theorem 13, we will show that certain functions from M, C,D and 
CD can form a bent 4-decomposition.

(23)
D(�1,�2,a3,a4)

D(�1,�2,b3,b4)
f (�, �, z1, z2) = D�2

D�2
(𝜙(�)) ⋅ �

⊕ D�2
(𝜙(�⊕�2)) ⋅ �1⊕D�2

(𝜙(�⊕�2)) ⋅ �1
⊕ z2D�1

D�1
𝛿0(�)⊕z1D�1

D�1
�L⟂ (�)⊕T(�),

D(�1,�2,a3,a4)
D(�1,�2,b3,b4)

f (�, �, z1, z2) = z2D�1
D�1

𝛿0(�)⊕M(x, y, z1),

D(�1,�m,0,0)
D(�m ,�2,0,0)

f (�, �, z1, z2)
|||�=�m,z1=z2=0

= D�2
(�(�)) ⋅ �1.

|{�2 ∈ �
m
2
∶ D�2

D�2
𝜙i = D�2

D�2
𝜙j ≡ �m}| < 2m−1,

|{�2 ∈ �
m
2
∶ D�2

D�2
�i = D�2

D�2
�j ≡ �m}| = 2m−2

D(�m ,�2,a3,a4)
D(�m ,�2,b3,b4)

f (�, �, z1, z2) = D�2
D�2

(�(�)) ⋅ �,
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Theorem 15 Let n = 2m , s be a positive divisor of m such that m/s is odd, and d a posi-
tive integer such that d(2s + 1) ≡ 1 (mod 2m − 1) and wt(d) ≥ 3 . Let E2 = �2s , L ⊂ E2 be a 
subspace of �2m and E1 = E⟂

2
 . Let f1 ∶ �2m × �2m → �2 be defined by f1(x, y) = Trm

1
(xyd) + 1 , 

and f2, f3 and f4 be defined by:

Then, f = ( f1,… , f4) is a bent function in n + 2 variables.

Proof From Proposition 5, Theorems  10 and 11, it is easy to compute that 
f ∗
1
(x, y) + f ∗

2
(x, y) + f ∗

3
(x, y) + f ∗

4
(x, y) = 1 for all x, y ∈ �2m . Thus, by Theorem  1, it holds 

that f = ( f1,… , f4) is a bent 4-decomposition, i.e., it follows that f is a bent function in 
n + 2 variables.

Remark 7 Let f1, f2, f3, f4 and f be defined as in Theorem 15, then Eq. (21) evaluates to

6  Concluding remarks

We have introduced a new superclass of bent functions obtained from C and D which is 
shown to be provably outside M# under certain conditions (see Theorem  8). Further-
more, we strongly believe that these functions may also lie outside C# and D# (due to the 
modification performed on subsets), but due to the lack of suitable indicators this question 
appears to be difficult to answer. We have provided an explicit class of bent functions in 
CD outside M# (see Proposition 2) and two examples which can (possibly) be generalized. 
The question whether these bent functions can be simultaneously outside the completed M 
and PS+ classes is partially addressed. Furthermore, it is shown that one can employ dif-
ferent families of n-variable bent functions (whose duals are explicitly determined) in the 
so-called 4-bent concatenation for the purpose of generating new bent functions in n + 2 
variables. Most notably, the resulting bent functions in n + 2 variables can also lie outside 
M

# class. Construction methods of vectorial bent functions, based on this CD class, whose 
components (possibly not all) are outside M# are also of interest.
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f2(x, y) = Trm
1
(xyd) + �L⟂ (x),

f3(x, y) = Trm
1
(xyd) + �E1

(x)�E2
(y),

f4(x, y) = Trm
1
(xyd) + �L⟂ (x) + �E1

(x)�E2
(y).

f (x, y, z1, z2) = Trm
1
(xyd) + z1�L⟂ (x) + z2�E1

(x)�E2
(y) + z1 + z2 + 1, x, y ∈ �2m , z1, z2 ∈ �2 .
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