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Abstract
A cryptographic primitive with low multiplicative complexity (MC) makes various applica-
tions efficient, but it may lead to cryptographic vulnerabilities. To find a trade-off between
cryptographic resistance and MC, we propose a new tool called A-box, which is constructed
using AND gates. In this paper, we prove several important properties of A-boxes, which
provide the theoretical lower bounds of differential uniformity and linearity of correspond-
ing S-boxes by MC. Specifically, we show that the differential uniformity (resp. linearity)
of an (n,m)-bit S-box is at least 2n−l , where its MC is � n−1

2 � + l (resp. m − 1 + l). Fur-
thermore, we develop an algorithm to find S-boxes with differential uniformity equal to the
bounds with respect to their MC. We improve the algorithm previously proposed by Zajac
and Jókay (Cryptogr. Commun. 6(3), 255–277, 2014), which is applicable only to S-boxes
of size lower than 5 bits, whereas ours can run on larger-sized S-boxes. We found a bijective
(8, 8)-bit S-box with differential uniformity 16, linearity 128, and 8 nonlinear gates: this has
better cryptographic security than the SKINNY S-box with differential uniformity 64, lin-
earity 128, and 8 nonlinear gates. We believe that our results provide a better understanding
of the relationship between cryptographic resistance and MC of S-boxes.
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1 Introduction

Reducing the number of nonlinear gates when implementing cryptographic primitives,
especially using block ciphers, is an important concern in various fields [2, 34] such
as post quantum zero-knowledge (PQZK) proofs, multi-party computation (MPC) proto-
cols [23], fully homomorphic encryption (FHE), and side-channel attacks (SCAs) [29]. In
PQZK proofs based on “MPC-in-the-head,” the signature size increases proportionally to
the number of nonlinear gates used in the underlying block cipher [18]. The computational
complexity in the MPC protocol based on Yao’s garbled circuit [32, 35] using the free-
XOR technique depends on the number of nonlinear gates [30]. For FHE, an AND gate in
the underlying block cipher is more expensive than an XOR gate and may generate noise
during calculations [26]. Furthermore, the smaller the number of nonlinear gates required
to implement the block cipher, the more efficient the SCA countermeasure technique that
can be implemented. This is because the cost of Boolean masking increases sharply when
it is applied to nonlinear gates rather than linear ones. Therefore, cryptographic primitives
that can be implemented using a small number of nonlinear gates have many advantages in
various applications.

The multiplicative complexity (MC) of a vectorial Boolean function is the minimal num-
ber of AND gates needed to implement it over the basis {AND, XOR, NOT} (called an
XOR-AND circuit [13]). As stated above, obtaining a primitive with low MC is important
for performance; however, such a primitive may have potential cryptographic vulnerabil-
ities. For example, block ciphers based on an S-box with low MC may be vulnerable to
cryptanalysis [16].

In this paper, we discuss security against differential and linear cryptanalyses (DC and
LC, respectively) in an S-box based on its MC [6, 31]. As DC and LC are the most influential
techniques among block cipher cryptanalyses [27], the differential uniformity and linearity
of an S-box are considered the most important cryptographic properties. For an efficient
and secure cryptographic primitive design, it is essential to clarify the trade-off between the
MC and differential uniformity/linearity of an S-box.

The lower bounds of differential uniformity and linearity independent of MC have
been revealed. While the differential uniformity has an obvious lower bound [5], there are
several bounds of linearity: the covering radius bound, Sidelnikov–Chabaud–Vaudenay’s
bound [17], and three types of linearity bounds in [16]. Zajac and Jókay investigated the
MC of all the affine classes of bijective (4, 4)-bit S-boxes [37]. Their investigation used an
expansion-compression method to accurately calculate the MC of S-boxes. This leads to the
following two facts about bijective (4, 4)-bit S-boxes.

– A bijective (4, 4)-bit S-box with optimal differential uniformity 4 has MC at least 4.
– A bijective (4, 4)-bit S-box with optimal linearity 8 has MC at least 4.

Božilov et al. investigated the MC of all the affine classes of quadratic (5, 5)-bit S-
boxes [14]. There are many open issues for the existence of S-boxes, such as (5, 5)-bit
S-boxes with MC 6 and differential uniformity 2 (this study shows that there is no such
(5, 5)-bit S-box, which will be explained below). In [10], Boyar and Find found that the
number of AND gates, linearity, and the length of the shortest linear code are related. The
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bounds they found were proved in the ΣΠΣ circuit, which consists of sequential XOR,
AND, and XOR layers.

Contributions In this paper, we present a new cryptographic tool called A-box, motivated
by the work of Zajac and Jókay [37]. While their expansion function consists of AND and
identity parts, we restrict it to only the AND part to define the A-box. Specifically, an S-box
can be divided into an A-box (as a nonlinear function) and linear functions. We used several
properties of A-boxes to prove the theoretical lower bounds of differential uniformity and
linearity of the corresponding S-boxes by MC.

We show that the differential uniformity (resp. linearity) of an (n,m)-bit S-box is at least
2n−l , where its MC is � n−1

2 � + l (resp. m − 1 + l). Furthermore, we develop an algorithm
to search for A-boxes with differential uniformity equal to our bounds with respect to their
MC. Those A-boxes lead to S-boxes with the same differential uniformity as theirs. Table 1
presents the lowest differential uniformity we found, within (n, n)-bit S-boxes with MC k

where 3 ≤ n ≤ 8 and 1 ≤ k ≤ 7. Our investigation reveals the following properties:

– A (5, 5)-bit S-box with differential uniformity 2 has MC at least 7.
– A (6, 6)-bit S-box with differential uniformity 4 has MC at least 7.
– An (8, 8)-bit S-box with differential uniformity 32 has MC at least 7.

Compared to differential uniformity, a relatively large MC is required to reduce linearity.
The new S-boxes constructed by our method are compared with existing ones in Table 2.
Either they have better differential uniformity or linearity than those of existing S-boxes
with respect to the same nonlinear gates or less, or they achieve our lower bounds of both
differential uniformity and linearity with respect to MC which is the same as implemented
nonlinear gates. The detailed implementation codes are provided in Appendix A.

Organization The remainder of this paper is organized as follows. In Section 2, we intro-
duce the expansion-compression method of [37], based on which we define the A-box, and
we observe several properties of A-boxes. In Section 3, we use them to prove the theoretical
lower bounds of the differential uniformity and linearity of S-boxes by MC. In Section 4,
we present an S-box search process in terms of MC and low differential uniformity. We
conclude this paper in Section 5.

Preliminary The following notations and definitions are used throughout this paper.

Table 1 Differential uniformity of (n, n)-bit S-boxes found by our experiments

n Multiplicative Complexity

1 2 3 4 5 6 7

3 8 4 2 2 2 2 2

4 16 8 4 2 2 2 2

5 32 32 16 8 4 4 2

6 64 64 32 16 8 8 4

7 128 128 128 64 32 16 16

8 256 256 256 128 64 64 32

*The numbers in bold are equal to our lower bounds of differential uniformity.
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Table 2 Comparision of (n, n)-bit S-boxes*

S-box n Differential Linearity Lower bound #NL gates Bijectivity Reference

uniformity of MC

S-box of [8] 3 4 (LB) 8 (LB) 2 2 YES [8, 37]

S-box of CTC 3 2 (LB) 4 (LB) 3 3 YES [19, 20]

S-box of [8] 4 8 16 (LB) 3 3 YES [8, 37]

S-box of [1] 4 4 (LB) 16 (LB) 3 3 NO [1]

S-box of PRESENT 4 4 8 (LB) 4 4 YES [9, 21]

S-box of [1] 4 2 (LB) 8 (LB) 4 4 NO [1]

S-box of [14] 5 16 32 (LB) 4 4 YES [14]

Our S-box 5 8 (LB) 32 (LB) 4 4 YES Listing 1

S-box of [14] 5 4 (LB) 16 (LB) 5 5 YES [14]

S-box of PRIMATEs 5 2 (LB) 8 (LB) 7 7 YES [3, 14, 33]

Our S-box 6 8 (LB) 32 (LB) 6 6 YES Listing 2

Our S-box 6 4 (LB) 16 (LB) 7 7 NO Listing 3

S-box of [28] 6 4 16 7 9 YES [28]

S-box of [7] 6 2 16 8 9 NO [7]

Our S-box 7 32 (LB) 128 (LB) 5 5 YES Listing 4

Our S-box 7 4 32 9 10 NO Listing 5

S-box of [28] 7 8 32 8 11 YES [28]

S-box of SKINNY 8 64 128 (LB) 8 8 YES [25]

Our S-box 8 16 (LB) 128 (LB) 8 8 YES Listing 6

Our S-box 8 8 64 9 10 NO Listing 7

S-box of PIPO 8 16 64 9 11 YES [28]

S-box of Fantomas 8 16 64 9 11 YES [4]

S-box of LILLIPUT 8 8 64 9 12 YES [1]

S-box of AES 8 4 32 10 32 YES [11, 22]

*We use ‘LB’ to denote that an S-box achieves our lower bound of differential uniformity or linearity by MC
(same as implemented nonlinear(NL) gates)

(n, m)-bit S-box A vectorial Boolean function with .

Multiplicative Complexity (MC) The MC of S-box S is the minimum
number of AND gates necessary to
implement the S-box as an XOR-
AND circuit. The notation is c∧(S).

DDT
, for (n,m)-bit

S-box S.
Differential uniformity δ(S) = max

Δa �=0,Δb
#δS(Δa,Δb).

LAT ,
for (n,m)-bit S-box S.

Linearity L(S) = max
Λa,Λb �=0

|LS(Λa,Λb)|.
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For the convenience of notation, an n-dimensional vector is considered to be a column-
matrix when performing matrix multiplication. Therefore, it is defined as follows.

Any linear function can be expressed as the multiplication of a matrix. We indicate the
matrix related to the linear function in the subscript of T . For example, the matrix expres-

sion of the linear function is an m×n matrix M and we denote
for . The dot product of and is denoted by , and its matrix expression is

. In is the n × n identity matrix. The k LSBs and k MSBs of are

expressed as and , respectively. 0(n) is the
zero vector of , and 0(n×m) is the zero matrix of size n × m.

2 A-box and its equivalence classes

2.1 Definition of A-box

Consider an XOR-AND circuit of an S-box. The AND gates on the circuit are made
as per the following rule. The inputs of the ith AND gate are calculated as the linear com-
binations of three types of bits: the inputs of the S-box, the outputs of the previous i − 1
AND gates, and the constant 1. In addition, the outputs of the circuit are calculated as the
linear combinations of three types of bits: the inputs of the circuit, the outputs of the suffi-
cient number of AND gates, and the constant 1. In particular, an S-box with 0 �→ 0 can be
constructed with a circuit without using NOT gates. Zajac and Jókay constructed an XOR-
AND circuit of such an S-box as the expansion–compression method for expansion function
and compression function [37]. As the expansion function is helpful for understanding the
concept of the A-box, we explain it first.

For two vectors and an input , the expansion function Ei is defined
as follows.

That is, Ei is a function that concatenates the output of one AND gate to the MSB of the
input . The for j ∈ {0, 1} means a linear combination of input bits. Zajac and Jókay

constructed the following function with by composing k expansion functions
from En to En+k−1.

En+k−1 ◦ En+k−2 ◦ · · · ◦ En. (1)

This function (1) describes a circuit using k AND gates. By setting and of each En+i ,
the linear combination of the inputs of each ith AND gate will be determined. We define

as a partner vector and the 2k-tuple that consists of all in order as a partner tuple.

By applying a linear function (which is called the compression function
in [37]) to function (1), we obtain the following function with ,

TC ◦ En+k−1 ◦ En+k−2 ◦ · · · ◦ En. (2)
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By Lemma 6 of [37], function (2) expresses any (n,m)-bit S-box with 0 �→ 0. In this
method, a circuit with k = C∧(S) always exists. By XORing function (2) with a constant

, we obtain an (n,m)-bit S-box expression with no necessary conditions.

(3)

The output of function (1) consists of a k-bit (called the AND part) and n-bit (called the
identity part); the latter n-bit represents the original input. The AND part becomes a type
of (n, k)-bit S-box, which we define as an A-box (refer to Fig. 2). Naturally, the MC of an
(n, k)-bit A-box is less than or equal to k. To avoid any confusing context, we denote an S-
box as S and the corresponding A-box as SA. The mathematical definition of the A-box is
given in Definition 1.

Definition 1 Let and be the input and
output, respectively, of an (n, k)-bit S-box SA. For 2k vectors that satisfy the
following inductive properties, SA is called an (n,k)-bit A-box.

– .
– For 1 ≤ i < k, .

For an (n, k)-bit A-box SA, and are called ith partner vectors for all i, and
is called the partner tuple of SA.

A-boxes can be taken from existing S-boxes. For example, Fig. 1 shows an A-box
construction taken from the GIFT S-box.

We often write the ANF of an A-box SA as (fk−1, · · · , f0). The ANF function fi satisfies
c∧(fi) ≤ i + 1. We also denote the components of the ith partner vectors as follows.

Fig. 1 Process of obtaining an A-box from the implementation of GIFT S-box
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Note that an A-box can have multiple partner tuples. For example, the output of the ith AND
gate of the A-box is invariant even though and are swapped.

2.2 Equivalence classes

For an S-box S and three affine functions A, B, and C, (B ◦ S ◦ A) ⊕ C is called an
extended affine transformation (EA transformation). Let S′ = (B ◦ S ◦ A) ⊕ C; then, S

is the extended affine equivalent (EA equivalent) to S′. Furthermore, the set of all S-boxes
that are EA equivalent to S is called the extended affine equivalence class (EA class) of
S [15]. Similarly, linear equivalence is defined by S′ = B ◦ S ◦ A for two linear functions
A and B. It is known that MC, differential uniformity, and linearity are invariant under EA
transformation [15, 36].

Consider an (n,m)-bit S-box S. By using the form (3), S is given as

(4)

for an (n, k)-bit A-box SA. As TC is a linear function, we can decompose

into two linear functions, i.e., and .
Accordingly, function (4) is transformed as follows.

The matrix N ′ can be decomposed by matrix multiplication of the m × k matrix M in
reduced row echelon form (RREF) and the invertible m × m matrix D. Now, we obtain

(5)

This is depicted in Fig. 2. Note that in this figure each rectangle box located to the right of
the partner vectors is a linear operator that generates two inputs of the AND gate. Specif-
ically, for the ith AND gate, the corresponding rectangle box computes the two inputs

and .
As and are affine functions, S and TM◦SA are EA equivalent. Therefore,

the following theorem holds.

Fig. 2 Input and output of an (n,m)-bit S-box and an (n, k)-bit A-box
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Theorem 1 For any (n, m)-bit S-box S and k ≥ c∧(S), there exist an m × k matrix M in
RREF and an (n, k)-bit A-box SA such that TM ◦ SA is EA equivalent to S. If k = c∧(S),
SA is called suitable for S.

Next, we consider the linear equivalence of an A-box. Let L and L′ be linear functions

on and , respectively. Then, TL′ ◦ SA ◦ TL is linear equivalent to SA. Recall that our
ultimate goal is to get the S-box, not the A-box. By substituting SA for TL′ ◦ SA ◦ TL, the
TD ◦ TM ◦ SA in (5) is changed to

TD ◦ TM ◦ TL′ ◦ SA ◦ TL = TD′ ◦ TM ′ ◦ SA ◦ TL,

for TD′ ◦ TM ′ = TD ◦ TM ◦ TL′ where D′ is an invertible m × m matrix, and M ′ is an m × k

matrix in RREF. Thus, we just consider TL.
For any n×n invertible matrix TL, the SA ◦TL is well defined as A-box by the following

theorem. This fact will be effectively used to search for linear classes of A-boxes in our
algorithm (cf. Section 4).

Theorem 2 For an (n, k)-bit A-box SA and a linear permutation , let S′
A =

SA ◦ TL, which is an A-box linear equivalent to SA. If is a partner tuple of

SA, then the following is a partner tuple of S′
A such that

where Li =
(

Ii 0(i×n)

0(n×i) L

)
for 0 ≤ i < k.

Proof Suppose SA has a partner tuple . Furthermore, let
(yk−1, · · · , y0) and . As the definition of A-box is inductive,
we treat z0 first. We obtain

and become new partner vectors. We now denote and as follows.

Then, we obtain

where L1 =
(

1 0(1×n)

0(n×1) L

)
. We denote and as follows.
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By repeating this process, the variables zi for i(< k) are shown below.

Finally, we obtain an (n, k)-bit A-box S′
A = (zk−1, · · · , z0). Thus, the theorem holds.

3 Theoretical lower bounds on the differential uniformity and linearity
of S-boxes byMC

As mentioned before, the differential uniformity and linearity of S-boxes are invariant
under EA transformation. Thus, we consider an (n, m)-bit S-box S = TM ◦SA with suitable
A-box SA where M is a matrix in RREF.

3.1 Bounds for differential uniformity

For a difference , we obtain the following equation.

Therefore, for a difference ,

As δ(TM ◦ SA) ≥ δS(Δa,TM(Δb)) ≥ δSA
(Δa,Δb) holds for all differences Δa and Δb

by the above relation, the property δ(TM ◦ SA) ≥ δ(SA) holds. Therefore, the differential
uniformity of an (n,m)-bit S-box with MC k is greater than or equal to the differential
uniformity of a suitable (n, k)-bit A-box. The lower bounds of differential uniformity of
(n, k)-bit A-boxes become those of S-boxes with MC k.

The differential uniformity of the S-box, which has at least one input difference that
induces only one output difference, is 2n. In order to lower the differential uniformity, this
input difference must be eliminated. In an A-box, if all AND gates have zero input differ-
ences, the differential uniformity becomes 2n. The input differences make a space and we
define the space as a complementable space. The word ‘complementable’ is taken from [12].

Lemma 1 Let SA be an (n, k)-bit A-box. Define the set CSA
of Δa satisfying

for all partner vectors to be a complementable space of SA. The complementable space
CSA

has the following properties.

– For Δa ∈ CSA
, SA(Δa) = 0(k).

– For Δa ∈ CSA
and , .
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– If there is a nonzero difference in CSA
, then δ(SA) = 2n.

Proof Let Δa be a difference in CSA
and SA = (fk−1, · · · , f0). From f0(Δa)

, we obtain

by mathematical induction for all i > 0. Therefore, SA(Δa) = 0(k) holds.

Let and . We use mathematical
induction to prove that y′

i = yi for all i. In the base step, we obtain y′
0 = y0 through the

equation below.

In the inductive step, we assume y′
i = yi for all i(< t − 1) such that t < k, and we show

that y′
t = yt through the equation below.

This fact indicates that holds, regardless of . Therefore, δ(SA) =
δSA

(Δa, 0(k)) = 2n.

We observe how large a k is needed to eliminate all nonzero elements in the comple-
mentable space. First, let us define a matrix below.

The complementable space CSA
can be defined as a homogeneous linear system as follows.

As k increases by 1, the number of rows in A increases by 2. The size of the solution space
of the system A(Δa) = 0(n) is at least 2n−2k . In order to become CSA

= {0}, the number

of rows in A must be n or more. Since 2n−2� n−1
2 � > 1, an (n, k)-bit A-box with k ≤ � n−1

2 �
holds δ(SA) = 2n by Lemma 1. Therefore, we can derive Theorem 3 as follows.

Theorem 3 Let SA be an (n, k)-bit A-box. If k ≤ � n−1
2 �, then δ(SA) = 2n.

Consider an input difference Δa and an output difference Δb that comprise the differen-
tial uniformity of an A-box. When an AND gate is added, the best case is that Δa activates
the last AND gate and halves the differential uniformity.
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Theorem 4 Let SA be an (n, k)-bit A-box. If k = � n−1
2 � + l, then δ(SA) ≥ 2n−l for all

l ≥ 0.

Proof We use mathematical induction to prove this theorem from l = 0. By Theorem 3,
if k = � n−1

2 �, then δ(SA) = 2n. Assume that this theorem holds when l = t . Let SA

be an (n, k + 1)-bit A-box for k = � n−1
2 � + t . Then the (n, k)-bit A-box SA|k satisfies

δ(SA|k) ≥ 2n−t based on the assumption. There are two differences Δa and Δb such that
δSA|k (Δa, Δb) ≥ 2n−t . We obtain the following equation.

Either δSA
(Δa, 0||Δb) ≥ 2n−t−1 or δSA

(Δa, 1||Δb) ≥ 2n−t−1 holds by the pigeonhole
principle. Thus, we have δ(SA) ≥ 2n−t−1.

As previously considered, the bound of the A-box becomes the bound of the S-box.
Corollary 1 follows from Theorems 1, 3, and 4.

Corollary 1 Let S be an (n,m)-bit S-box. The following properties hold.

– If c∧(S) ≤ � n−1
2 �, then δ(S) = 2n.

– If c∧(S) = � n−1
2 � + l, then δ(S) ≥ 2n−l for l ≥ 0.

3.2 Bounds for linearity

While the theoretical relationship between MC and differential uniformity has not been
studied, the theoretical relationship between MC and linearity has been previously stud-
ied [10]. Boyar and Find studied the relationship using linear codes and ΣΠΣ circuit.
To have low linearity, more AND gates must be used than the length of the shortest cor-

responding linear code. For example, an (n, n)-bit S-box with linearity 2
n−1

2 should use
L(n, n−1

2 ) or more AND gates in the ΣΠΣ circuit, where L(n, n−1
2 ) is the length of the

shortest linear n-dimensional code over with a distance n−1
2 . For a sufficiently large n,

L(n, n−1
2 ) > 2.32n. However, it remains to be determined how large n must be, which

makes this result difficult to apply directly to the construction of an S-box in practice.
Therefore, we will more clearly present the lower bounds of linearity by MC.

For two maskings and , the linear equation of (n,m)-bit S-box S is
followed.

(6)

If k < m, the last row of M is a zero row. In this case, it is easily shown that LS(Λa,Λb) =
2n when Λa = 0(n) and Λb = 0(m−1)||1. The following theorem has been proved.

Theorem 5 Let S be an (n, m)-bit S-box. If c∧(S) ≤ m − 1, then L(S) = 2n.

Assume that k = m + l − 1 for l ≥ 1. Then, M is decomposed as follows.

M = (
M0 M1

)
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Fig. 3 m × k matrix M decomposed by two partition matrices m × (m − 1) M0 and m × l M1

where M0 and M1 are m × (m − 1) and m × l partition matrices, respectively. Note that the
last row of M0 is a zero row (Fig. 3).

The (6) is expressed by

(7)

when Λb = 0(m−1)||1. We denote the n-variable Boolean function f as

. We refer to the following theorem,
which is proved in [10].

Theorem 6 Let f be an n-variable Boolean function. Then L(f ) ≥ 2n−c∧(f ) [10].

By the definition of A-box, the MC of f is less than or equal to l. This means L(f ) ≥
2n−l . For such that L(f ) = Lf (Λa, 1), we get

L(S) ≥ LS(Λa, 0(m−1)||1) = Lf (Λa, 1) = L(f ) ≥ 2n−l .

We have proved Theorem 7.

Theorem 7 Let S be an (n,m)-bit S-box. If c∧(S) = m+ l−1, then L(S) ≥ 2n−l for l ≥ 0.

4 Method for searching for S-boxes with low differential uniformity
byMC

In [37], Zajac and Jókay presented an algorithm to construct bijective (4, 4)-bit S-boxes
with minimal nonlinear gates. Since their method performs an exhaustive search for S-boxes
regardless of their cryptographic properties such as differential uniformity and linearity, it
would be computationally difficult to apply to search for S-boxes with a size larger than
4 bits. In order to search for S-boxes with a larger size, we focus on the S-boxes with
low differential uniformity. We adopt the branch-and-bound technique for our algorithm to
investigate S-boxes with larger sizes.

We say that an A-box (or S-box) has a theoretically optimal differential uniformity when
its differential uniformity equals the lower bound presented in Corollary 1. That is, the
theoretically optimal differential uniformity of an (n, k)-bit A-box is 2n−l for k = � n−1

2 �+l.

860 Cryptography and Communications (2022) 14:849–874



The phases for searching the S-box with k nonlinear gates, differential uniformity δ and
linearity L are as follows.

Phase 1. Find an (n, k)-bit A-box SA with the desired differential uniformity δ.

(a) Collect (n, � n−1
2 �+1)-bit A-boxes with theoretically optimal differential uniformity

2n−1 (cf. Section 4.1).
(b) Extend them to (n, � n−1

2 � + l)-bit A-boxes with theoretically optimal differential
uniformity 2n−l , where l > 1 (cf. Algorithm 1 in Section 4.2).

(c) Choose (n, � n−1
2 � + l)-bit A-boxes with the lowest differential uniformity when

Phase 1-(b) fails with respect to l. (cf. Section 4.2).

Phase 2. Find an m × k matrix M in RREF to make TM ◦ SA with the desired differential
uniformity δ and linearity L (cf. Section 4.3).

Phase 3. (Optional) Find an n × n matrix N to make an (n, n)-bit S-box TM ◦ SA ⊕ TN

bijective, where n = m (cf. Section 4.3).

The above process is described in Fig. 4.

4.1 (n, �n−1
2 � + 1)-bit A-boxes with theoretically optimal differential uniformity

2n−1

In order to have differential uniformity 2n−1, the complementable space must be {0}.
That is, the rows of matrix A in Section 3.1 span the dimension n. This fact induces the
following lemma.

Lemma 2 For k = � n−1
2 �+1, let SA be an (n, k)-bit A-box. If δ(SA) = 2n−1, then restricted

partner vectors span the dimension n.

If n vectors span dimension n, the vectors are linearly independent. These vectors can
be transformed on a standard basis by operating an appropriate matrix. Note Theorem 2.
If we compose TL on the input of the SA, we can get a linear equivalent A-box that has
the matrix-operated partner vectors. Specifically, the restricted partner vector is trans-
formed into for all i ≥ 0. In Lemma 2, if n is even, the restricted partner vectors

span the dimension n. All of the n vectors can be transformed on a
standard basis through an appropriate TL. However, if n is odd, the n + 1 vectors span the
dimension n, so they are linearly dependent. In this case, it can be resolved by removing the
vector that causes the linear dependence. Owing to this difference, the partner vectors have
a different form depending on whether n is even or odd.

Theorem 8 Let n = 2p for p > 0. For k = p, let SA be an (n, k)-bit A-box such that
δ(SA) = 2n−1. Then, there is an A-box S′

A, which is linear equivalent to SA and has a

partner tuple such that

where ei is the n-bit value whose bits are all zeros except for the ith-bit (e.g., e0 =
(0, · · · , 0, 1)).
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Fig. 4 Constructing an S-box from an A-box

Proof Let us define an n×n matrix B as follows using the partner vectors
of SA.

According to Lemma 2, spans the dimension n and B is invertible.
holds for all i(< n), because it is the ith column of the identity matrix. By

Theorem 2, the A-box S′
A = SA ◦ TB−T is an A-box linear equivalent to SA.

By the same theorem, we know that and . Note that
the A-box SA is invariant when and are swapped. We Assume, without loss
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of generality, for 0 < i < p in integer form. S′
A satisfies all required

conditions.

Theorem 9 Let n = 2p + 1 for p > 0. For k = p + 1, let SA be an (n, k)-bit A-box such
that δ(SA) = 2n−1. Then, there is an A-box S′

A, which is linear equivalent to SA and has a

partner tuple such that

where is a j -bit string and j is the largest subscript that causes linear dependence for a
set of n + 1 vectors: .

Proof As the n + 1 vectors are linearly dependent, there exist some

such that

(8)

Let cj be the nonzero coefficient with the highest subscript j . We obtain the following:

If j is 0, then and y0 = 0. As this induces c∧(SA) ≤ p − 1, we obtain
δ(SA) ≥ 2n+1 by Corollary 1. However, this contradicts the assumption. If j = 1, then

. When c0 = 0, we have the same case as when j = 0. c0 = 1
makes y0 a linear function, as shown below.

This induces c∧(SA) ≤ p + l − 1 and causes a contradiction, too. Therefore, we have found
that j ≥ 2.

are linearly independent because they span the dimension n

by Lemma 2. Let us make the following invertible matrix C

where ρj (i) =
{

i for i < j

i + 1 for i ≥ j
. We know that for i(< n). By

Theorem 2, S′
A = SA ◦ TC−T is an A-box that is linear equivalent to SA. S′

A also satisfies
the first required condition.
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Next, let us see what form becomes. Let for
. Then, the property below follows.

As the above property must hold for every , we obtain

Since j must be the highest subscript in the equation, we get

dn−1 = dn−2 = · · · = dj = 0.

Therefore,

As in the previous proof, assuming for i �= j, j + 1 and 0 < i ≤ p, S′
A

satisfies all required conditions.

These theorems enable us to significantly reduce the search space for possible
(n, � n−1

2 �+1)-bit A-boxes with differential uniformity 2n−1 (Fig. 5). Table 3 presents the A-
box search space, which excludes duplication, and the number of A-boxes with theoretically
optimal differential uniformity.

Fig. 5 A-boxes defined by Theorems 8 and 9
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Table 3 (n, � n−1
2 � + 1)-bit A-box search

n 3 4 5 6 7 8

Size of search space 44 3 2,720 30 466,080 1,080

Number of A-boxes with differential uniformity 2n−1 9 3 990 30 220,320 1,080

4.2 Extending A-boxes with theoretically optimal differential uniformity byMC

We extend A-boxes by increasing AND gates step by step. Adding one AND gate to an
(n, k)-bit A-box is the same as determining two additional partner vectors and . In
order to obtain an extended A-box with theoretically optimal differential uniformity, the A-
box in a previous step must have theoretically optimal differential uniformity. This condition
follows from the below theorem.

Theorem 10 For k = � n−1
2 � + l, let SA be an (n, k)-bit A-box for l ≥ 0. If δ(SA) = 2n−l ,

then δ(SA|k−p) = 2n−l+p for all p ≤ l.

Proof Note that the A-box SA|k−p is constructed by removing the last p-bits (p MSBs)
generated from the SA. As SA|k−p is an (n, k−p)-bit A-box, δ(SA|k−p) ≥ 2n−l+p holds by
Theorem 4. Assume that δ(SA|k−p) � 2n−l+p. There are two differences Δa and Δb such
that δ(SA|k−p) = δSA|k−p

(Δa,Δb). According to the definition of an A-box, the following
equation holds.

Next, we obtain

As δSA|k−p
(Δa,Δb) > 2n−l+p, there is a vector that satisfies

by the pigeonhole principle. As a result, we have , but this
contradicts the assumption.

Therefore, we can accelerate the investigation by checking whether the differential
uniformity of the A-boxes constructed in each step is theoretically optimal.

In Section 4.1, we obtained a set of (n, � n−1
2 �+1)-bit A-boxes with theoretically optimal

differential uniformity 2n−1. We call this set A and refer to A-boxes of A as parent nodes.
A child node is an A-box with one AND gate added to a parent node. The number of
child nodes per parent node is as many as two additional partner vectors and are
possible for adding kth AND gate (cf. Fig. 6). To count the number of A-boxes per depth, our
algorithm performs a breadth-first search. The detailed process is described in Algorithm 1.
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Fig. 6 A-box extension ((n, k + 1)-bit S′
A extended from (n, k)-bit SA)

In the algorithm, the partner vectors and are handled in integer form. There
are two reasons why starts at :

– Since , generality is not lost even if .
– Since , the case does not need to be investigated.

The number of A-boxes with theoretically optimal differential uniformity at each step is
listed in Table 4. For 5-, 6-, and 8-bit sizes, our algorithm shows the following facts. The
symbol ‘∗’ means that any number is possible.

– A (5, ∗)-bit S-box with differential uniformity 2 has MC at least 7.
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Table 4 Number of partner tuples that construct A-boxes with theoretically optimal differential uniformity

MC 1 2 3 4 5 6 7

number of (3, ∗)-bit A-box – 9 108 – – – –

number of (4, ∗)-bit A-box – 3 54 324 – – –

number of (5, ∗)-bit A-box – – 990 1,200,126 7,502,976 0 –

number of (6, ∗)-bit A-box – – 30 3,240 19,440 0 0

number of (7, ∗)-bit A-box – – – 220,320 15,109,605,432 x x

number of (8, ∗)-bit A-box – – – 1,080 699,840 0 0

*‘-’ means that there is no need to investigate, and ‘x’ means full investigation is impossible because of huge
computational complexity

– A (6, ∗)-bit S-box with differential uniformity 4 has MC at least 7.
– An (8, ∗)-bit S-box with differential uniformity 32 has MC at least 7.

This result also shows that Phase 1-(b) can fail. In this case, we chose the A-boxes with
the lowest differential uniformity to construct the corresponding S-boxes.

4.3 Construction of S-boxes by A-boxes

Generating the m × k matrix M in RREF is simple. If k ≤ m, M consists only of pivot
columns. The differential uniformity of TM◦SA equals the differential uniformity of SA. The
linearity is at most 2n − 1 as per Theorem 7. Let k > m. The columns of M are divided into
m pivot columns and k − m other columns. We randomly select the pivot columns and then
randomly generate other columns. After arranging the pivot columns in order of subscript,
the other columns are inserted randomly to generate a matrix. When M is generated, we
calculate whether the differential uniformity and linearity of TM ◦SA are the desired values.

A bijective S-box is more useful than a non-bijective one when it has the same
cryptographic properties. In particular, for the efficiency of side-channel masking, it is rec-
ommended to use an S-box with low MC as the primitive. For example, the block cipher
Pyjamask [24], proposed in the recent NIST lightweight encryption competition, uses small
S-boxes of (3, 3)-bit and (4, 4)-bit sizes to improve the side-channel masking efficiency.
Fantomas and Robin [25] proposed LS-designs, which use bijective (8, 8)-bit S-boxes
generated from an extension structure to reduce the number of nonlinear gates.

Let S be an (n, n)-bit S-box. Note that where N is an n × n

matrix. We denote the entry of row i and column j of N by Ni,j . As TD is bijective, the
expression of S can be transformed as follows.

In the equation above, the bijectivity of S is expressed by TM ◦ SA ⊕ T −1
D ◦ TN . Finding

T −1
D ◦ TN is the same as finding the n × n matrix, so we can regard it as TN . Therefore, our

goal is to find the TN that makes TM ◦ SA ⊕ TN bijective.
A bijective S-box has the characteristic that any combination of output bits is balanced.

The new (n, d)-bit S-box (fσ(d−1), · · · , fσ(0)), generated by choosing d random fi for the

bijective (n, n)-bit S-box S = (fn−1, · · · , f0), is balanced (σ is a permutation of ). Let

867Cryptography and Communications (2022) 14:849–874



and . Then, for i(< n),
zi is as follows:

zi = yi ⊕
n−1⊕
j=0

Nj,ixj

We first investigate (Nn−1,n−1, · · · , Nn−1,1, Nn−1,0) where is balanced. Sec-
ond, we investigate (Nn−1,n−1, · · · , Nn−1,1, Nn−1,0) and (Nn−2,n−1, · · · , Nn−2,1, Nn−2,0)

where is balanced. By repeating this process, we can find the N where
becomes bijective.

5 Conclusions

In this paper, we proved the theoretical lower bounds of differential uniformity and
linearity of S-boxes by MC. We also presented an algorithm to search A-boxes with theo-
retically optimal differential uniformity by MC. The constructed A-boxes lead to S-boxes
through our process. Some of the bijective S-boxes we found have better differential uni-
formity than those of existing bijective S-boxes with respect to the same nonlinear gates
and linearity. Using our process, cryptography designers can make a trade-off between the
implementation efficiency and security of the S-box, and they can reduce the complexity of
S-box investigation because the minimum MC of the S-box having the desired security is
known in advance based on this paper.

In future work, it would be interesting to investigate the following research topics:

– From a hardware point of view, is there a way to construct A-box to have high security
but low AND depth?

– Is there a better way than a random process to construct S-boxes from a fixed A-box?
– How does bijectivity theoretically relate to A-boxes?
– How do the nonlinear gates of an A-box relate to other cryptographic properties such

as algebraic degree, fixed points, or other properties?

Appendix A: Bitsliced implementations of our S-boxes

In this appendix, the method to implement the S-boxes presented in Table 2, which we found
by experiments, is shown in Listing 1∼7.

Listing 1 5-bit S-box with MC 4 (Differential uniformity 8, Linearity 32
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These are written in the C language. In each listing, X is an input bit string, Y is an output
bit string, and T is a temporary bit string.

Listing 2 6-bit S-box with MC 6 (Differential uniformity 8, Linearity 32)

Listing 3 6-bit S-box with MC 7 (Differential uniformity 4, Linearity 16)
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Listing 4 7-bit S-box with MC 5 (Differential uniformity 32, Linearity 128)

Listing 5 7-bit S-box with MC 10 (Differential uniformity 4, Linearity 32)
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Listing 6 8-bit S-box with MC 8 (Differential uniformity 16, Linearity 128)

Listing 7 8-bit S-box with MC 10 (Differential uniformity 8, Linearity 128)
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