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Abstract
Properties of a secondary bent function construction that adds the indicator of an affine
subspace of arbitrary dimension to a given bent function in n variables are obtained. Some
results regarding normal and weakly normal bent functions are generalized. An upper bound
for the number of generated bent functions is proven. This bound is attained if and only if
the given bent function is quadratic. In certain cases, the addition of the indicator of an m-
dimensional subspace, for different m, will not generate bent functions. Such examples are
presented for any even n ≥ 10. It is proven that there exists an infinite family of Maiorana–
McFarland bent functions such that the numbers of generated bent functions differ for the
bent function and its dual function.
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1 Introduction

A bent function is a Boolean function in even number of variables that is at the maximal
possible Hamming distance from the set of all affine Boolean functions. In other words, it
has the best nonlinearity. Bent functions were introduced by O. Rothaus [26]. Since 1960,
they have been actively researched. As extreme objects, they have many applications in
various fields: algebra, coding theory, combinatorics, communication theory, cryptography.

This article belongs to the Topical Collection: Boolean Functions and Their Applications V
Guest Editors: Lilya Budaghyan, Claude Carlet, Tor Helleseth and Kaisa Nyberg

The work is supported by Mathematical Center in Akademgorodok under agreement
No. 075–15–2019–1613 with the Ministry of Science and Higher Education of the Russian Federation
and Laboratory of Cryptography JetBrains Research.

� Nikolay Kolomeec
kolomeec@math.nsc.ru

1 Sobolev Institute of Mathematics, Novosibirsk, Russia

Published online: 27 August 2021

Cryptography and Communications (2021) 13:909–926

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-021-00528-5&domain=pdf
http://orcid.org/0000-0003-4367-3507
mailto: kolomeec@math.nsc.ru


Boolean functions with high nonlinearity are especially interesting for symmetric cryptog-
raphy, since they help to resist linear cryptanalysis [23]. Useful information regarding bent
functions can be found in reviews, dissertations and monographs [6, 7, 9–11, 14, 21, 25, 28].

This work is dedicated to the following secondary construction of bent functions. Let f

be a given bent function in n variables and L be an affine subspace of Fn
2. We consider all

bent functions of the form f ⊕ IndL, where IndL is the indicator function of L. For the first
time it was mentioned by J. Dillon [11] for n/2-dimensional subspaces. Later, C. Carlet [4]
proved a criterion of “bentness” of f ⊕ IndL, where L is of arbitrary dimension. The most
popular and well studied case is dimL = n/2. In this case, the criterion transforms to
the affinity of f on L. Also, the construction generates exactly all bent functions at the
Hamming distance 2n/2 from the given one, which is the minimal possible distance between
two distinct bent functions (see [17]). This connects the construction properties with the
metric properties of the set of all bent functions (see, for instance, [16]). Note that this
case was studied in terms of (weakly) normal bent functions, which means that a function
is constant (resp. affine) on some n/2-dimensional affine subspace (see [3, 8, 13, 20]). It
should be emphasized that the affinity on an affine subspace is an interesting property for
cryptography by itself. Subspaces of large dimension deserve attention too. For instance,
A. Canteaut and P. Charpin considered the case of (n − 2)-dimensional subspaces in the
function decomposition context [2]. Note that it is rather difficult to find a suitable affine
subspace L such that f ⊕ IndL is a bent function. Also, it is hard to determine which of bent
function subclasses contain f ⊕ IndL and which do not. Nevertheless, some results related
to these problems have been obtained [3, 4, 22, 27].

In this work, we investigate the properties of the construction f ⊕ IndL, where L is an
affine subspace of arbitrary dimension m. On the one hand, they are similar to the case of
m = n/2. The construction properties are closely connected with the affinity of the dual
function on affine subspaces. Some known results for m = n/2 are generalized for the case
of arbitrary dimensions, for instance, an upper bound for the number of constructed bent
functions [16], the use of the simplest iterative construction f (x)⊕y1y2 of bent functions [3,
8]. In certain cases, the addition of the indicator of an m-dimensional subspace, for different
m, will not generate bent functions. Such examples are presented for any even n ≥ 10. On
the other hand, the numbers of generated bent functions may differ for some bent function
f and its dual function ˜f , which is opposite to the case of m = n/2. Examples of such bent
functions for any even n ≥ 8 and m = n − 2 are provided. Interestingly, these examples are
Maiorana–McFarland bent functions [24].

The article is organized as follows. Section 2 contains basic definitions. In Section 3, the
notion of a balanced representation of a bent function f by a linear subspace L is intro-
duced. It means that f is either constant or balanced on each coset of L. This notion is
directly connected with the criterion proven in [4]. Also, properties of such representations
(Theorem 2) are considered. Note that bent functions [5, 24, 29] obtained by the concate-
nation of affine functions always have a balanced representation by some nontrivial linear
subspace. In Section 4, we assume that f ⊕ IndL is a bent function for some given bent
function f and an affine subspace L and consider how to find affine subspaces L′ and L′′,
where L′ ⊂ L ⊂ L′′, such that f ⊕ IndL′ and f ⊕ IndL′′ are bent functions. Note that the
conditions related to the existence of L′ and L′′ are, in general, not trivial. There is one sim-
ple case: we can always find an n/2-dimensional L′ by an (n/2 + 1)-dimensional L. The
case of dimL = n/2+ 1 similarly to the case of dimL = n/2 guarantees that the construc-

tion is symmetric for the bent function f and its dual function ˜f : sup( ˜f ⊕( ˜f ⊕ IndL)) is an
affine subspace too (Theorem 3). In other words, the dual functions of f and f ⊕IndL differ
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exactly on an affine subspace of dimension dimL. Actually, the case of dimL = n/2 + 1
is equivalent to applying the construction twice for some n/2-dimensional L′ ⊂ L and its
shift L \ L′: (f ⊕ IndL′) ⊕ IndL\L′ = f ⊕ IndL, where f ⊕ IndL′ is bent. Hence, these
two cases are practically similar. Let us denote by BSm(f ) the set of all bent functions of
the form f ⊕ IndL, where L is m-dimensional. In Section 5, an upper bound for #BSm(f )

is proven. This bound is attained for a nontrivial dimension if and only if the given bent
function f is quadratic (Theorem 4). Also, it is shown how to choose a bent function f in n

variables such that #BSm(f ) = 0, wherem = n−2, n−1, . . . , k. In light of A. Gorodilova’s
results [15], k ≤ n/2 + 4 for the dual function of a suitable Kasami [12, 19] bent function
(Theorem 6). Thus, 0 is a tight lower bound for #BSm(f ). Section 6 focuses on the simplest
iterative construction f+2(x, y) = f (x) ⊕ y1y2 of bent functions. It is proven (Theorem 8)
that “bentness” of f+2 ⊕ IndL for an m-dimensional affine subspace L implies “bentness”
of f ⊕ IndL′ for some affine subspace L′ of dimension m−1 or m−2. This fact generalizes
the properties of normal bent functions [3]. It allows us to construct a bent function f such
that #BSm(f ) = 0, where m = n/2, n/2 + 1, n/2 + 2, n/2 + 3 (the number of dimensions
depends on the initial function; such example is based on the bent function found in [20]).
Note that these dimensions complement the ones from Theorem 6. In addition, #BSn(f+2)

is calculated by constant derivatives (Theorem 9) and it is shown that it is impossible to
find #BSn(f+2) by #BSn−2(f ). The counterexample is found in the Maiorana–McFarland
class. Section 7 demonstrates an infinite family of Maiorana–McFarland bent functions fn

in n variables such that #BSn−2(fn) �= #BSn−2(˜fn), i. e. f and its dual ˜f structurally dif-

fer. This can make it more difficult to determine the class containing ˜f ⊕ IndL even if f is
a Maiorana–McFarland bent function.

2 Preliminaries

Let us denote the finite field with two elements by F2. A Boolean function in n variables
is a mapping from F

n
2 to F2. Let 〈x, y〉 = x1y1 ⊕ . . . ⊕ xnyn, where x, y ∈ F

n
2. Let us

denote the characteristic Boolean function of a set S ⊆ F
n
2 by IndS and the derivative of f

in the direction α by Dαf , Dαf (x) = f (x) ⊕ f (x ⊕ α). Let DLf (x) = ⊕

a∈L f (x ⊕ a),
i. e. the derivative DLf = Da1Da2 . . . Dak

f , where a1, . . . , ak is a basis of L and L is a
k-dimensional linear subspace of Fn

2. We denote the cardinality of the set S by #S, the set
{x ⊕ s | s ∈ S} by x ⊕S and the set {x ∈ F

n
2 | f (x) = 1} by sup(f ). The Hamming distance

between two Boolean functions in n variables is the number of arguments on which these
functions differ. A function f is balanced on a set S if #(sup(f ) ∩ S) = 1

2#S.
The degree of f (deg f ) is the degree of its algebraic normal form that is a representation

of f as a polynomial over F2:

f (x1, . . . , xn) =
⊕

a∈Fn
2

cax
a1
1 . . . xan

n , ca ∈ F2, where

x
ai

i ≡ xi for ai = 1 and x
ai

i ≡ 1 for ai = 0. A function is called affine if its degree is at
most 1 and quadratic if its degree equals to 2. A function f is affine on an affine subspace
L if f (x) ⊕ 〈a, x〉 is constant on L for some a ∈ F

n
2.

The Walsh–Hadamard transform of f is the mapping Wf : Fn
2 → Z such that

Wf (y) =
∑

x∈Fn
2

(−1)f (x)⊕〈y,x〉.
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The numbers Wf (y) are called the Walsh–Hadamard coefficients. A Boolean function f in
n variables, n is even, is a bent function if |Wf (y)| = 2n/2 for all y ∈ F

n
2. We denote by Bn

the set of all bent functions in n variables. The dual function ˜f is defined in the following
way:

(−1)
˜f (y) = 2−n/2Wf (y), y ∈ F

n
2.

The function ˜f is a bent function too, and ˜

˜f = f (see, for instance, [26]).
Two Boolean functions f, g in n variables are called extended affinely equivalent (EA-

equivalent) if there exist an invertible n-by-n binary matrix A, a vector b ∈ F
n
2 and an affine

function � in n variables such that

f (x) = g(xA ⊕ b) ⊕ �(x) for all x ∈ F
n
2.

Hereinafter, we suppose that n is even. In this work, we consider properties of a bent
function construction f ⊕ IndU , where f is a given bent function in n variables and U is an
affine subspace of arbitrary dimension. For f ∈ Bn and 0 ≤ m ≤ n, we define

BSm(f ) = {f ⊕ IndU | U is an m-dimensional affine subspace of Fn
2} ∩ Bn.

Note that for f, g ∈ Bn that are EA-equivalent #BSm(f ) = #BSm(g) holds.
Necessary and sufficient conditions for f ⊕ IndU to be a bent function were proven by

C. Carlet [4].

Theorem 1 (C. Carlet, 1994) Let f ∈ Bn, L ⊆ F
n
2 be a linear subspace and a ∈ F

n
2 . Then

f ⊕ Inda⊕L is a bent function if and only if any of the following equivalent conditions hold:

1. Dαf is balanced on a ⊕ L for all α ∈ F
n
2 \ L;

2. ˜f (x) ⊕ 〈a, x〉 is either constant or balanced on each coset of L⊥.

In the next section, additional details for the second condition of the criterion will be
provided. They will be often used in the proofs.

Note that trivial subspace dimensions for f ∈ Bn are n − 1 and n. In these cases we just
add an affine function to the bent function, i. e. the result is always a bent function too. It
is also well known that f ⊕ IndL is not a bent function if dimL < n/2 (see [4]). Thus, we
will focus on dimensions n/2, n/2 + 1, . . . , n − 2.

3 A balanced representation

Let us introduce the following notion.

Definition 1 A Boolean function f in n variables has a balanced representation by a linear
subspace L ⊆ F

n
2 if f is either constant or balanced on each coset of L.

Note that any function has a balanced representation by the 0-dimensional linear
subspace. The same situation holds for a 1-dimensional linear subspace.

First of all, there are some additional details regarding balanced representations of bent
functions. These statements mostly follow from Theorem 1 and [16].

Theorem 2 Let f ∈ Bn and L be a linear subspace of Fn
2 , dimL ≤ n/2. Then the following

holds.
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1. Let f be constant on each of a1 ⊕ L, . . . , am ⊕ L, where a1, . . . , am ∈ F
n
2 , m ∈ N, and

be balanced on each other a ⊕ L, where a ∈ F
n
2 \ U , U = (a1 ⊕ L) ∪ . . . ∪ (am ⊕ L).

Then f ⊕ IndU ∈ Bn and ˜f ⊕ ˜f ⊕ IndU = IndL⊥ .
2. f has a balanced representation by L if and only if f is constant on each of 2n−2 dimL

distinct cosets of L.
3. f cannot be constant on more than 2n−2 dimL distinct cosets of L.

Proof Starting with the first point, let us consider Wf (x) and Wf ⊕IndU
(x):

Wf ⊕IndU
(x) =

∑

y /∈U

(−1)f (y)⊕〈x,y〉 +
∑

y∈U

(−1)f (y)⊕〈x,y〉⊕1 =

Wf (x) − 2
∑

y∈U

(−1)f (y)⊕〈x,y〉 = Wf (x) − 2
m

∑

i=1

∑

y∈ai⊕L

(−1)f (ai )⊕〈x,y〉.

Since the function y �→ 〈x, y〉 (here x is a fixed parameter) is balanced on any ai ⊕ L if
x /∈ L⊥, it holds that Wf (x) = Wf ⊕IndU

(x) for x /∈ L⊥.
Next, let x ∈ L⊥. In this case, we use the following:

Wf ⊕IndU
(x) = Wf (x) − 2

∑

y∈U

(−1)f (y)⊕〈x,y〉.

It can be seen that
∑

y∈U(−1)f (y)⊕〈x,y〉 = Wf (x). Indeed, 〈x, z〉 ≡ const on z ∈ y ⊕ L,

y /∈ U , and, therefore, f (z) ⊕ 〈x, z〉 is balanced on y ⊕ L. Thus,
∑

y /∈U(−1)f (y)⊕〈x,y〉 =
0 and Wf (x) = ∑

y∈U(−1)f (y)⊕〈x,y〉, i. e. Wf ⊕IndU
(x) = −Wf (x). At the same time,

Wf (x) = ±2n/2. Consequently, f ⊕ IndU is a bent function. Also, Wf ⊕IndU
(x) = Wf (x)

if and only if x /∈ L⊥. The first point is proven.
We can see that the first point implies that m = 2n−2 dimL, since #L⊥ = 2n−dimL and

it is well known that the duality mapping preserves the Hamming distance between bent
functions (see, for instance, [4]). Some results related to this mapping can be found in [18].
This proves the first half of the second point. To complete the second point and to prove the
third point, we refer to [16, Lemma 8].

Corollary 1 Let f, f ⊕ Inda⊕L ∈ Bn, where L is a linear subspace of Fn
2 and a ∈ F

n
2 . Then

sup( ˜f ⊕( ˜f ⊕ IndL)) = (a1⊕L⊥)∪. . .∪(a
2n−2 dimL⊥ ⊕L⊥), where f (x)⊕〈a, x〉 is constant

on each of ai ⊕ L⊥ (each two of them are distinct). Note that this does not guarantee that

sup( ˜f ⊕ ( ˜f ⊕ IndL)) is an affine subspace.

The case of dimL = n/2 is especially interesting for bent functions. A large class of
normal bent functions for this representation was introduced by H. Dobbertin [13]. Also,
any bent function represented by the concatenation of affine functions in k variables [5, 24,
29] has a balanced representation by some k-dimensional linear subspace.

Note that the algorithm described in [3] can find all balanced representations of bent
functions f (x) ⊕ 〈a, x〉 for all a ∈ F

n
2, i. e. all elements of BSm( ˜f ). Such algorithms have

many applications (see, for instance, [1]).
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4 Subspaces and superspaces of Uwhere f ⊕ IndU ∈ Bn

In this section, we consider a possibility to increase and decrease the dimension of a sub-
space by 1 which is suitable for the construction. Let us start with balanced representations.

Proposition 1 Suppose that f ∈ Bn has a balanced representation by a linear subspace
L ⊆ F

n
2 . Then

1. f has a balanced representation by L ∪ (a ⊕ L), where a ∈ F
n
2 \ L, if and only if

a ⊕ U = U , where U is the union of all cosets of L such that f is constant on each of
them.

2. f has a balanced representation by Lw = {x ∈ L | 〈w, x〉 = 0}, where w ∈ F
n
2L

⊥, if
and only if f (x) ⊕ 〈w, x〉 has a balanced representation by L.

Proof To prove the first point, it is enough to note that f is either constant or balanced on
L ∪ (a ⊕ L) if and only if there are no cases when f is constant on x ⊕ L and balanced on
a ⊕ x ⊕ L. It is equivalent to a ⊕ U = U .

Let us consider the second point. Since w /∈ L⊥, L = Lw ∪ (s ⊕ Lw) for some s ∈ L

such that 〈w, s〉 = 1. First of all, let b ∈ U . Then f is constant on b ⊕ Lw and b ⊕ s ⊕ Lw ,
i. e. U consists of 2 ·2n−2 dimL cosets of Lw . At the same time, f (x)⊕〈w, x〉 is not constant
on b ⊕ L since 〈w, b〉 �= 〈w, b ⊕ s〉.

Let b /∈ U . Therefore, f is balanced on b ⊕ L. As a consequence, f is constant on
b ⊕ Lw if and only if f is constant on b ⊕ s ⊕ Lw = (b ⊕ L) \ (b ⊕ Lw). Note that
f (x) ⊕ 〈w, x〉 = f (x) ⊕ 〈w, b〉 for x ∈ b ⊕ Lw and f (x) ⊕ 〈w, x〉 = f (x) ⊕ 〈w, b〉 ⊕ 1
for x ∈ b ⊕ s ⊕ Lw . It implies that f (x) ⊕ 〈w, x〉 is constant on b ⊕ L if and only if f is
constant on b ⊕ Lw and b ⊕ s ⊕ Lw .

Hence, f is constant on 2n−2 dimLw = 2 · 2n−2 dimL + 2 · 2n−2 dimL distinct cosets of
Lw if and only if f (x) ⊕ 〈w, x〉 is constant on 2n−2 dimL distinct cosets of L. Theorem 2
completes the proof.

The following property follows from the previous proposition. Theorem 1 and bent
function distance properties can also provide it.

Proposition 2 Let f ∈ Bn and f ⊕ IndL ∈ Bn, where L is an affine subspace of Fn
2 . Let

a ∈ F
n
2 . Then f ⊕ IndL∪(a⊕L) ∈ Bn if and only if f ⊕ Inda⊕L ∈ Bn.

Proof Without loss of generality, we assume that L is a linear subspace. Otherwise, we can
consider f (x ⊕ b) instead of f , where b ∈ L. If a ∈ L, the statement is obvious. Let
a /∈ L. First of all, Theorem 1 provides that ˜f has a balanced representation by L⊥. Next,
(L ∪ (a ⊕ L))⊥ = {x ∈ L⊥ | 〈a, x〉 = 0} = (L⊥)a , where (L⊥)a is defined in the second
point of Proposition 1. According to this point, ˜f has a balanced representation by (L⊥)a
if and only if ˜f (x) ⊕ 〈a, x〉 has a balanced representation by L⊥. Theorem 1 completes the
proof.

Let us rewrite the first point of Proposition 1 in terms of the construction.

Proposition 3 Let f ∈ Bn and f ⊕ IndL ∈ Bn, where L is an affine subspace of Fn
2 . Let

a ∈ F
n
2 and La = {x ∈ L | 〈a, x〉 = 0}. Then f ⊕ IndLa ∈ Bn if and only if Da

˜f ≡
Da( ˜f ⊕ IndL).
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Proof It is easy to see that Da
˜f ≡ Da( ˜f ⊕ IndL) is equivalent to a ⊕ U = U , where

U = sup( ˜f ⊕ ( ˜f ⊕ IndL)). Without loss of generality, we can assume that L is a linear
subspace, similarly to Proposition 2. Let L′ = {x ∈ L | 〈a, x〉 = 0}. If L′ = L, the
statement is obvious: it means that a ∈ L⊥ and we know that U is the union of cosets of
L⊥. In other cases, either La = L′ or La = L \ L′, where dimL′ = dimL − 1. According
to Proposition 1, ˜f has a balanced representation by L′⊥ = L⊥ ∪ (a ⊕ L⊥) if and only if
a ⊕ U = U . Thus, f ⊕ IndL′ ∈ Bn if and only if a ⊕ U = U . In light of Proposition 2, it
does not matter whether La = L′ or La = L \ L′.

Note that Propositions 1, 2 and 3 give nontrivial conditions to increase and decrease the
dimension of a subspace. It looks like it is rather hard to construct a subspace or a superspace
of the given one. In other words, nonempty BSm(f ), in general, does not guarantee that
BSm+1(f ) and BSm−1(f ) are nonempty too. It is confirmed by the computational experi-
ments and by the results obtained in Sections 5.1 and 6.2 that are dedicated to bent functions
with empty BSm(f ).

It is known [4] that the set sup( ˜f ⊕ ( ˜f ⊕ IndU)) is always an affine subspace for f, f ⊕
IndU ∈ Bn and an n/2-dimensional U . Next, we prove that the same is true for an (n/2 +
1)-dimensional subspace.

Theorem 3 Let f ∈ Bn and f ⊕ IndU ∈ Bn, where U is an affine subspace of Fn
2 of

dimension at most n/2 + 1. Then sup( ˜f ⊕ ( ˜f ⊕ IndU)) is an affine subspace too.

Proof The case of dimU = n/2 is obvious. Suppose that dimU = n/2+1. By Theorem 1,
let us move to a balanced representation by L⊥ for g(x) = ˜f (x)⊕〈a, x〉, where a⊕L = U ,
L is a linear subspace. According to Corollary 1, we have 2n−2 dimL⊥ = 22 = 4 “constant”

cosets C1, C2, C3, C4 of L⊥, i. e. C1 ∪ C2 ∪ C3 ∪ C4 = sup( ˜f ⊕ ( ˜f ⊕ IndU)). Without
loss of generality, we can suppose that g|C1 ≡ g|C2 . By Theorem 2, the function g has a
balanced representation by the affine subspace C1∪C2 of dimension n/2. But Proposition 1
provides that there exists a /∈ L⊥ such that a ⊕ (C1 ∪ C2 ∪ C3 ∪ C4) = C1 ∪ C2 ∪ C3 ∪ C4.
Since a /∈ L⊥, it holds a ⊕ Ci1 = Ci2 and a ⊕ Ci3 = Ci4 for some {i1, i2, i3, i4} =
{1, 2, 3, 4}. It means that a ⊕ (Ci1 ∪Ci3) = Ci2 ∪Ci4 . Since Ci1 ∪Ci3 is an affine subspace,
(Ci1 ∪ Ci3) ∪ (Ci2 ∪ Ci4) = C1 ∪ C2 ∪ C3 ∪ C4 is an affine subspace too.

An important corollary of the theorem is the following proposition.

Proposition 4 Let f ∈ Bn and f ⊕ IndL ∈ Bn, where L is an (n/2+1)-dimensional affine
subspace of Fn

2 . Then there exists an n/2-dimensional affine subspace L′ ⊂ L such that
f ⊕ IndL′ ∈ Bn.

Proof Due to Theorem 3, let U = sup( ˜f ⊕ ( ˜f ⊕ IndL)) be a coset of a linear subspace U ′.
Since L⊥ ⊂ U ′, Proposition 3 gives us that f ⊕ IndLa ∈ Bn, where a ∈ U ′ and a /∈ L⊥. In
this case dimLa = n/2.

Proposition 4 claims that the case of (n/2+1)-dimensionalL is equivalent to applying the
construction twice for some n/2-dimensional L′ ⊂ L (that always exists by the proposition)
and its shift L \ L′, i. e.

(f ⊕ IndL′) ⊕ IndL\L′ = f ⊕ IndL, where f ⊕ IndL′ ∈ Bn.
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5 Bounds for #BSm(f )

The following theorem estimates #BSm(f ). It generalizes the upper bound from [16] that
works for m = n/2.

Theorem 4 For f ∈ Bn and m ≥ n/2, it holds

#BSm(f ) ≤ 2n−m
n−m
∏

i=1

22m−n+2i − 1

2i − 1
.

Moreover, for m ≤ n − 2, the bound is attained if and only if f is quadratic.

Proof To prove the bound, we refer to [16, Theorem 2]. In the first part of that theorem, the
following was shown:

#Ds(g) ≤ 2n
s−1
∏

t=0

2n−2t − 1

2 · (2t+1 − 1)
= #Ds(h),

where g, h ∈ Bn, h is quadratic, Ds(g) is the set of all s-dimensional affine subspaces such
that g is affine on each of them.

Let U ∈ Ds(g), i. e. g(x) ⊕ 〈a, x〉 is constant on U for some a ∈ F
n
2. Next, we define

ncg(U) = #{b ⊕ U | g(x) ⊕ 〈a, x〉 is constant on b ⊕ U, b ∈ F
n
2}.

Theorem 1 gives us that #BSn−s(g̃) = #P s(g), where

P s(g) = {a ⊕ L⊥ | a ∈ F
n
2, L is a linear subspace of dimension s

and the function g(x) ⊕ 〈a, x〉 has a balanced representation by L}.
Note that a ⊕L⊥ = b ⊕L⊥ if and only if 〈a, x〉⊕ 〈b, x〉 is constant on u⊕L, a, b, u ∈ F

n
2.

In other words, if g(x) ⊕ 〈a, x〉 is constant on u ⊕ L, then g(x) ⊕ 〈b, x〉 is constant
on u ⊕ L if and only if a ⊕ L⊥ = b ⊕ L⊥. In light of Theorem 2, it implies that
#P s(g) = 22s−n#{U ∈ Ds(g) | ncg(U) = 2n−2s}. Therefore, #BSn−s(g̃) = #P s(g) ≤
22s−n#Ds(g). According to [16, Proposition 4], nch(U) = 2n−2 dimU for any U ∈ Ds(h),
i. e. #BSn−s(˜h) = 22s−n#Ds(h). As a result,

#BSm(g̃) ≤ 22(n−m)−n#Dn−m(g) ≤ 22(n−m)−n2n
n−m−1
∏

t=0

2n−2t − 1

2 · (2t+1 − 1)
=

2n−m
n−m
∏

i=1

2n−2i+2 − 1

2i − 1
= 2n−m

n−m
∏

i=1

2n−2(n−m−i+1)+2 − 1

2i − 1
= #BSm(˜h).

It is more difficult to prove that the bound is attained only by quadratic functions for any
m ≤ n−2. The second part of the proof of [16, Theorem 2] gives us that #Ds(g) < #Ds(h)

if there exists U ∈ D2(g) such that ncg(U) < 2n−2·2, where s > 2. Let us prove the
existence of such U by contradiction. Note that we exclude the case of #D2(g) = 0 since it
is straightforward.

Let g be not quadratic. Suppose that ncg(U) = 2n−2·2 for any U ∈ D2(g). We consider
any U ∈ D2(g), U = u ⊕ L, where L is a linear subspace, u ∈ F

n
2. Since ncg(u ⊕ L) =

2n−2·2, Theorem 2 provides that ga(x) = g(x)⊕〈a, x〉 for some a ∈ F
n
2 has a balanced rep-

resentation by L, i. e. ga is either constant or balanced on each coset of L. But any function
balanced on 2-dimensional subspace is affine on it (see, for instance, [16, Proposition 2]).
Thus, ga is affine on each coset of L. As a consequence, g(x) = ga(x) ⊕ 〈a, x〉 is affine on
each coset of L as well. Hence, g is completely affinely decomposable of order 2.
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Recall that g is completely affinely decomposable of order 2 if 1) g is affine on at least
one 2-dimensional affine subspace; 2) if g is affine on a 2-dimensional affine subspace,
then g is affine on any its coset as well. It is known [16, Theorem 1] that only affine and
quadratic functions can satisfy these conditions, which contradicts the choice of g.

Thus, there exists U ∈ D2(g) such that ncg(U) < 2n−2·2. In other words, #Ds(g) <

#Ds(h) for any s > 2. It implies that #BSm(g̃) < #BSm(˜h) for any m < n − 2. Let us
consider s = 2. Since ncg(U) < 2n−2·2, it can be seen that #BSn−2(g̃) = #P 2(g) <

22·2−n#D2(g) ≤ 22·2−n#D2(h) = #BSn−2(˜h). Finally, we choose ˜f as g since f is
quadratic if and only if ˜f is quadratic. The same is true for h.

5.1 Bent functions with #BSm(f ) = 0

Let us show that #BSm(f ) = 0 for some f ∈ Bn and some m. First of all, the following
necessary condition for derivatives holds.

Lemma 1 Let f ∈ Bn and the function f (x) ⊕ 〈w, x〉, w ∈ F
n
2 , have a balanced represen-

tation by a linear subspace L, dimL ≥ 2. Then DLf ≡ 0.

Proof First of all, DL〈w, x〉 ≡ 0 since dimL ≥ 2. Next, let us recall that DLf (x) =
⊕

a∈L f (x ⊕a). Since f is either constant or balanced on a fixed x ⊕L, the number of ones
among f (x ⊕ a), a ∈ L, is either 0 or 2dimL−1 or 2dimL, i. e. it is always even. Therefore,
DLf (x) = 0 for any x ∈ F

n
2.

This subsection focuses on the Kasami bent functions. It was proven [12, 19] that the
functions of the form f (x) = tr(αx22k−2k+1) are bent, where

– α, x ∈ F2n , F2n is the field with 2n elements and n is even;
– tr(y) = y20 + y21 + . . . + y2n−1

, y ∈ F2n , tr(y) always belongs to F2;
– 0 < k < n and gcd(k, n) = 1;
– α /∈ {y3 | y ∈ F2n}. Note that {y3 | y ∈ F2n} �= F2n if n is even.

These functions are called the Kasami bent functions. Though they map F2n to F2, we can
fix a basis of F2n (since it is a vector space over F2) and consider them as Boolean functions.
It is well known that deg f = k+1 for 0 < k < n/2 and deg f = n−k+1 for n/2 < k < n.

In A.Gorodilova’s work [15] the properties of DLf of the Kasami functions were
studied. We note the following result.

Theorem 5 (A. Gorodilova, 2013) Let f be a Kasami bent function in n variables of
degree t , n ≥ 8 is even. Then DLf �≡ 0 for any k-dimensional linear subspace L, where

k ≤
{

t − 2, if 4 ≤ t ≤ (n + 3)/3;
t − 3, if (n + 3)/3 < t ≤ n/2.

These derivatives for 2-dimensional L were also studied in [27]: using the derivatives,
D. Sharma et al. proved that a nonquadratic Kasami bent function does not belong to the
Maiorana–McFarland class.

In light of these results, it is not difficult to prove that
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Theorem 6 There exists a Kasami bent function f in n variables such that #BSm( ˜f ) = 0,
where

n − 2 ≥ m ≥
{

n/2 + 3, if 4 | n or n = 10;
n/2 + 4, otherwise.

Proof Recall that there exists a Kasami bent function in n variables of degree n/2 if 4 | n

and of degree n/2 − 1 for other even n. In the first case, gcd(n, n/2 − 1) = 1 allows us to
construct a Kasami bent function f of degree n/2. In the second case, gcd(n, n/2− 2) = 1
and, similarly, there exists a Kasami function f of degree n/2 − 1. According to Lemma 1
and Theorem 5, these Kasami functions (even if we add an affine function) cannot have a
nontrivial balanced representation by a subspace of dimension at most n/2− 3 and n/2− 4
respectively. The case of n = 10 satisfies 4 ≤ t ≤ (10 + 3)/3 case of Theorem 5 and
can be considered as the first case. Thus, Theorem 1 provides that #BSm( ˜f ) = 0, where
n − 2 ≥ m ≥ n − (n/2 − 3) for the first case and n − 2 ≥ m ≥ n − (n/2 − 4) for the
second case.

Let us note that in Section 6.2 we consider bent functions f ∈ Bn such that #BSm (f ) = 0
for m ≤ n/2 + 3. In some sense, these examples complement Theorem 6: in this section
we focus on m = n − 2, n − 3, . . ., in Section 6.2 we focus on m = n/2, n/2 + 1, . . ..
Unfortunately, at the moment there is no example of a bent function f ∈ Bn, where n is
arbitrary, such that #BSm(f ) = 0 for any m ≤ n − 2.

6 BSm(f+2) for the iteratively constructed bent function f+2

Let us consider the simplest iterative construction of a bent function f+2 by f ∈ Bn:

f+2(x1, . . . , xn+2) = f (x1, . . . , xn) ⊕ xn+1xn+2.

Recall that f+2 ∈ Bn+2 if and only if f ∈ Bn. Also, it holds

˜f+2(x1, . . . , xn+2) = ˜f (x1, . . . , xn) ⊕ xn+1xn+2.

Since f and f+2 have different number of variables, let us define

pjn(x) = (x1, . . . , xn) and pjn(S) = {pjn(x) | x ∈ S},
where x ∈ F

n+2
2 and S ⊆ F

n+2
2 . Also, Fn

2(S) = {x ∈ F
n
2 | (x, 0, 0) ∈ S}.

In this section, we establish the connection between BSm−1(f ), BSm−2(f ) and
BSm(f+2).

6.1 Balanced representations of iteratively constructed functions

Recall that f ∈ Bn is normal if it has a balanced representation by some n/2-dimensionalL.
Hence, the result of this subsection (Theorem 7 and the bellow proposition) is a generaliza-
tion of the normal bent function property “f is normal if and only if f+2 is normal” which
was proven in [3] (see also [8]).

Proposition 5 Let f ∈ Bn have a balanced representation by a linear subspace L ⊆ F
n
2 .

Then the bent function f+2 has balanced representations by

1. L0 = {(x, 0, 0) | x ∈ L}, i. e. dimL0 = dimL;
2. L1 = {(x, y, 0) | x ∈ L, y ∈ F2}, i. e. dimL1 = dimL + 1.
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Let us establish which balanced representations of f exist if we have some balanced
representation of f+2.

Theorem 7 Let f ∈ Bn and suppose that f+2 has a balanced representation by a linear
subspace L ⊆ F

n+2
2 . Then there exists a linear subspace L′ ⊆ F

n
2 , where dimL − 1 ≤

dimL′ ≤ dimL, such that f has a balanced representation by L′. Moreover, Fn
2(L) ⊆

L′ ⊆ pjn(L) holds.

Proof Let x = (x1, . . . , xn+2) ∈ F
n+2
2 . For convenience, we rename the variables of both

functions, that is, consider f (x3, . . . , xn+2) and f+2(x) = x1x2 ⊕ f (x3, . . . , xn+2), where
the function f is defined on the set

Γ = {̃x | x ∈ F
n+2
2 } ⊆ F

n+2
2 , x̃ = (0, 0, x3, . . . , xn+2).

We work with Fn
2(L) and pjn(L) taking into account the new notation, i. e. pjn(x) = x̃ ∈ Γ

and Fn
2(L) = L ∩ Γ .

Suppose that f+2 has a balanced representation by a (t + 1)-dimensional subspace L ⊆
F

n+2
2 . By Theorem 2, it is constant on each of s1 ⊕ L, . . . , sm ⊕ L which are distinct,

s1, . . . , sm ∈ F
n+2
2 and m = 2n−2t . Let L′ = L ∩ Γ . Since dimΓ = n, then dimL′ ∈

{t + 1, t, t − 1}.

Case 1 dimL′ = t + 1. Therefore, L = L′ ⊆ Γ , i. e. any coset of L′ either belongs to
Γ or does not intersect with Γ . Since f (a ⊕ x) = f+2(a ⊕ x) for all x ∈ L′, a ∈ Γ, the
function f is either constant or balanced on each coset of L′ which belongs to Γ . Hence, it
has balanced representation by L′ = L. Moreover, L′ = F

n
2(L) holds.

Case 2 dimL′ = t . Then for some fixed α ∈ L \ L′ we can represent any x ∈ L as
x = x′ ⊕ yα, where x′ ∈ L′, y ∈ F2. Fixing some s ∈ F

n+2
2 , it holds

f+2(s ⊕ yα ⊕ x′) = f (̃s ⊕ yα̃ ⊕ x′) ⊕ (s1 ⊕ yα1)(s2 ⊕ yα2) = f (̃s ⊕ yα̃ ⊕ x′)
⊕(α1s2 ⊕ α2s1 ⊕ α1α2)y ⊕ s1s2 for all x

′ ∈ L′ and y ∈ F2. (1)

Let us consider S = (s1⊕L)∪ . . .∪(sm ⊕L). It is obvious that #S = m2t+1. Note that if
f+2 is constant on s⊕L, s ∈ S, then f+2 is constant on a⊕s⊕L for a = (α1, α2, 0, . . . , 0) ∈
F

n+2
2 too. Indeed, (α1s2 ⊕ α2s1 ⊕ α1α2)y = (α1(s2 ⊕ α2) ⊕ α2(s1 ⊕ α1) ⊕ α1α2)y for any

y ∈ F2, that is why (1) gives us

f+2(s ⊕ a ⊕ yα ⊕ x′) = f+2(s ⊕ yα ⊕ x′) ⊕
α1s2 ⊕ α2s1 ⊕ α1α2 for all x

′ ∈ L′ and y ∈ F2.

At the same time, Theorem 2 claims that the bent function f+2 cannot be constant on more
than m distinct cosets. Therefore, a ⊕ S = S. Since a ∈ L \ L′, it holds (α1, α2) �= (0, 0).
Let us consider two subcases.

Case 2.1 a ∈ L. In this case we can suppose that α = a. Then, fixing some s ∈ S,
equality (1) transforms to

f+2(s) = f+2(s ⊕ yα ⊕ x′) = f (̃s ⊕ x′) ⊕ (α1s2 ⊕ α2s1 ⊕ α1α2)y

⊕s1s2 for all x
′ ∈ L′ and y ∈ F2. (2)

On the one hand, f is constant on each u ⊕ L′, where u ∈ ˜S = {̃s | s ∈ S}. On the
other hand, f (̃s ⊕ x′) does not depend on y. It means that α1s2 ⊕ α2s1 ⊕ α1α2 = 0 for all
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s ∈ S. Thus, for two elements of F2
2 given as (s1, s2), the equality does not hold. Therefore,

#˜S ≥ #S/2 = m2t . But in this case we have at least m = m2t /2dimL′
distinct cosets of L′

such that f is constant on each of them. By Theorem 2, f has a balanced representation by
t-dimensional L′. Note that Fn

2(L) = L′ = pjn(L) holds.

Case 2.2 a /∈ L. Let us consider L′′ = L ∪ (a ⊕ L), dimL′′ = t + 2. Since a ⊕ S = S,
the first point of Proposition 1 provides that f+2 has a balanced representation by L′′. To
conclude the case, it is enough to note that any element x ∈ L′′ can be represented as
x = x′ ⊕αy ⊕az = x′ ⊕y(α ⊕a)⊕ (z⊕y)a = x′ ⊕yβ ⊕ z′a, where β = α ⊕a ∈ Γ, x′ ∈
L′, y, z′ ∈ F2. Hence, we obtain that f+2 has a balanced representation by (t + 2)-dimen-
sional L′′. At the same time, dimL′′ ∩ Γ = t + 1 and a ∈ L′′. It means that we can apply
the case 2.1 to the subspace L′′ and the element a. As a result, the function f has a balanced
representation by (t + 2− 1)-dimensional L′ ∪ (β ⊕ L′) = U . Also, Fn

2(L) ⊂ U ⊆ pjn(L)

holds.

Case 3 dimL′ = t − 1. In this case there exist α, β ∈ L \ L′ such that (α1, α2) =
(1, 0) and (β1, β2) = (0, 1). Any element x ∈ si ⊕L, i ∈ {1, . . . , m}, can be represented as
x = si ⊕ x′ ⊕ yα ⊕ zβ, where x′ ∈ L′, y, z ∈ F2. Without loss of generality, let us suppose
that si ∈ Γ (otherwise, we can consider si ⊕ α, si ⊕ β or si ⊕ α ⊕ β instead of si). Next,
for any fixed i ∈ {1, . . . , m} it holds

f (si) = f+2(s
i) = f+2(s

i ⊕ x) = f+2(s
i ⊕ x′ ⊕ yα ⊕ zβ) =

f (si ⊕ x′ ⊕ yα̃ ⊕ z˜β) ⊕ yz for all x′ ∈ L′ and y, z ∈ F2. (3)

Thus, f is constant on each of si ⊕ L′, si ⊕ α̃ ⊕ L′, si ⊕ ˜β ⊕ L′ and si ⊕ α̃ ⊕ ˜β ⊕ L′.
We consider the subspace L′′ = L′ ∪ (̃α ⊕ ˜β ⊕ L′). Let us show that dimL′′ = t . It is

equivalent to α̃ ⊕ ˜β /∈ L′. Indeed, fixing x′ = 0, (3) provides that

f (si) = f+2(s
i) = f+2(s

i ⊕ α ⊕ β) = f (si ⊕ α̃ ⊕ ˜β) ⊕ 1,

but f is constant on si ⊕ L′. It means that α̃ ⊕ ˜β /∈ L′.
Next, we prove that f is constant on each of si ⊕ α̃ ⊕ L′′. Note that si ⊕ α̃ ⊕ L′′ =

(si ⊕ α̃ ⊕ L′) ∪ (si ⊕ ˜β ⊕ L′). According to (3),

f (si ⊕ α̃) = f+2(s
i ⊕ α) = f+2(s

i ⊕ β) = f (si ⊕ ˜β).

At the same time, f is constant on both si ⊕ α̃ ⊕ L′ and si ⊕ ˜β ⊕ L′, i. e. it is constant on
their union.

The rest of the case is to prove that all si ⊕ α̃ ⊕ L′′ are distinct. Suppose that si ⊕ α̃ ⊕
sj ⊕ α̃ = si ⊕ sj ∈ L′′ for i �= j , where i, j ∈ {1, . . . , m}. But si ⊕ sj /∈ L′ ⊆ L by the
choice. Therefore, si ⊕ sj ∈ α̃ ⊕ ˜β ⊕ L′. In other words, si = sj ⊕ α̃ ⊕ ˜β ⊕ x′, x′ ∈ L′.
By (3) and the definition of f+2, we obtain that

f+2(s
i) = f+2(s

i ⊕ yα ⊕ zβ) = f (si ⊕ yα̃ ⊕ z˜β) ⊕ yz =
f (sj ⊕ (y ⊕ 1)̃α ⊕ (z ⊕ 1)˜β ⊕ x′) ⊕ (y ⊕ 1)(z ⊕ 1) ⊕ y ⊕ z ⊕ 1 =

f+2(s
j ⊕ (y ⊕ 1)α ⊕ (z ⊕ 1)β ⊕ x′) ⊕ y ⊕ z ⊕ 1 for all y, z ∈ F2.

But f+2(s
j ⊕ (y ⊕1)α ⊕ (z⊕1)β ⊕x ′) = f+2(s

j ). Hence, f+2(s
i) = f+2(s

j )⊕y ⊕ z⊕1
for all y, z ∈ F2, which is a contradiction. As a result, any two of si ⊕ α̃ ⊕ L′′ are distinct
and f is constant on each of them. By Theorem 2, f has a balanced representation by L′′.
Note that Fn

2(L) ⊂ L′′ ⊂ pjn(L) holds.
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6.2 The connection between BSm−1(f ), BSm−2(f ) and BSm(f+2)

Recall that Theorem 1 gives us the connection between an affine subspace U , for which
f ⊕IndU is a bent function, and the balanced representation of the bent function ˜f . It means
that the results obtained in Section 6.1 can help us to establish the connection between the
sets BSm(f ) and BSk(f+2).

Proposition 6 Let f ∈ Bn and f ⊕ IndU ∈ Bn, where U is an affine subspace of Fn
2 . Then

both f+2 ⊕ IndU1 and f+2 ⊕ IndU2 are bent functions, where

1. U1 = {(x, y, 0) | x ∈ U, y ∈ F2}, i. e. dimU1 = dimU + 1;
2. U2 = {(x, y, z) | x ∈ U, y, z ∈ F2}, i. e. dimU2 = dimU + 2.

Theorem 8 Let f+2 ∈ Bn+2 and f+2 ⊕ Inda⊕L ∈ Bn+2, where L ⊆ F
n+2
2 is a linear

subspace, a ∈ F
n+2
2 . Then there exists a linear subspace L′ ⊆ F

n
2 , where dimL − 2 ≤

dimL′ ≤ dimL − 1, such that f ⊕ Indpjn(a)⊕L′ ∈ Bn. Moreover, Fn
2(L) ⊆ L′ ⊆ pjn(L)

holds.

Proof By Theorem 1, f+2 ⊕ Inda⊕L ∈ Bn+2 if and only if ˜f (x) ⊕ 〈a, x〉 has a balanced
representation by L⊥. Let us consider f+2(x ⊕ a) instead of f+2:

f+2(x ⊕ a) = f (pjn(x) ⊕ pjn(a)) ⊕ (xn+1 ⊕ an+1)(xn+2 ⊕ an+2).

Since (xn+1 ⊕ an+1)(xn+2 ⊕ an+2) = xn+1xn+2 ⊕ an+2xn+1 ⊕ an+1xn+2 ⊕ an+1an+2, we
can exclude �(x) = an+2xn+1⊕an+1xn+2⊕an+1an+2 from f+2(x⊕a): indeed, g⊕IndU ∈
Bn+2 if and only if g ⊕ � ⊕ IndU ∈ Bn+2.

It means that ˜f (pjn(x) ⊕ pjn(a)) ⊕ xn+1xn+2 has a balanced representation by L⊥.
According to Theorem 7, ˜f (pjn(x) ⊕ pjn(a)) has a balanced representation by L′, where
F

n
2(L

⊥) ⊆ L′ ⊆ pjn(L
⊥). Again, it implies that f (pjn(x) ⊕ pjn(a)) ⊕ IndL′⊥(x) is a

bent function. Consequently, f ⊕ Indpjn(a)⊕L′⊥ is a bent function too, where (pjn(L
⊥))⊥ ⊆

L′⊥ ⊆ (Fn
2(L

⊥))⊥.
To complete the proof, it is necessary to check the bounds for L′⊥. The dimensions

obviously satisfy the conditions. Next,

(pjn(L
⊥))⊥ = {x ∈ F

n
2 | 〈x, y〉 = 0 for any y ∈ pjn(L

⊥)} =
{x ∈ F

n
2 | 〈(x, 0, 0), y〉 = 0 for any y ∈ L⊥} =

(L⊥)⊥ ∩ {(x, 0, 0) | x ∈ F
n
2} = F

n
2(L).

We obtain that (pjn(L))⊥ = (pjn((L
⊥)⊥))⊥ = F

n
2(L

⊥) from the above equality, i. e.
(Fn

2(L
⊥))⊥ = pjn(L). As a result, Fn

2(L) ⊆ L′⊥ ⊆ pjn(L) holds.

Theorem 8 allows us to preserve k zero values starting with n/2: if

#BSn/2(f ) = #BSn/2+1(f ) = . . . = #BSn/2+k−1(f ) = 0, then

#BSn/2+1(f+2) = #BSn/2+2(f+2) = . . . = #BSn/2+k(f+2) = 0.
Computational experiments show that for the non-weakly normal bent function f10 ∈

B10 found in [20, Fact 14] the following holds.

Fact 1 For an affine subspace U ⊆ F
10
2 , dimU ≤ 8, f10 ⊕ IndU /∈ B10 holds.

Together with Theorem 8, it implies the following:
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Corollary 2 For any n ≥ 10, there exists a bent function f ∈ Bn such that f ⊕ IndU /∈ Bn

for any affine subspace U ⊆ F
n
2 of dimension at most n/2 + 3.

Remark 1 We do not consider the more general iterative construction h(x, y) = f (x) ⊕
g(y), where x ∈ F

n
2 and y ∈ F

t
2, for which we have the same “normal” property [8]: if g is

normal, then h is normal if and only if f is normal. It is more difficult andD(a,0)D(0,b)h ≡ 0
for any a ∈ F

n
2, b ∈ F

t
2. According to Proposition 7 (see Section 6.3), BSn+t−2(˜h) is always

nonempty.

6.3 Exact number of functions in BSn (f+2)

Despite the bounds from Theorem 8, it seems impossible to obtain #BSm(f+2) by
#BSm−1(f ) and #BSm−2(f ). Theorem 9 and computational experiments will clearly show
this. The next proposition follows from [2, Theorem 8]. It can be proven directly by the
second point of Theorem 1.

Proposition 7 (A. Canteaut, P. Charpin, 2003) Let f ∈ Bn, L be an (n − 2)-dimensional
linear subspace of Fn

2 and a ∈ F
n
2 . Then f ⊕ Inda⊕L is a bent function if and only if

DL⊥ ˜f ≡ 0.

Let us introduce

Kc(f ) = #{2-dimensional linear subspace L | DLf ≡ c}, c ∈ F2.

Proposition 7 implies that #BSn−2( ˜f ) = 4K0(f ).

Theorem 9 For any f ∈ Bn it holds

K0(f+2) = 10K0(f ) + 6K1(f ) + 3 · 2n − 3,

K1(f+2) = 6K0(f ) + 10K1(f ) + 3 · 2n − 2.

Proof Let us work with a Gauss–Jordan basis (GJB) of a 2-dimensional linear subspace of
F

n+2
2 (see, for instance, [3]). We need to define lead(a) = i such that ai = 1 and aj = 0 for

all j < i, where i, j ∈ {1, . . . , n + 2}. A pair of nonzero a, b ∈ F
n+2
2 is a GJB of the linear

subspace {0, a, b, a ⊕ b} if lead(a) > lead(b) and blead(a) = 0. For any linear subspace
there exists a unique GJB.

Let a = (a′, α), b = (b′, β) ∈ F
n+2
2 , where a′, b′ ∈ F

n
2, α, β ∈ F

2
2. We note the

following examples of GJBs:

In the first example, lead(a) = 4, lead(b) = 2. Also, a′, b′ are linearly independent, α, β

are linearly dependent. In the second example, lead(a) = 6, lead(b) = 2. Also, a′, b′ are
linearly dependent, α, β are linearly independent.

Let us count the number of GJBs a, b that correspond to DLf ≡ c, c ∈ F2. Firstly,
it is easy to see that DLf+2(x) = Da′Db′f (x1, . . . , xn) ⊕ DαDβxn+1xn+2. Note that
DαDβxn+1xn+2 ≡ d, where d ∈ F2. It means that DLf+2 ≡ c if and only if Da′Db′f ≡
c ⊕ d. Also, the following holds:

1. DαDβxn+1xn+2 ≡ 1 if and only if α, β are linearly independent;
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2. Da′Db′f ≡ 0 for linearly dependent a′, b′.

Next, we calculate K0(f+2). All the desired subspaces satisfy one of the independent cases:

Case 1 a′ and b′ are linearly independent. There are two subcases here:

Case 1.1 Da′Db′f ≡ 0 and DαDβxn+1xn+2 ≡ 0. There are K0(f ) possibilities to choose
a GJB a′, b′. According to point 1, any linearly dependent α, β can be chosen, there are
exactly 10 such pairs. We obtain 10K0(f ) GJBs.

Case 1.2 Da′Db′f ≡ 1 and DαDβxn+1xn+2 ≡ 1. Similarly to the previous case, there are
6K1(f ) distinct GJBs, since α, β are linearly independent; there are exactly 6 such pairs
(α, β).

Case 2 a′ and b′ are linearly dependent (it holds Da′Db′f ≡ 0 by point 2) and
DαDβxn+1xn+2 ≡ 0. To form a GJB (a, b) by linearly dependent a′, b′, a′ = 0 is neces-
sary. Any nonzero vector can be chosen as b′ (we do not consider b′ = 0 since α, β are
linearly dependent too). Next, any of 3 nonzero elements can be chosen as α: (1, 0), (0, 1)
or (1, 1). But βlead(α) = 0 �= αlead(α), it means that the only way is β = (0, 0). Finally, we
have 3(2n − 1) distinct GJBs. It means that K0(f+2) = 10K0(f ) + 6K1(f ) + 3 · 2n − 3.

We calculate K1(f+2) in the same way:

Case 1 a′ and b′ are linearly independent. Thus, there are two subcases:

Case 1.1 Da′Db′f ≡ 0 and DαDβxn+1xn+2 ≡ 1, there are 6K0(f ) GJBs.

Case 1.2 Da′Db′f ≡ 1 and DαDβxn+1xn+2 ≡ 0, there are 10K1(f ) GJBs.

Case 2 a′ and b′ are linearly dependent and DαDβxn+1xn+2 ≡ 1, i. e. α, β are linearly
independent by point 1. Similarly to K0(f+2), a′ = 0 is necessary. If b′ = 0, the only way
to choose (a, b) is α = (1, 0) and β = (0, 1). Also, any b′ �= 0 can be chosen. In this case
there are 3 possibilities for α: (1, 0), (0, 1) or (1, 1). Since βlead(α) = 0, the only way to
choose linearly independent α, β is to set the rest non-leading coordinate of β to 1. Finally,
we have 3(2n − 1) + 1 distinct GJBs.

As a result, K1(f+2) = 6K0(f ) + 10K1(f ) + 3 · 2n − 2.

It can be seen that K0(f+2) and, as a result, #BSn( ˜f+2), depend on K0(f ) and K1(f ).
Also, bounds from Theorem 8 bind BSn( ˜f+2) only with BSn−2( ˜f ): we do not con-
sider BSn−1( ˜f ) since it is trivial and has the same structure for any bent function f .
Unfortunately, it looks like K1(f ) has no direct connection to #BSn−2( ˜f ). Computational
experiments for Maiorana–McFarland bent functions confirm this:

Fact 2 Let f i
8 (x, y) = 〈x, πi(y)〉, x, y ∈ F

4
2, i ∈ {1, 2}, and πi be defined by

y 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
π1(y) 0100 1001 1010 0011 0101 0111 1011 1101 1100 1110 0010 1111 0001 0110 1000 0000
π2(y) 0100 1001 1010 0011 1011 0111 0101 1100 1110 1101 0010 1111 0001 1000 0000 0110

.
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Then #BS6(
˜f 1
8 ) = #BS6(

˜f 2
8 ), but #BS8(

˜f 1
8 +2) �= #BS8(

˜f 2
8 +2):

Thus, it is not sufficient to know #BSn−2(f ) to calculate #BSn(f+2). Nevertheless, The-
orem 9 allows us to construct an infinite family of bent functions with #BSn−2(f ) �=
#BSn−2( ˜f ).

7 BSm(f ) and BSm(˜f )

In this section, we construct bent functions such that #BSm(f ) �= #BSm( ˜f ).
Theorem 3 shows that the case of m = n/2 + 1 is very similar to the case of m = n/2:

#BSm(f ) = #BSm( ˜f ) for m ≤ n/2+ 1. As a consequence, we have #BSm(f ) = #BSm( ˜f )

for any f ∈ B2 ∪ B4 ∪ B6 and any m. It seems that the simplest example of f such that
#BSm(f ) �= #BSm( ˜f ) can be found in B8 for m = 6. Computational experiments show
that the following fact holds.

Fact 3 Let ξ8(x, y) = 〈x, π(y)〉, where x, y ∈ F
4
2, and π be defined by

y 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110 1111
π(y) 1001 1010 0100 0011 0101 0111 1011 1101 1100 1110 0010 1111 0001 0110 1000 0000

.

Then #BS6(ξ8) �= #BS6(˜ξ8). More precisely, ξ8 and ˜ξ8 have

Now, Fact 3 and Theorem 9 allow us to construct an infinite family of Maiorana–
McFarland functions f2k such that #BS2k−2(f2k) �= #BS2k−2(˜f2k). Also, it implies that f2k
and ˜f2k are not EA-equivalent.

Corollary 3 #BS2k−2(f2k) < #BS2k−2(˜f2k) holds, where the function f2k ∈ B2k , k ≥ 4,
is defined by

f2k(x) = ξ8(x1, . . . , x8) ⊕ x9x10 ⊕ x11x12 ⊕ . . . ⊕ x2k−1x2k, x ∈ F
2k
2 .

Proof It is easy to show by induction thatK0(˜f2k) < K0(f2k) andK1(˜f2k) < K1(f2k). The
base of the induction is the function f8 = ξ8, the induction step is provided by Theorem 9.
It means that #BS2k−2(f2k) = 4K0(˜f2k) < 4K0(f2k) = #BS2k−2(˜f2k).

Thus, unlike m ≤ n/2+ 1, we obtain that #BSm(f ) and #BSm( ˜f ) may not be equal. As

a consequence, sup( ˜f ⊕ ( ˜f ⊕ IndU)) may not be an affine subspace.
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8 Conclusion

We have considered several properties of the bent function secondary construction f ⊕IndL,
where f is a bent function in n variables and L is an affine subspace of arbitrary dimension.
In particular, #BSm(f ), where BSm(f ) is the set of all bent functions of the form f ⊕ IndL

for an m-dimensional L, has been estimated. A relationship between considered subspaces
in the simplest iterative construction has been established. Examples of the “most difficult”
bent functions that have empty BSm(f ), for different m, have been provided. It has been
found that the construction properties for arbitrary subspaces are quite similar to the case of
n/2-dimensional subspaces, thus, we have generalized some known facts. At the same time,
arbitrary dimensions have some specific properties that make the construction interesting.

Note that we have not provided an example of a bent function f in n variables, where n

is arbitrary, such that BSm(f ) is empty for any m ≤ n − 2. It is a topic for future research.
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