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Abstract

For any positive integer m > 2 and an odd prime p, let F,» be the finite field with p™
elements and let Tr)' be the trace function from F,» onto F,e for a divisor e of m. In
this paper, for the defining set D = {x € Fym : Tr)'(x) = 1and Tt} x% = 0} =
{di,da, ..., d,}(say), we define a p°-ary linear code Cp by

Cp = {ca = (Tt) (ad)), Tt) (ady), ..., Tr) (ady)) : a € Fpm).

Then we determine the complete weight enumerator and weight distribution of the linear
code Cp. The presented code is optimal with respect to the Griesmer bound provided that
® = 3.1In fact, it is MDS when 2 = 3. This paper gives the results of S. Yang, X. Kong and
C Tang (Finite Fields Appl. 48 (2017)) if we take e = 1. In addition to the generalization
of the results of Yang et al., we study the dual code Cé of the code Cp as well as find some
optimal constant composition codes.

Keywords Linear code - Complete weight enumerator - Gauss sum - Cyclotomic number -
Constant composition code

Mathematics Subject Classification 2010 94B05 - 11T71

1 Introduction

Throughout this paper, let p be an odd prime, and let m = es, where m, e and s (> 2)
are positive integers. IF,» denotes a finite field with p™ elements. The trace function from
F,m onto IF e is denoted by Tr. Moreover, the absolute trace functions of F ,» and ¥ ,e are
denoted by Tr}" and Tr{ respectively. An (n, M) code over F e is a subset of I, of size
M. A linear code C of length n over F e is a subspace of F;‘)e. An [n, k, d] linear code C
over [F e is a k-dimensional subspace of IF’[’,e with minimum distance d. The members of
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the code C are known as codewords. The number of nonzero coordinates in ¢ € C is called
the Hamming-weight wt(c) of the codeword ¢. Let A; denote the number of codewords with
Hamming weight i in a linear code C of length n. The weight enumerator of the code C is a
polynomial defined by
T+ Ajx 4+ Apx2+ -+ Ax",

where (1, Ay, ..., Ay) is called the weight distribution of the code C. There is much litera-
ture on the weight distribution of some special linear codes [2, 5, 6, 11, 13]. The complete
weight enumerator of a linear code C gives the frequency of each symbol contained in each
codeword (see [18]). Assume IFpe = {wo, wi, ..., wpe_1}, where wyg = 0. Composition of
a vector v=(vg, U1, ..., Up—1) € IF’;E, denoted by comp(v), is defined as

comp(v) = (ko, k1, ..., kpe_1),

where k; is the number of components v; (0 < i < n — 1) of v that equal w;. It is obvious

that Zfe:?)l kj = n.Let A(ko, k1, ..., kpe—1) be the number of codewords ¢ € C with
comp(c)=(ko, k1, ..., kpe_1). Then the complete weight enumerator of the code C is the
polynomial
CWEC) = Y ufouwlt . wir
ceC
k kpe_
= Yoo Atk ki ke Dwwy w2

(ko k1,....kpe _1)€By

where B, = {(ko, k1,...,kpe—1) : 0 < kj < n, Zp Tk k;j = n}. The complete weight
enumerators of linear codes not only give the weight enumerators but also demonstrate the
frequency of each symbol appearing in each codeword. Consequently, the complete weight
enumerators of linear codes have been of fundamental importance to theories and practices.
Recently, linear codes with their complete weight enumerators have been studied exten-
sively. Ding et al. in [7, 8] showed that complete weight enumerators can be applied to the
calculation of the deception probabilities of certain authentication codes. Constructions of
some families of optimal constant composition codes and the complete weight enumerators
of some constant composition codes were given in [3, 4, 9].

In [1, 12, 16, 21-24], authors constructed linear codes with their complete weight enu-
merators over I, by employing absolute trace function. Construction of linear codes over
IFpe by considering Tt} in place of Tr’ result in improved relative minimum distance of the
codes compared with [13, 22] (see Remarks 3.13 and 3.21, Tables 9 and 10).

In the present work, we find linear codes over IFpe by considering new defining set
obtained by replacing Tr by Tr}' in the defining set D given in [22]. Now, we define the
trace function from IF ,m onto IF e as follows:

s—1
m ke
Tl (x) = E xP.
k=0

Set D ={x € Fpm : Tr)’(x) = 1 and Trg"(xz) =0} ={di,d>,...,d,}. We define a linear
code Cp associated with D by

Cp = {ca = (T} (ady), T (ady), ..., Tt) (ady)) :a € Fpn}. (1)

We determine the complete weight enumerator and weight distribution of the linear code
Cp of (1). We show that the several constructed linear codes are optimal with respect to the
Griesmer bound. In fact, the constructed optimal codes are MDS. In [22], it is shown that
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there exists a unique MDS code when m = 3 while we have shown that there are infinitely
many MDS codes when s = 3. Moreover, we have constructed some optimal dual codes of
the codes defined by (1), and finally we have shown an application to constant composition
codes.

Rest of the paper is organized as follows. In Section 2, we give some definitions and
results on cyclotomic numbers and Gauss sums over finite fields. In Section 3.1, we present
the complete weight enumerator and weight distribution of the proposed linear code Cp.
Some examples to illustrate our main results also discussed in Section 3.1. In Section 3.2,
we give some optimal dual codes. In Section 4, we have shown an application of complete
weight enumerator to constant composition codes. Section 5 concludes the paper with some
concluding remarks.

2 Preliminaries

We begin with some preliminaries by introducing the concept of cyclotomic numbers. Let
a be a primitive element of Fm, and let p™ = Nh + 1 for two positive integers N > 1

and h > 1. The cyclotomic classes of order N in Fm are the cosets Cl.(N’p ") = i (a"y for
i=0,1,..., N—1, where (") denotes the subgroup of F*,, generated by a™ . 1tis obvious

that #C,»(N’p " = h, where #X, for any set X, denotes the cardinality of the set X. For fixed
i and j, we define the cyclotomic number (i, j)N -P") to be the number of solutions of the
equation

xi+1= X (x,‘ IS Ci(N’pm),xj € C;N’pm)) ,

where 1 = ¥ is the multiplicative identity of F pm. That is, (i, j YNV-P™) is the number of
ordered pairs (s, #) such that

aVst 4| = gNit O<s,t<h-1).

Now, we present, from [14], some notions and results about group characters and Gauss
sums for later use. An additive character x of F» is a mapping from [F,» into the multi-
plicative group of complex numbers of absolute value 1 with x (g1 + g2) = x (g1)x(g2)
for all g, g2 € Fpm. By ([14], Theorem 5.7), for any b € I jm,

w@ =1 (vxeFm @

defines an additive character of F,m, where ¢, = ehl’ﬁ, and every additive character can
be obtained in this way. An additive character defined by xo(x) = 1forall x € Fpm is
called the trivial character while all other characters are called nontrivial characters. The
character y; in (2) is called the canonical additive character of I ,n . The orthogonal property
of additive character x of FF,» can be found in ([14], Theorem 5.4) and is given as

Z £G) = {(1)7 , if x trivial, 3)

if x non-trivial.

)CE]Fpm

Characters of the multiplicative group IF;,,, of Fpm are called multiplicative characters of
F,m. By ([14], Theorem 5.8), foreach j =0, 1, ..., p™ — 2, the function v; with

2n/—1jk

Vg =e ™1 fork=0,1,...,p" -2
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. . . . . . m__
defines a multiplicative character of IF,m, where g is a generator of Iﬁ‘zm. For j = pTl, we

have the quadratic character n = v ,»_; defined by
2

k[ =1, if 24k,
”(g)—{ 1, if2 | k.

Moreover, we extend this quadratic character by letting 7(0) = 0. The quadratic Gauss sum
G = G(, x1) over Fym is defined by

GG x) = Y nx)xx).

%
X e]Fpm

Now, let 77 and | denote the quadratic and canonical character of F e respectively. Then
we define quadratic Gauss sum G = G(7, X ) over IF ,c by

G, X)) = Y WX ().

xeF;e

The explicit values of quadratic Gauss sums are given by the following lemma.

Lemma 2.1 [14, Theorem 5.15] Let the symbols have the same meanings as before. Then

p—l)2m
YoV G X)) = (=D
Lemma 2.2 [20] Let the notations have the same significations as before. Then, for N = 2,

the cyclotomic numbers are given by:

L. heven: (0,0027P") =122 (0, 1)?P") = (1,007 = (1, H?P") = 4;
2. hodd: (0,0)3P") = (1,003P") = (1, 1)@r") = =1 (0, H)>r") = KL

(
G, x1) = (=" 'W=1

Lemma 2.3 [16, Lemma 2] Let n and 1 be the quadratic characters of F’;m and IF’;g
respectively. Then the following assertions hold:

1. ifs > 2iseven, then n(y) = 1 foreach y € F;e;
2. ifsisodd, then n(y) = 1n(y) foreachy € F;e.

Lemma 2.4 [14, Theorem 5.33] Let x be a non-trivial additive character of Fpm and let
fx) = ax?+ajx+ag € Fpm[x] with ay # 0. Then

> x(f)) = x(ao — ai(4ax)" (@) G, x).

x€F pym

Lemma 2.5 [14, Theorem 2.26] Let Tr]' and Tr{ be the absolute trace functions of I pm
and IF pe respectively, and let Tt} be the trace function from F ,m onto I pe. Then

Tr' (x) = Tr{(Tr' (x))
forallx € Fpm.

Lemma 2.6 [10, Griesmer bound] Let C be an [n, k, d] linear code over F e, where k > 1.
Then i
= 3]
- l:() p(fl
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where the symbol [x] denotes the smallest integer not less than x.

3 Main results
We divide this section into two subsections, namely 3.1 and 3.2.
3.1 Determination of the complete weight enumerator of Cp

In this subsection, after proving some lemmas, we determine the complete weight enumer-
ator and weight distribution of Cp defined by (1). It is clear that the length n of the linear
code Cp is equal to # D which can be found in the following lemma.
Lemma 3.1 For A, u € e, define
N, p) = #x € Fpm : Tt (x%) = 1 and T (x) = ).
Then
1. if2|sandp|s, we have
P2 4 p=e(p¢ — DG, ifx=0and n =0,

_ ifx=0and p #0,
N, ) = pn=% — p=eG, ifx # 0and =0,
pre, if A #O0and ju # 0.
2. if2|sandpfts, we have
phne, ifA=0and n =0,
—2e —e :
_ )T+ pG, ifA=0and pn # 0,
NG w) = prne, ifA #0and p* —sx =0,

P2 L (u? — sA)p G, if A # 0and u* — sk # 0.
3. if2{sandp|s, wehave

pm—2€7 lf}\ — 0,
NG, p)=1{ p" 2 4 5(—=N)p~°GG, if» #0and u =0,
phne ifA # 0and pu # 0.

4. if2f{sand pts, we have

P+ (=) p(p¢ — DGG, if u? —sr =0,

Nk, p) = -
10 p"* —7(—s)p~*GG, if u> —sa # 0.

Proof By the properties of additive character and Lemma 2.5, we have

_ Te¢ (y(Tr (x2)—2) TS (2(Te (x) — 1)
Noww = p 3 [ 30 g N X a1 )

XE]FPm yE]Fpe ZE]Fpe

_ Teé (yTr? (x2)—y2) Tr¢ (2 Te (x)—z L)
DN EED IR 1+ 6

x€F pym yeIF;e zeIF;e

= P 4 pTH (S + 52 + S3), 4
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where

si= 3 Y T = S Fican Y e =0,

x€F m zeIF;(, zeIF";B x€l pm
e (yTr! (x2)—y2) — 2
Si= Y > g = > Xy Y G,
x€F ,m de;e yeIF:L, x€F ,m
Teé (yTr? (x2)—y2) Tré (2T (x) —z 1)
S5=2 25 &
x€F ,m ye]F’;e zelF;B
— - 2
= Y X Y T Y x4+ zx).
yeF’;e ze]F;e x€elF ,m

By using Lemma 2.4, it is easy to prove that

G(p¢—1), if»=0and 2| s,
0, ifA=0and21s,
-G, if A A20and2 | s,
7(=2)GG, if L #0and 2 1s.

Sy =

By Lemma 2.4, we have

Sy =Y Xi(=yn) Y Ti(=zw) Y xaxt +zx)

yEFZe ZGF;(I XE]Fpm
_ _ SZZ
=G ) Yo x| -~ k)
ye]F;e ze]F’;e Y

and there are the following four cases to consider:
Case 1: Suppose 2 | s and p | s. Then

S3=G Y Xi(=hy) Y Xi(—n2)
yeF;e ZE]F;E

G(p¢—1)?, ifA=0andu =0,
—G(p¢*—1),ifA=0and u #0,
—G(p¢—1), if»#0and u =0,
G, if A #0and u # 0.

Case 2: Suppose 2 | s and p 1 s. Then, by Lemma 2.4, we have

2
_ _ SZ
S$3=G Y Xi(=w) Y. i (—T—MZ)
yEF;e ZEF;e Y
—6Y % W = sh “)G-6 Y w=wy)
= X1 S yin 4y X1 y
yeIF;;(, yeF;(,
—G(p¢ —1), if A=0and u =0,
]G, if A =0and u # 0,
16 if A #0and u? —sx =0,

(> = s2)p¢ +1) G, if A # 0and u* — si # 0.
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Case 3: Next, let 21 s and p | 5. Then
Sy =G Y X0k Y Xi(—pz)

yeF;g ze]F’;(,
0, ifA=0,

= 3 7(=0)(p¢ — DGG, if » #0and u =0,
—7(—=A)GG, if A #0and u # 0.

Case 4: Finally, let 2 t s and p { s. Then, by Lemma 2.4, we have

2
Sy =G Y Xi(=wnk) Y X (—% —Mz)

yeF . zel,
2
= GG Z X1(=2a7(nX; <¥)ﬁ<—%> -G Z X1(=2)7(y)
ye]F;g ye]F;g
_ — (P —sh _ _
= 7(-9)GG Yy _ xl< - y) -G Y T (=am)
yeIF;e ysIF*;e

n(—s)(p° — GG, ifA=0and u =0,
_ ] —1(=)GG, ifA=0and u # 0,
T ] (p¢ = DA(=s) —7(—=1)) GG, if A # 0and u? —si =0,

— (@(=s) +7(=1)) GG, if A # 0and u? — sx # 0.

Combining (4) and the values of Si, S> and S3, the proof of the lemma is completed. O

Lemma 3.2 Fora € IF;‘)," and ¢ € F;g, let

Te¢ (y(Te" (x)—1) Te¢ (w(Te" (ax)—c)
G 33 g 3 e,

* £
x€F ym ye]Fpe we]Fp(,
Then
(p¢ —1p™, ifa e F;g andc = a,
Ny, =1 —p™, ifaeIF’;e and ¢ # a,
0, otherwise.

Proof We have

Ny = Z Z éu;r‘,’(—y—cw) Z ggﬂ,”((awﬂ))c).

yeIF;e we]F;L, xel pm

One may easily verify that the equation aw 4 y = 0 has solutions if and only if a € ]F;e for
y,w € FZ“' Then R =0ifa ¢ IE‘;L,. Hence, if a € IE‘;L,, we have

No= Y Ti(@—ow) Y. x@w+yx)=p" Y X (@-ow).

we]F;e x€eF pm we]F;g
By using orthogonal property of additive character, we get the lemma. O

Leta € IF’;,,, and ¢ € F;e, and let s = TrJ'(1). For the sake of simplicity, we denote
V = (Tr'(a))? —sTr" (%) and ¢ (¢) = —sc? +2¢Tr" (a) — Tr (a?) in the rest of the paper.
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Lemma 3.3 Fora ¢ F;m andc € F;g, let

Ny = Z Z Tr§ (zTr'"(XZ)) Z g—;‘rf(w(Trlﬁn(ax)_c))-

x€F pm ze]Fp weF;e
Then
—(p¢ — 1)G, if2 | s and Tt (a?) = 0,
< G, if2 | s and Tt (a%) # 0,
7o, if21s and '™ (a2) = 0,

—7(=Tt"(@*)GG, if21s and T (a®) # 0.

Proof By Lemmas 2.4 and 2.5, we have

N3 = Z X1 (—cw) Z Z Xl(zx2+awx)

we]F’;e ze]F’;}e x€F ,m
2 m,2
Tr) (a )
= ) Xil—ew) Y X1< )n(z)G
we]F* zEIF*
2 an
G Y miew ¥ (- M) 2],
we]F zeIF
= - - T
G ¥ new ¥ (-ED) g0, if21s,
welF*, zeF*,
P P
as required. O

Lemma 3.4 Fora € IF;,,, and c € ]F;e, let
Tré (y(Tr (x)—1)) Teé (2 Te? (x2)) T (w (T (ax)—c))
2. 2 2 & 2 & -
x€F ,m ye]F;‘)e ze]F’[‘)e we]F’;e
Then we have the following cases:

1. If2|sandp|s, then

(p¢ — G, if T (a®) = 0 and Tt (a) = 0,
-G, if T (a?) = 0 and Tr" (a) # 0,
Ry =1 -G, if T (a?) # 0 and Tr (a) = 0,

(p% — p® — DG, if T (@) Tt (a) # 0 and T (a?) = 2c¢Tr" (a),
—(p¢ + 1)G, IFT (@) Tr" (@) # 0 and T (a?) # 2c¢Tr (a).

2. If2|sandpts, then

(p* — p* — DG, ifTr"(@?) #0, V=0and cTt" (a) = Tt (a?),

(p* — p¢ — )G, ifTrZ‘(az) =0, T} (a) # 0 and cs = 2Tr}) (a),

—(p¢ + G, T (a®) #0, V = 0and cTr (a) # Tt (a?),

—(p¢+ 1)G, ifTrZ”(az) =0, Tt} (a) # 0 and cs # 2Tt} (a),

(p* —2p° — )G, if Ty (a®) # 0, N(V) = land ¢(c) =0,

—@2p°+1)G,  ifT(a*) #0, 7(V) = Land ¢(c) # 0,

-G, T (a?) # 0 and (V) =—1 or T (a®) =0 and T (a) =0.

Ny
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3. If24{sandp|s, then

0, if T (%) = 0 and Tt (a) = 0,
(D) peGG, if T (@2) = 0 and Tr" (a) # 0,

Ny = (- Trm(az))Gg, if T (@) # 0 and Tr (a) = 0,
7(—Tr"(a?))GG, T (a®)Tr" (a) # 0 and T (a?) = 2c¢T (a),
7QcT" (a) — T (a?)) p° GG

+7(=Tt"(a?))GG, if T (@®)Tr (a) # 0 and Tt (a2) # 2c¢Tr (a).

4. If2tsandpts, then

7(—s)GG, if T (a?) = 0 and Tt (a) = 0,

7(—5)GG, if ey} (@?) =0, T} (a) # 0 and cs = 2Tr}} (a),

(MQ2cTe (@) — se)p® +7(—s)) GG, if Tl (a%) = 0, Trl'(a) # 0 and cs # 2Tt (a),
Ry={—(p¢ — 2)77(—5)GG, ifT(@%) #0, V =0 and cTr" (a) =Tr" (a?),

277(—s)GG, T (a?) # 0, V=0 and cTr" (a) # Tr" (a?),

(1(=Try" @) +77(=5)) GG, if Try' (@) # 0, V # 0.and ¢(c) = 0,

(7P () p* +T(=Ti! (a*) +715)) GG, if Ty (a®) # 0, V # 0 and ¢ (c) # 0.

Proof By Lemmas 2.4 and 2.5, we have

Ng= ) Y 0 Y Xl=ew) Y ox (Zx2+(aw+y)x)

ze]F“;g ye]F*;e weIF;e x€lF ,m
(aw+y)
= > Y XY Y T cw)X1< n(2)G
ze]F* VEIF‘* weIF;;(
_ [ T@) YT (a)
—GZn(Z)Zm(—fy —y>ZX1( . w2—< e )w).
zEIF* )e]F* we]F;e < <

®)

There are the following cases to consider:
Casel:s > 2isevenand p | s;
Case2:s > 2isevenand p{s;

Case 3: s > 3isoddand p | s;

Case4:s > 3isodd and p 1s.

Case 1: Suppose that s > 2 is even and p | s. Then, by (5), we obtain

T T
Re=G Y > Ty Y. Xl( (a) w? (%Z(@Jw)lv)-

ze]F* y e]F we]F;‘)(

If T (a®) = 0, then

% =G e Y wean Y7 <M)

e]F* we]F* ze]F

| =DG, if Tl (a) =0,
B if Tr)' (a) # 0.
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If Tr (a®) # 0 and Tr” (a) = 0, then, by Lemma 2.4, we have

2
N4=GZ ZXI( y)le( Tr’(a) 2—cw)

ze]F*é ve]F we]F;‘,(
T (a?)\ —
=62 2 T y)<X1<Tr'"( 2)) ( 64(: )>G_1)
ze]F* ye]F*
Tr" 2
=GG ) ) i y)xl< (0 )>ﬁ<— re4(a ))+(pe—l)G
zeIF* ye]F* <

= —H(=1)GG" + (p° — )G = —G.

If Tr} (a%) # 0 and Tt (a) # 0, then, again from Lemma 2.4, we have

2
GZ ZX( y)Zx1< Tr”'(za) 2 ()’Tl"zg”;(a)_‘_c)w)

~6F*e ve]F we]F*

Ny

_ _ (@)’ T (a) 2
GY > Ty (X1 <4ZTr2,,(az)y2 + @) + @)

z eF;g y eJF;e

_{ T"@*)\ =
Xn(_ . )G_l)

Tr’"(a) 2 _ (@™ @), [cTe"@)
GG 7 ( ) <Tr'"( ) ) Z o <4zTrZ’<a2)y +<Tr’;’(a2>_1>y
pl)

ZEF*
+(p° = 1G
= Gng*: < Tr’”(a2)> X (Tr,e,f;z)z> X1 (_ Trz:-;z)z + 2cTr;"((TaI;(—a)T)r22”(a2)Z)
xﬁ(%) —GGVEX]F; ( Trm(“z)) (Trm(z 5 )+(pe— NG
= 7(-1GG’ ZFj %1 <2CT€(T2,1(;)T§(“2) z) —W(=DGG + (p° — )G
",

_ | 506G e —2) + (¢ — DG, i T @) = 2¢TeY ()
“27(-1GG + (p* — 1)G, if T (a?) # 2Tt (a)

[ (% = p* = DG, if T (@?) = 2¢T1 (@),
=+ DG, if T (a?) # 2¢Tr (a).

Case 2: Now, assume that s > 2 is even and p 1 5. By (5), we obtain

T‘m 2 TTm
Ry=G Z Z xl<—fy —y> Z 7(_ re4(za)w2_<y zez(a)+c)w>.

ze]F* yeIF* weF;e
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If Tr (a®) = 0 and Tr" (a) = 0, then, by Lemma 2.4, we have

Re=G Y > ¥ <—fy —y> > K(—cw)
zEF*e ye]F we]F;e
=-GY > X1<—*y —y)
zeIF*e ve]F*
- Y (71 (§)5<—412>E— 1) — —7(=1)GG" + (p° — )G = —G.
zeF’;t,

If Tef} (@®) = 0 and T} (a) # 0, then, by Lemma 2.4, we have

Ng =G Y D Til=cw ) X1<_*y2_<wTrmw) ) )

ZEIE‘* we]F* \eIE‘*
Tr" _
=G ) T cw)(m (Z<w r2 @, ) )n(—:)G—l)
zeIF* we]F* § 2
= ( s\_ /z _ (T @)? , [(T(a) .
—GG2"<_E>X1(E> X1< 4zs w+< B —c>w>—|—(p -G
ze]Fpg we]F;e
= o s\_ /2y [— zs T (@) \*\ _ [ (T(@)?\ =
_GGWG%;”(%)“Q <X‘<_<T¢"(a>>2< s _C>)”< 4zs )G_1>
2eF,
+(p¢ - DG
— 2T (a) — _
= (-GG Z X1 (%ﬁl));sca —N(=DGG" + (p* = )G
ze]F;(, ¢

_ | @ =27-DGG” + (p* — G, ifes = 2T (@)
“27(-1)GG + (p — 1)G, if cs # 2T (a)

[ (p* = p¢ = G, if es = 2Tr"(a),
| =(p*+ G, if cs # 2Ti" (a).

Recall that V = (Tt (a))? — sTr" (a?). If T (a®) # 0, then, by Lemma 2.4, we have

_ _ (T @)? 5, T (a) ?
Ny =G Z Z X1<—*y y>X1(4zTrZ’(a2)y +Tr’"(a2) +Tr’e"(a2)z>

veIF* yeF* e

xﬁ( Trm(a)) -Gy Zm( - —y>

ze]F* yeIF*

Tr’"(a ) 2 _ \Y 5 (T (a)
@ ¥ (-5 )0 () 7 (e (e ))

"
ze]Fp( e

-Gy Y X1<—*)’ —y)

ze]F*g veIF*
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Suppose that T (a?) # 0 and V = 0. Then

Tr? (a2) A - cTr,'(a)
Ny = GG Z < ) (Trm(aZ) ) EXF: X1 ((Tr’"(az) 1) y) -G

7E]F* y pe
(p¢ — l)n(—l)GG — G, if T (a) = Tr (a?)
—1(— I)GG -G, if ¢Tr) (a) # Tr'e"(a2)

_ [ (0% = pf = DG if eTr (@) = e (@),
T -+ DG, ifcT(a) # T (@),

Next, we consider that Tr)}! (az) # 0 and V # 0. Then, by Lemma 2.4, we have

Tr’"(az) 2 _ zTrZ(az) T} (a) 2
66 2.7 < )X‘(Tr':(a%Z)Xl(_ v (Tr'f(a%_l)

Ny =
ZeF*
7 () -0 2 0(F5) m () -
= GG Y. W-V)x; (%d»(c)) —ﬁ(—1)662 -G
zeF*,
yer Z 1=V (@) = (0 +1G.
ZE]F’;’E

where ¢ (¢c) = —sc? +2cTr) (a) =T} (a?). From [14, Exercise 5.24], the equation ¢ (¢) =0
over I e has two distinct solutions if and only if 7(V) = 1. Thus, when (V) = 1, we have

(—1)GG* — (»° + 1)G, if p(c) £ 0

_ [ =2p° = 1)G, if¢(c) =0,
—2p¢ + G, if ¢(c) # 0.

Ry = {(p — D= I)GG — (P + DG, if¢p(c) =0

Similarly, when 77(V) = —1, we must have ¢ (c) # O forall ¢ € IF;} and so

Ry = H(—1)GG" — (p° + 1)G = —G.

Case 3: Suppose that s > 3 is odd and p | 5. Now, by (5), we obtain

T 2 T
&4_6277(1)2)(1( y)2x1< r(a) w2 <%+c->w>.

ze]F* ye]F wel*

¢
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If Tr (a®) = 0, then

M=G Y T Y T—ew) Y n(z)xl( A (“) )

y e]F* we]F* 7E]F

0, it Tr) (a) =0
ﬁ( CTr'”(”)) GG, if TP (a) # 0

0. if Tr)! (a) =0,
ﬂ&;a)) p¢GG, if T’ (a) # 0.

If Tel} (az) # 0 and Tr)' (a) = 0, then, from Lemma 2.4, we have

2
N4=GZ’7(Z) ZX]( y) Z X1< Tr’(a) w? cw)
ZE]F* ye]F* we]F*
o2 2
=G Y W@ Y xi(=y) <X1 (Tr’"( % )*<—Trg;(za )>6—1>
ze]F* ye]F*
2
= ( T (a )) GG Y Xi(-) Z X1 (Trm( 57 ) ( T{n(az))
yeF*

If Tt (a?) # 0 and Tt (a) # 0, then, again from Lemma 2.4, we have

_ e (@) 5 M@ N TR
B =G ) 7@ Y X <4zTr’”(a2)y2+Trm(a2)y+Tr”’(a2)Z>n(_ 4z )G
ZEIF;P )EIFPF e e e
o (& _ (T (@))? cTry (@)
=7 (-T2 @) GG Y % (WZ) 2 X <4zTrm(a2)y2+ (Trm(az) - 1) y)
ZE]F;;(; ¢ ye]Ff,e ¢ ¢

2 2 m (2
_ w2 — _ c _ c 2cTe) (a) — Tr) (a”)
7 (-Tre) 66 ; . (Tr?<a2>z> . (‘Tr;"(aZ)” (T (@))? Z)

zZ€

(Try' (@) > ?
(szvim) O 78 2 5 ()

_ —2 (2Tt (a) — TI;"(aZ) _ y =

n(=1)GG ZF: n(z)xl( T (@) z) + (=Tt} (a*)GG

ze e

_ | n(-T2 @) GG, if T (a2) = 2¢Ti" (a)

T DR @) — T (@) GG + (=T (a2))G G, if T (a2) # 2¢Ti (a)

_ [ 7(-T@*)GG, if T (a2) = 2¢Te" (a),
(FQT (@) — T (@) p® + 7(—=Tr(a?))) GG, if T (a?) # 2T (a).

Case 4: Suppose that s > 3 is odd and p 1 5. Now, by (5), we obtain

T 2 Tr™
Ny =G Z 7(2) Z X1 <——y _)’) Z X1 <_ re4(za )w2_<y 2gz(a) +c> w).

£ £
ze]F ye]FPC we]Fpe
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If Tr (a®) = 0 and T (a) = 0, then

R =G Y 1) Y. X (——y —y) Y Xi(—cw)
zeIF* }e]F* we]F;e
=-G Y 1R Y, Xi (—*y —y>
zelf, yeF,.
- -G Y e <X1( )7 ( :Z>6—1) = 7(=5)GG.
ze]F*

If T (a®) = 0 and Tt (a) # O, then

¢ Y 70 Y Ti—ew) Y X1<_fy2_<M ) )

ze]F* we]F* y E]F*

G Y 1@ Y Xi(—cw) (;n( (m;z(a) ))n(—:)c—l)

ze]F* we]F*

m 2 m
=7=96G Y n(3) X @ (%uﬂ + (@ - c) w)

ze]F’;e weIF;e

_ IS N zs T (@) \*\_( (T (@)*\ =
o6 2 0 5) o (s () (oo

zeIF;e

Ry

= GG* Z (=X (72]}21(61) — cz) +7(—s)GG

ZE]F:e (Tr'g (@)
_ ] (=9)GG, if cs = 2T (a)
N ﬁ(—l)G63ﬁ(2cTr;" (@) — s¢®) +7(—5)GG, if cs # 2T (a)

_ [ n(—5)GG, if cs = 2T (a),
| (1Q@cTe (@) — sc?) p¢ +71(—5)) GG, if cs # 2Te! (a).

If T (a?) # 0, then we deduce that

_ (M @)? , | T c
Ng =G Z n(z) Z X1 <——y _y>X1 (42Trm(a2)y2+ Tr’"(az) v+ Trm(az)z>
-e]F* }’EF* e ‘
Tm
xﬁ( r(a))G GZ”(Z)Z)“( y—y>
zE]F* )’EF*
2 m
e (& B Vo, (@
= 1T @NGE 3 7 (Tr?(az)z) 2 X <4m;n<a2>y +(Trz"<a2> l)y)
VGJFP( ,VGF,,e
-G Y W@ Y xl<—fy —y)
e, yeF,
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If Tr' (a®) # 0 and V = 0, then 7j(—Tr" (a)) = 7(—s) and
2

_ Tr™ _
AT @)GG Y %( - ) > T ((c @) _ 1)y) (-GG
yelF*

R4 T a2) - o (a2
A\ ) T (a2)

_ | (= = DA(=Te (@) +7(—s5)) GG, if ¢Tr (a) = Tr}' (a?)
| (=T (@?) +7(—s)) GG, if ¢T” (a) # Tr (a?)

| =(p* =2)7(—s5)GG, if Tt (a) = Tt (a?),
| 27(—9)GG, if ¢Tr (a) # Tr" (a?).

Suppose that Tr)}! (a%) # 0 and V # 0. Recall that ¢(c) = —sc? + 2cTe) (a) — Te} (a?).

Then
e — _ 2 _ | ZT(@®) [T (a) 2
ereno0 3 a (i) 7 (<75 (55 )

*
ze]Fp(,

Ry

_ \Y% — Do _ c? _ —
S LR V9 27 () + 79168
- GG ZFJ (=271 (59©) + (=T @) +7(=s)) GG
el
_ {(n(—TrT(az))+n(—S)) GG, 40 =0,
(76 (©)p* +TH(=Te2' @) +7(—5)) GG, if p(c) # 0.

This completes the proof of the lemma. O

Lemma 3.5 Suppose that A € ]F;e and w € Fpe. Fori € {1, —1}, let K; denote the number
of pairs (7, ) such that T(u% — sA) = i. Then

K — { (= D(p° —2), ifi=1,
l %(pe_l)pe9 lfl=—1

Proof First, we take u = 0. Then u? —sA = —sA, and the number of pairs (X, 0) satisfying
T(u? —sh) =i is p ;1). Further, we consider that & 7# 0. Then, for each pair (A, u) €
FZF X ]er and fixed s € IF‘;E, we define a mapping £ from F’;e X IF} into Fpe by L(A, pn) =

u? — si. Foreach ¢y € IE‘;L,, let
Ay = {0, ) € Fe x Fpe 1 LA, 1) = co-

Set p¢ = 2h + 1. Now, for a fixed cg such that 7(cp) = 1, the number of pairs (1, u?)
satisfying 42 — sA = ¢ is equal to (0, 0)>7) + (1,0)%P) = h — 1 (by Lemma 2.2).
Similarly, for a fixed co such that 77(co) = —1, the number of pairs (A, Mz) satisfying
u? — sk =cois equal to (0, D@ 4+ (1, )@r) = h (from Lemma 2.2). Consequently,
we have

2(h — 1), ifn(co) =1,

#Ae = { 2h, if 7(co) = —1.

We conclude that K| = @27_” + (=Dt —1)and K_| = (‘7827_1) + (p¢ — 1)h. Thus,
the result is established. O
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Lemma 3.6 Suppose that . € F;e, n € Fpe and w? —sx £ 0. Fori € {1,—1}, let y;
denote the number of the pairs (©, ) such that y(A) = i. Then

= { 2 (P = D(p* =), ifs) = 1,
3(p¢ = Dp, ifn(s) = —
and
vy = { 2(p° = Dpe, if7is) = 1,
- 5(p¢ = D(p® —2), iff(s) = —

Proof Following the arguments similar to the arguments used in the proof of Lemma 3.5,
one may easily get the proof of the lemma. So, the proof of the lemma is omitted. O

Let ¢ € F*, and a € F*,,. For a codeword ¢, of Cp, we denote N. = N.(a) to be the
number of components Tt} (ax) of ¢, that are equal to ¢ and n to be the length of ¢,. So,
we have

Ne = #{x € Fpn : TP (x) = 1, T (x%) = 0 and Tt (ax) = c}

1 T (y (T (1) —1) e (7T (x2)) T (w (Te? (ax) —c)
— ﬁ Z Cp ¢ ) g.p 1 ;p T( )
XEFpm yE]Fpe ZEFPE wE]Fpe
n -3 Teé (y(Te (x)— 1)) T (2Te (x2)) TS (w(Te (ax)—c))
= et 20 26 PIRTE
x€F,m yeF pe z€F e weF;g
n _
= e tr ] 4R+ 83 4 Ry), (6)

where

Z Z ;Tre(w(Tr (ax)— C)) Z X1 (—cw) Z x1(awx) =0,

x€Fpm weIFF we]Fp x€F m

and R;, X3 and R4 are defined in Lemmas 3.2, 3.3 and 3.4 respectively. In the upcoming
theorems, we have determined N, for few different cases.

Theorem 3.7 Assume that c, co € F;e. If2 | s and p | s, then the linear code Cp defined

m—2e

by (1) has parameters [ p , 8], and its complete weight enumerator is given in Table 1.

Table 1 The complete weight enumerator of the Code Cp if 2 | s and p | s

N, Frequency

0 1

p" —3e pne — pe
P ) (p* = "
Ne¢, (co is fixed ) N¢(c # cp) Frequency
pm72e 0 1

(p=Dm 1) m m de

m 3e+( 1) e (pe _ l)pm—Ze

= l) m m—4e
2

— (=D
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Proof From the definition, this code has length n = #D which follows from Lemma 3.1
and dimension s. From (6), we have N, = % + p3¢(Ry + N3 + Ry), where ¢ € IF’;F. In
this case, the length of the code Cp isn = pm_ze.

Ifa e F;e, then Tr' (az) = 0 and T’ (a) = 0. Consequently, we have

n —3e
Ne = EJFP (R + N3 +Ry)
_ [P = D" = (pf = DG+ (pf = 1)G), ife=a
prT 4 pT(=p™ — (p¢ — DG + (p¢ — DG), ifc#a
pm_ze, if c = a,
0, if ¢ # a.

Each value occurs only once.

Now, suppose that a € F’;m \ ]F’;)e. Then R, = 0. We give the remaining proof in the
following cases:
Case 1: If Tr" (a?) = Tt (a) = 0, then

M -3
Ne = — +p (K3 +Ry)
p

— pm—3€ + p—3€ (_(pe _ 1)G + (pe _ 1)G) — pm—3e.

By Lemma 3.1, the frequency is p"~2¢ + p~¢(p® — 1)G — p® asa ¢ Fpe.
Case 2: If Tt (a®) # 0 and Tt (a) = 0, then

" -3
N = P’ +p R +Ry)
p

— pm—Se + p—3e(G —-G)= pm—Se.

By Lemma 3.1, the frequency is (p¢ — 1)(p™~2¢ — p~¢G).

Hence, we conclude from last two cases that N. = p™~3¢ occurs p™ ¢

Case 3: If Tr" (a®) = 0 and Tt (a) # 0, then

— p¢ times.

n _
Ne=5+p (N3 + )
— pmf?se + p73e (_(pe _ ])G _ G) — pm73e _ p72eG.

It follows from Lemma 3.1 that this value occurs (p® — 1) p”~2¢ times.
Case 4: If Tt} (@*) # 0 and Tt (a) # 0, then

_ i —3e
Ne = — 4+ p (N3 +8y)
4

_ { P4 pT3 (L4 (p* — p¢ — 1) G, if TP (a?) = 2¢Tr (a)

P+ pT (= (pf+ D) G, if T (a?) # 2¢Tr" (a)
_ pm—3e +p—22(pe — DG, if ¢ = co,
pm—3e _ p—ZeG’ if ¢ # co,
T (@) * e (1€ — 1) pM—2¢ Thi
where co = 5f5m oy @ € F e By Lemma 3.1, the frequency is (p®* — 1) p . This completes
the proof of the theorem. O
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Table 2 The weight distribution

of Cpif2|sand p|s Weight Frequency
0 1
pm—Ze pe -1
(pe _ l)pm—3e pm—e _ pe
= l) m  m—de
¥ =1 ( m3e 4 (- T) (P = Dp" 2
(p° — Dp — (-1 TR (p¢ = 1?2pm=*

Corollary 3.8 If2 | s and p | s, then the weight distribution of the linear code Cp defined
by (1) is given in Table 2.

Example 3.9 Let (p,m,s,e) = (3,12,6,2). Then, by Theorem 3.7, the code Cp is a
[6561, 6, 5823] linear code. Its complete weight enumerator and weight enumerator are

8 8 8
> w0 459040 [[wl® +52488 ) " [ w [[wl®* |0 <j <9
i=0 =0 i=0 J#i

and 1 + 419904x823 + 59040x3832 4 52488x°904 4 8x9501 respectively.

Theorem 3.10 Assume that ¢ € F;g. If2 | s and p t s, then the linear code Cp defined by
(1) has parameters [n, s], where

1) m M72e

n=pnX - ()"

Its complete weight enumerator is given in Table 3.

Proof This code has length n = #D which follows from Lemma 3.1 and dimension s. For
c e F;e, recall from (6) that N, = ﬁ + p’3e (R 4+ R3 + Ry). We now consider the case

that 2 | s and p 1 s. In this case the length n of the code Cp is p™~2¢ + p~G.

Table 3 The complete weight enumerator of the Code Cp if2 | s and p { s

N, Frequency
0 1
pm—3e pm—2e 1
=1)2m 1) m m te @=0%m m
) 3¢ = D"+ (=) ?)
NC0 (co € F’;p is flxed ) Nc(c # cp) Frequency
n 0 1
m 3e 7( l)(p bn m%h pm73e pm72e —1
m 3e ([) _1)( 1)(p D2m % pm 3€+( 1)(1) l)mpm%k‘g n
Nz (¢ = co, c1 € F}, and co # c1) Nc(e # co, c1) Frequency
1)2m = =0*m  m—de
P = (pf — 1 (—1) I ptTE PR (- n
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Ifa € IF:‘,@, then Tl’e”(az) = a%s # 0 and Tr)'(a) = as # 0. Consequently, V =
(Tr"(a))? — sTr (a®) = 0 and

_ n —3e
Ne = — +p 7R +R3 +Ry)

e
m—3e 2 —3e c_Np" 4+ G Ze _ p¢ —1)G), ifc=
No= [P PTEGH pT((p = Dp" + G+ (p* = pf = 1)G), ifc=a
PTG TP G = (0 D6, ifc#a
N — p’”*ze—}—p*eG, ifc =a,
< =)o, if c #a.

Moreover, each value occurs only once.

Suppose that a € IF;m \ IF"’;,e. Under this assumption, we have X, = 0. We give the
remaining proof in the following cases:
Case 1: If Tt (a®) = Tr" (a) = 0, then

n
Ne= —+ PN+ Ry)
p
— pmf?se + p72eG + p73e (_(pe -G — G) — pm73e.

By Lemma 3.1, the frequency is p”~2¢ — 1 as a # 0.
Case 2: If Tr'" (a®) = 0 and Tt (a) # 0, then

e

M -3
Nc—p"’l’ (83 4+ Ryq)

{ P4 pTEG + pTI (= (p¢ — DG + (p* — p¢ — 1)G), if cs = 2T (a)

P pTEG 4 p T (—(pf = DG — (pF +1)G),  ifes # 2T @)
_ [P TG = DG, e =,
pn=3e _ p=2eG, if ¢ # cp,

where cp = w € IF‘;E. By Lemma 3.1, the frequency is p”~%¢ 4+ p~¢G.

Case 3: If T (a®) # 0 and V = 0, then

_ n —3e
N, = p—+p (R3 +Ry)

_ { pm—3e + p—ZeG +p—3e (G 4 (p2e _ pe _ I)G) , ifCTI"e"(a) — Tr?(aZ)

P34 p2G 4 pT3 (G — (pf + D), if ¢Te! (a) = Tt (a)
_ p’"_3"’ 4+ p~¢G, if c = co,
| p3e, if ¢ # co,
) m
where ¢, = TT?’”(Z;)) _ Tr(zs(“) c F;g since V = 0. By Lemma 3.1, the frequency is p”~2¢ —

1.
Case 4: If Tr" (a®) # 0 and (V) = 1, then

e

_ "3
Nc_p+p (N3 + Ry)

{ PUT 4 pTG + pT (G + (P = 2p° = DG), if §(c) =0

P4 pTEG + pT (G - 2p° + 1DG), if¢(c) #0
_ [P0 - 16 e =co e,
=\ pm¥ - p2g, if ¢ # co, c1,
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where ¢, c; are two distinct roots of the equation ¢ (c) = —sc? +2cTr (a) — T (a?) = 0,
since 7(V) = 1. By Lemmas 3.1 and 3.5, the frequency is pm_ze + p~¢G.
Case 5: If Tt (a%) # 0 and (V) = —1, then

_ n —3e
N, = p—+p (R3 +Ry)

e

— pm—3e +p—22G + p—3e(G _ G)
pm—3e _’_p—ZeG.

By Lemmas 3.1 and 3.5, the frequency is %(pe — 1)(p™~¢ — G). Thus, the result is
established. O

Corollary 3.11 [f2 | s and p 1 s, then the weight distribution of the linear code Cp defined
by (1) is given in Table 4.

Example 3.12 Let (p,m,s,e) = (3,8,4,2). Then, by Theorem 3.10, the code Cp is a
[72, 4, 62] linear code. Its complete weight enumerator and weight enumerator are

Zw72+80nw +3240Hwk+80w021_[w 1<j<8)

i=1 j#i

+72w02wj (Hw,ﬁo) (1 <k<8

=t \k#j

+72wé°2w,2w1 ]_[ w1 <j,k<8)

j>i k#j,i

and 1 4 2016x%% + 640x%3 4 3240x%* + 576x7! + 88x72 respectively.
Remark 3.13 Consider the linear codes [81, 6, 48] and [71, 5, 42] obtained in [22] and

[13] respectively. Then one can see that our code illustrated in the previous example has
improved relative minimum distance.

Table 4 The weight distribution of Cp if 2 | s and p £ s

Weight Frequency
0 1
(pe _ 1)pm—3e pm—2e -1
(p871)< y ( 1)(11 12m m 4e) %(p“71)< mee 4 (_ 1)(1; 1y mp%)
( 1)(/1 m 2e pe _1
PP =)~ (- 1)”’ ”mp"’?f (P = D"~ 1)
_ p=D%m  m—de _ = u m m;zg
PP = 1) = (=1) P2 (p° = D" = (=) 7))

@=0%m  m—2¢

3(p° =D =2 (p" 7 — <—1>fp%)

=1%m 1) m mf4('
2

(p¢ = Dp" 73— (p¢+ D(=1) "5
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Theorem 3.14 Assume that c € F ’;,e. If21s and p | s, then the linear code Cp defined by

m—2e

(1) has parameters [p , §1. Its complete weight enumerator is given in Table 5.

Proof Now consider that2 { s and p | s. In this case the length of the code Cp isn = pr2e.
Ifae IF";,e, then Tr)! (@®) = 0 and T’ (a) = 0. Consequently, by (6), we have

_ n —3e
N = E+p (R + 83 +Ry)

pm—Be 4 p—3e(pe _ l)pm, ifc=a
pm—3e 4 p—3e(_pm)’ if ¢ # a

. p’"’ze, ifc =a,
—]o, if ¢ #a.

Each value occurs only once.

Suppose that a € IF;;,,, \ IF‘;}. Under this assumption, we have 8, = 0. We give the
remaining proof in the following cases:
Case 1: If Tr" (a®) = Tt (a) = 0, then

n
Ne = I + p TR+ Ry) = pm e

By Lemma 3.1, the frequency is p"~2¢ — p® asa ¢ Fpe.
Case 2: If Tt (a®) # 0 and Tt (a) = 0, then

_ n —3e
N, = ?+p (R3 4+ Ry)

= p" 73 4 pTR (=T (a?) + (=T (a}))GG = p" 3.

By Lemma 3.1, the frequency is (p¢ — 1) p™ 2.
Hence, we conclude from the last two cases that N, = p™~3¢ occurs p™~¢ — p€ times.
Case 3: If Tt} (a*) = 0 and Tt (a) # 0, then

_ n —3e
Ne = E-H? (N3 +Ry)

pm73e + p72eﬁ (%ﬁ) Gé,

Table 5 The complete weight enumerator of the Code Cp if24sand p | s

N, Frequency
1
m—3e m

p p
p— 2 m+e, m—se
P T (— e (1) T e

P =T (=M (—1)

—e __ pz’
3(p° = Dpm
3(p = Dp"

p=12m+e)  m-3e
8 P 2

N, (co € F’;e is fixed) N¢(c # co) Frequency
pmfZe 0 1

p— 2 m+e m—3e
P P T — o) (— 1A= IR I (e — 1y

p=D2m+e)  m—3e
pm—3e pm—3e _ ﬁ(c _ Co)(—l)m+e—2(—l)’f p oz %(pe _ l)pm—Ze
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from which it follows that N, = p =3¢ + p=2¢5(¢)GG or N, = p™=3¢ — p~2¢57(¢)GG.
According to Lemma 3.1, the frequency of each value is %( p¢ — Dp"2e,
Case 4: If Tt (a?) # 0, T (a) # 0 and Tt (a?) = 2cTr” (a), then

n —3e
Ne = E-FP (W3 +Ry)
= P74 p 7 (ST @) + TR @) GG = .

Case 5: If T (a?) # 0, Tt (a) # 0 and Tr (a?) # 2cTr” (a), then

n —3e
Ne = — +p 7 (B3 +Ry)

p

= "7 p (AT @) + 7 (26T (@ T (@))) p*+7(=Te (@2)) GG.

So, one can easily combine the last two cases as

VR Do if ¢ = cg.
T P+ pTENQRTY (@) (e — c0)GG, if ¢ # co,
mg, 2
where ¢y = ;}er,,i‘za; € IF;(,. This concludes that
N. — pre, _ife=co,
¢ pm’3e + p’zeﬁ(c —¢0)GG, if ¢ # co,
or
m—3e : —
NC = pm—Se’ —2e— ral ¥fc Do
p — p n(c — c0)GG, if ¢ # co.
By Lemma 3.1, the frequency is %( p¢—1 pm_ze. Thus, the result is established. O

Corollary 3.15 [f2 1 s and p | s, then the weight distribution of the linear code Cp defined
by (1) is given in the following Table 6.

Proof The result can be extracted from the complete weight enumerator as shown in the
last Theorem 3.14, by observing that

Y dc—co= Y 7lc—co) —A(—co) = —T(—co),

ce]F;e ceF pe

where ¢ € IE‘Z[,. O

Table 6 The weight distribution

of Cpif2tsand p |s Weight Frequency
0 1
pm72e pe -1
(pe _ l)pm73e zpmfe _ pmfZe _ pe
(pe _ 1)[)’"736 + meSe %(pe _ 1>2pm729
m—3e
(¢ — l)pm—3e —p 2 %(pe _ 1)2pm—2e

@ Springer



Cryptography and Communications (2021) 13:695-725 717

Example 3.16 Let (p,m,s,e) = (3,6,3,2). Then, by Theorem 3.14, the code Cp is a
[9, 3, 7] linear code, which is a MDS code. Let Fg = {wg, wy ..., wg}. If wy, wg, we and
wg are square elements in [F$, then its complete weight enumerator is

8 8
Z wl-9 + 72 1_[ w; + 36(w1w3w5w7)2w0 + 36(w2w4w6w3)2w0 + 36(w2w4w6wg)2
i=0 j=0

x (w4 w3 + ws + w7)+36(wiwzwswr)* (wa+ws+we + ws) + 36w (wswews) wg
+36w4(w2w6wg)2w(2)+36w6(w2w4wg)2w(2)+36wg(w2w4w6)2w%+36w1(w3w5w7)2w(2)
+36w3 (w1w5w7)2wé + 36ws (w1w3w7)2w3 + 36w7(w1w3w5)2w3

while its weight enumerator is 1 + 288x7 4 144x8 4 296x°.

Theorem 3.17 Assume that ¢ € F’;e. If2 15 and p t s, then the linear code Cp defined by
(1) has parameters [p’”’Qe — K, 5], where

(pfl)z(ere) m—3e
8 p 2

K =T7(=s)(=1)"T72(~1)

Its complete weight enumerator is given in Table 7, where V runs through F ;e such that
A(-V) = -1.

Proof Consider the case that 2 { s and p 1 s. In this case, the length of the code Cp is
n=p" = —7(=s)p**GG.

Ifa e F;e, then Tr'"(a®?) = a’s # 0 and Tr"(a) = as # 0. Consequently, V =
(Tr" (a))? — sTr (a?) = 0 and 7j(—Tr" (a®)) = 7(—s). Thus

_ n —3e
N, = ?+p (X2 + 83 +Ry)

N = [P pT (= Dp" = (pf = DiI(=9)GG) , ifc =a
CT lpen+p (—p"’ +ﬁ(—s)GG) , ifc #a
n, ifc=a,
Ne = {0, if ¢ #a.

Each value occurs only once.

Table7 The complete weight enumerator of the Code Cp if 21 s and p 1 s

N, Frequency

0 1

pre pPrUTE L K(pe—1)—1
P L T2 — VK P K

Ne, (co € IF’;,E is fixed) N¢(c # cp) Frequency

P —K 0 1

prn3e P LT — cco)K P K

P —K pri PR -1 -1
P —n(=DK P AT (e - ~V)K  pr K

Nz (C=cp,c1 € ]F;y and ¢ # c1) Nc(c # cop, c1) Frequency

P P T (€ = co)(e — ) K P —K
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Suppose that a € IF’;,,,, \ IF";F. Under this assumption 8, = 0. The remaining proof is

given in the following cases:
Case 1: If Tt (a?) = Tr" (a) = 0, then

n _
Ne=5+p 3 (N3 + Ny)
_ ,m—3e _ _—3e—- Vol —3e—c_ ~ _ .m—3e
=p p N(=s)GG + p 7 N(—=s)GG = p .

By Lemma 3.1, the frequency is p™~2¢ + p~2¢5(—s)(p¢ — 1)GG — 1.
Case 2: If Tr" (a®) = 0 and Tt (a) # 0, then

_ n —3e
Ne = ?-1-1? (X3 +Ry)

P34 pT2HQ2eT (a) — ¢25)GG, if cs # 2Tr" (a)

— pm 36 lfC—C(),
e 3€+p 2e53(—$)7(c? — ¢c0)GG, if ¢ # co,

_ 2T(a) IF*

{ ph3e if cs = 2Tt (a)

where ¢y = By Lemma 3.1, the frequency is n.
Case 3: If Tt} (az) #0 and V =0, then 7(—TrJ' (a%)) = 77(—s). Consequently, we have

Ne = E + p RS+ Ry)

_ { pn+p T (=1 = (p° = 2) T(=9)GG, if ¢Tr} (a) = Trl' (a?)

T+ pT(=1+27(—5)GG, if T (a) # Tr' (a?)
_ [P = pA(=9)GG, i e = oo,
o, if e # co.
where ¢, = w € F;g since V. = 0. One may easily find, by Lemma 3.1, that the

frequency is p” =% + 7(—s)(p¢ — p~¢GG — 1.
Case 4: If Tr" (a®) # 0 and V # 0, then

Ne = — 4+ p (N3 +8y)
p
_ {p n+ p3(—-s)GG, ifp(c) =0
pn+ p73¢ (p°N(p(c)) +7(—5)) GG, if p(c) #0
e, _ ifg =0,
"’ T4 p2(9()GG, if p(c) # 0,
where ¢(c) = —sc? + 2cTe) (a) — Tr) (a?). This case is divided into the following two

subcases.

Case 4(a): If Tr}} (a?) # 0 and 7(V) = 1, then the equation ¢(c) = 0 must have two
distinct roots. Let ¢ and ¢ be the distinct roots of ¢(c). Then ¢ (c) can be represented as
¢(c) = —s(c — cp)(c — c1). Therefore, we have

VD Vi if c = co, c1,
N 3e+p 27(—)7(c — co)ii(c — c1)GG, if ¢ # co, c1.

By Lemma 3.1, the frequency is n. Moreover, by Lemma 3.5, there are %(pe - D(p*—-2)
such values.
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Case 4(b): If T (a) # 0 and (V) = —1, then
Ne = p" 7+ p*7(¢(c)GG.

2
More precisely, by writing ¢ (c) = —s (c — W) + ¥ we deduce that

5

N = pm73e _ pfzeﬁ(s)Gé, B ifo = co,
ST p 4 p2R(—9)7 (57 (e — c0)? = V) GG, if ¢ # co,
where ¢, = w and Tr)' (a) # 0. The number of such values is %( p¢ — 1)2. On the other

hand if Tr)' (a) = 0, then
N = p" 73 + p~2%(—s5)7(s*c* — V)GG.

The number of such values is %( p¢—1). Again, from Lemma 3.1, each value occurs n times.
Thus, we have the desired result. O

Corollary 3.18 [f2 1 s and p 1 s, then the weight distribution of the linear code Cp defined
by (1) is given in Table 8, where

(p=D2(m+e) m—3e
8 p 2

w = (_1)m+e—2(_1)

3

i { %(pe — D(p* = (p" 7 = 7(=s)w), ifT(s) = 1,
3P4(p° — D)(p" ™% —f(—s)w), i) = —1:

fs= { PP = DM =), ) =1
3(p° = D(p = 2)(p" % —q(—s)w), if7(s) = —1.

Proof Fora € F’;m, define No = #{x € F\m : T1' (x) =1, TrZ‘(xz) = 0 and Tt} (ax) =
0}. For given n the length of Cp, the Hamming weight of a codeword ¢, is given by

wt(c,) = n — Ny, @)

In the same manner, as in (6), we can find that

n _ _ _ _
No = et PR + Ry + N3 +Ry), (8)

Table 8 The weight distribution of Cp if 2t s and p t s

Weight Frequency

0 1

(p¢ — Dpm P4 (—s)(p — Dw — 1

P —(—s)w -1

PPt — D) —T(—s)w (P = 1) (2p" 7% +7(=5)(p¢ — 2w — 1)
prTe(p — 1) — Gi(— 1) + f(=s)w fa

P (p — 1) + (((—1) — R(—s)w fs
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where

§1 Z Z é_I'}"rf(wTr:,,”(ax)) _ Z Z é_gl’l"(awx) —0.

x€F pm weIF;B we]F’;L, x€F ,m
— Teé (y(Tel (x)—1)) Tr¢ (wTr” (ax))
1 1
M= 3 2 H 2o
xelF ,m ye]F’;g we]F;g
ey Tré (2T (x2)) Tré (wTr? (ax))
1 1
SR DD DR D D /A
xelF ,m zEF;e wEF’;e
— Tr¢ (y(Trm (x)—l)) Tré (T (x2)) Tr¢ (wTr’” (ax))
— 1 e 1 e 1 e
M= 2 25 > )R :
x€elF ,m ye]F;e zE]F’;’e we]F’;e

Let 2 1 s and p 1 5. Then, by following the arguments similar to the arguments used in the
proofs of Lemmas 3.2, 3.3 and 3.4, one may easily get that

= _ | —-p" iface F’;e,

N2 = 0, otherwise;

s [0 if T (a%) = 0,

T ¢ = DA-T @) GG, if T (@?) # 0;

—(p* —L)ﬁ(—s)GE, if Tr)! (a®) = 0 and Tt} (a) =0,

¥ = 7(—s)GG, B if T (a?) = 0 and T (a) # O,
—(p¢ = 2)7(—s)GG, if Tr” (a?) # 0and V = 0,
(1(—=T"(@%) +7(—s)) GG, if Te"(a*) # 0 and V # 0.

The result is directly follows from (7), (8) and Lemmas 3.1 and 3.6. (I

Remark 3.19 If b € F;e is fixed and D, = {x € Fm : Tr)' (x) = b and Tr} (x2) = 0}, then
we get the code Cp, of the form (1). Now, define a mapping f, : Di — D by

fp(x) = bx.

This implies that the code Cp, is equal to Cp,. So, Theorems 3.7, 3.10, 3.14 and 3.17
actually demonstrate the complete weight enumerators of Cp, for all b € F;e.

Corollary 3.20 Let Cp be the linear code defined by (1). Then Cp is optimal with respect
to the Griesmer bound only if s = 3. If s = p = 3, then it is MDS and it has parameters
[3¢, 3, 3% — 2]. Moreover, for s = 3 and p > 3, it has parameters [p¢ + 1,3, p¢ — 11 if
7(=3) = —land [p* — 1,3, p* = 3] if 7i(=3) = 1.

Proof If2ts and p | s, then it directly follows from Corollary 3.15 that Cp has parameters

[p"=2¢, s, (p° — 1)p™=3¢ — p"7"]. Suppose that s = 25’ + 1, where s = 2 and s’ > 1.
Then we have

s—1 '=1)
3 lri—‘ — pes=l) e’ 4y pr -1

el e _
i=0 p p I
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Table 9 Characterization of the linear codes obtained in [22]

Variables Parameters §(O) S(C)+R(C)
(p,m) = (3,6) [81, 6, 48] 0.5802 0.6543
(p,m) =(5,4) [20, 4, 14] 0.65 0.85
(p,m)=(5,3) [6, 3, 4](MDS Code) 0.5 1

(p,m) =(3,3) [3, 3, 1J(MDS Code) 0 1

By the equation
pe(s/—l) -1

e(2s'=1) _ _e(s'—1) _
p p +1 P
p

e(2s'—1)
,

we have s’ = 1 whence s = 3. Since p | s, we must have p = 3. Thus, for p = s = 3, the
code Cp is MDS with parameters [3¢, 3, 3¢ — 2].

p=D2(m+e)
8

Now, we suppose that 2 { s, p {1 s and ﬁ(—s)m”’z(—l)( = —1. From

m

Corollary 3.18, the code Cp has parameters [ p™~2¢ + p%, s, (p¢ — 1)p™=3¢]. Thus

s—1
d
S[ L]

el
i=0 p
. . e(s=3)
Hence, the equation p°¢=2 4+ 1 = p¢¢=2 4 p “ gives that s = 3. Consequently, we
have 77(—3) = —1. Therefore, the code Cp is MDS with parameters [p¢ + 1, 3, p¢ — 1].

. _ (p=D2@m+e)
Further, consider that 2 { s, p { s and 77(—s)"T¢"2(=1) P22 _ 1. In the same

manner, we can show that Cp is MDS with parameters [p¢ — 1, 3, p¢ — 3] when s = 3 and
7(—3) = 1. Other cases may similarly be verified.

Thus, it follows from Lemma 2.6 that the code Cp is optimal achieving the Griesmer
bound provided that s = 3. O

It is well known that error-correcting capability of a linear code C = [n, k, d] depends on
the relative minimun distance §(C)(see [15]). A linear code C is MDS if and only if §(C) +
R(C) = 1, where R(C) is the transmission rate of C. The Remark 3.21 and Tables 9 and 10
conclude that codes determined in this paper have improved error-correcting capability and
more close to MDS codes than the codes in [22].

Table 10 Characterization of the linear codes obtained in the present paper

Variables Parameters §(0) S(C)+R(C)
(p,m,s,e)=(3,12,6,2) [6561, 6, 5823] 0.8873 0.8882
(p,m,s,e) =(3,8,4,2) [72, 4, 62] 0.8472 0.9027
(p,m,s,e)=(3,6,3,2) [9, 3, 71(MDS Code) 0.6666 1
(p,m,s,e) =(5,8,4,2) [600, 4, 574]* 0.9566 0.9633
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In the Table 10, * shows that the complete weight enumerator of the code is not inlcluded
in the present paper due to large presentation.

Remark 3.21 The MDS code [3, 3, 1], which is unique, obtained in [22] has zero relative
minimum distance while our MDS codes [3¢, 3, 3¢ — 2] have nonzero relative minimum
distance for every e > 2. In addition, it can easily be checked that

€-2 -2 c—4 -4
4 > 4 and P > P foralle > 2.
p¢+1 p+1 pe—1 p—-1
Hence, one can conclude that our MDS codes have better error-correcting capability than
the MDS codes in Corollary 2 of [22].

3.2 The dual code of the code Cp

In this subsection, we study the dual code of the code Cp. In the following theorem, we
have determined bounds on the minimum distance of the dual code.

Theorem 3.22 Let the symbols have the same meanings as before, and let d+ denote the
minimum distance of the dual code CJD‘ of the code Cp defined in (1). Then

1. if2|sandp|s,wehave3§dj'§4.
2. if2|s,p)[sand622,wehave3§dL54.
3. if2{sande > 2, we have3 <dl <4 In particular, d+ =4 ifm = 3e.

Proof We only give the proof of first part since the proofs of other parts are similar to the
proof of first part. It can easily be checked that Cf)- has no codeword of weight 1. Next,
suppose to the contrary that there exists a codeword ¢ € C i)- such that wt(c)=2. Then, for all
a € Fpm, we have
¢i Tty (ad;) + ¢;Try' (ad;) = O for some ¢;, ¢j € Fye and d;, d; € D

& Tr, (acidi +cjdj)) =0 < c;d; + cjd; = 0 since Tr}} is onto

- C[TI":(d,') +CjTl‘Z1(dj) =0 = ¢ = —Cj.
Consequently, we have that ¢; (d; —d;) = 0. This is contradictory to the facts that ¢; # 0 and

d; # d;. Hence, we do not have any vector ¢ € C j; of weight 2. The upper bound is directly
follows from the sphere-packing (or Hamming ) bound. Thus, the result is established. [

Example 3.23 Let (p,m, s, e) = (5, 6, 3, 2). Then the code C'j; has parameters [24, 21, 4],
and it is optimal with respect to the Griesmer bound. In addition, it is MDS code.

Example 3.24 Let (p, m, s,e) = (3,9, 3, 3). Then the code C’é has parameters [27, 24, 4],
and it is optimal with respect to the Griesmer bound. In fact, it is MDS code.

4 Application to constant composition codes

In this section, we construct some optimal constant composition codes employing the com-

plete weight enumerators of the linear code Cp. The code Cp can be found in Theorems
3.7,3.10, 3.14 and 3.17.
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It is well known that one can easily construct constant composition codes from the
complete weight enumerators of the linear codes. Let r be a positive interger, and let
A = {agp, ay, ...,ar—1} be a code alphabet. Any subset C C S” of size M and minimum
distance d such that each codeword has the same composition (fg, t1, ..., ?—1) is known
as (n, M,d, (t0, t1, . .., tr—1)) constant composition code over S. There are many applica-
tions of constant composition codes in communications engineering [3, 19]. The following
LFVC bound of constant composition codes is given in [17].

Lemma 4.1 Let (n, M, d, (t,t1,...,t—1)) be a constant composition code over S with
nd —n*+ (t§ + 1} +---+17_,) > 0. Then

nd
M= 2 2 2 N
nd —n?+ 5+t 4+ +17_))

A constant composition code which meets the LFVC bound is known as optimal con-
stant composition code. We construct some optimal constant composition codes from the
complete weight enumerators of Cp in the following theorems:

Theorem 4.2 Consider the CWE of the Theorem 3.10. If m = 4e, then there exists an
(n,M,d, (to, 11, ..., tpe—1)) optimal constant composition code C over F e, where

m—2e m—2e

n:pmfze—p 2 ,sz
P3¢ fori # 0.

m—2e

-1, d = pm72e _ pm73e’ o = pmf3e —p 7

Proof Since, we have p”~2¢ — 1 codewords of desired parameters n, fg and #; (1 < i

p¢ — 1). So, any codeword can be re-arranged as

IA

(wl, Wlyeooy W, W2, W2,y oo, W2,y vnny, wpefl, wpefl,..., w,,e,l,O, 0,...,0).
————
p™=3¢ symbols p"—3¢ symbols p™=3¢ symbols 1o symbols

Fix all zero symbols, and consider all same symbols as a single symbol. Now, we take
p¢ — 1 cycles of the nonzero symbols of the above re-arranged codeword. Define C as the

collection of all constructed cycles. It is obvious that the minimum distance of the code Cis
m—2e m—3e
p B p ) 3m—06 3m—38
One can easily check that nd —n% + (tg +t12+~--+t1278_1) =P 72 —P 7 >0

m—2e

and nd = (p"™~2¢ — p~ 2 )(p"~2¢ — pm=3¢) Then we have
nd (pm—Ze _ p'"gz")(pm—k _ pm—Se) Y
nd—n2+(t02+t12+...+t;g_]) N pm%h(pm—Ze_pm—Se) -

Hence, by Lemma 4.1, C is an optimal constant composition code. Thus, the result is
established. O

Theorem 4.3 Consider the CWE of the Theorem 3.17. If m = 3e and 7(—3) = 1, then

there exists an (n, M, d, (19, t1, . .., tpe_1)) optimal constant composition code C over Fpe,
where \ \

m-—se m—e m—ie
n = pm72e —p o, M = pz — 1, d = pm72e _ pm73e’ o = pm73e —p T, 4=

P3¢ fori # 0.
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Proof Following the arguments used in the proof of previous theorem, we can construct
m—e

p Z — 1 codewords of desired parameters (n, M, d, (to, t1, ..., tpe_1)).

3m—Te 3m—9e
2

One can easily check that nd — n? + (13 + t12 + -+ t;hl) =P 2 —-P

and nd = (p"=2¢ — p"T)(p"~2¢ — p"=3¢)_ Then, we have

>0

nd (pm—Ze _ pm%k)(pm—Ze _ pm—3e) B

= M.
nd —n2+ (5 + 17+ 15 ) pUTE (pm=2e — pm=3e)

By Lemma 4.1, Cisan optimal constant composition code. This completes the proof. [

5 Concluding remarks

In this paper, a class of linear codes over arbitrary finite fields with their complete weight
enumerators by giving two restrictions in the defining set has been presented. In addition,
the weight distributions of the codes are also determined. The codes presented in this paper
have improved relative minimum distance as we have shown in Table 10 which improves
error-correcting capability. In Corollary 3.20, we have found a MDS code [3¢, 3, 3¢ — 2]
for any positive integer e. Furthermore, in Sections 3.2 and 4, we have found some optimal
dual codes and constant composition codes respectively. Lastly the work presented in the
paper may further be extended to find more applicable codes.
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