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Abstract
DNA storage has emerged as an important area of research. The reliability of a DNA storage
system depends on designing those DNA strings (called DNA codes) that are sufficiently
dissimilar. In this work, we introduce DNA codes that satisfy the newly introduced con-
straint, a generalization of the non-homopolymers constraint. In particular, each codeword
of the DNA code has the specific property that any two consecutive sub-strings of the DNA
codeword will not be the same. This is apart from the usual constraints such as Hamming,
reverse, reverse-complement and GC-content. We believe that the new constraints proposed
in this paper will provide significant achievements in reducing the errors, during reading
and writing data into the synthetic DNA strings. We also present a construction (based on
a variant of stochastic local search algorithm) to determine the size of the DNA codes with
a constraint that each DNA codeword is free from secondary structures in addition to the
usual constraint. This further improves the lower bounds from the existing literature, in
some specific cases. A recursive isometric map between binary vectors and DNA strings is
also proposed. By applying this map over the well known binary codes, we obtain classes
of DNA codes with all of the above constraints, including the property that the constructed
DNA codewords are free from the hairpin like secondary structures.
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1 Introduction

The exponentially increasing demand in data storage forces to look into every possible
option and DNA (DeoxyriboNucleic Acid) data storage has come out to be one of the
most promising natural data storage for this purpose [11]. After the first striking imple-
mentation of large-scale archival DNA-based storage architecture by Church et al. [5] in
2012, followed by encoding scheme to DNA proposed by Goldman et al. [8] in 2013,
researchers have taken great interests on the construction of DNA-based information stor-
age systems [18, 20] because of its high storage density and longevity [5, 8, 36]. DNA
consists of four types of bases or nucleotides (nts) called adenine (A), cytosine (C), gua-
nine (G) and thymine (T ) where, the Watson-Cricks complementary bases for A and C are
T and G respectively and vice versa. In order to store data into synthetic DNA, we need
to encode data into strings on quaternary alphabet {A,C,G, T }. The set of encoded DNA
strings (also called as DNA codewords) on the quaternary alphabet is called DNA code. For
a DNA string, the complement is a DNA string obtained by replacing each nucleotide by
its complement. Similarly, for a DNA string, the reverse DNA string is a DNA string in the
reverse order, and the complement of the reverse DNA string is called reverse-complement
DNA string. The encoded strings are synthesized using DNA synthesizer for the purpose
of writing into DNA strings and the synthesized DNA strings are stored in the appropri-
ate environment. To extract the source data, the stored DNA strings are read using DNA
sequencing.

Errors occur, particularly, during synthesis and sequencing the DNA strings, which can
be reduced by choosing good encoding scheme for the DNA strings. Therefore, it is impor-
tant to study the source of errors. Generally, insertion or deletion errors occur frequently
in a DNA string with consecutive repetitions of a specific nucleotide (e.g. ACGGGGAT )
or of a block of nucleotides (e.g. AGATATATGC) up to certain length [12, 21, 26, 32]. In
addition, these DNA strings get misaligned more frequently, during DNA sequencing [26].
So we prefer DNA codes that exclude those codewords which contain consecutive repeti-
tion(s) of a specific nucleotide or a block of nucleotides. In this article, such DNA strings
are defined as conflict free DNA strings. In literature, DNA codes without Homopolymers
(DNA string with consecutive repetition of a nucleotide) [1, 2, 6, 10, 31] and without con-
secutive repeats of blocks [12, 16] are studied. As an extension, in this work, the considered
conflict free DNA strings are not only free from Homopolymers but are also free from
consecutive repetition of blocks of nucleotides.

In a single stranded DNA, the existence of two sub-strings where, the reverse-
complement of one sub-string is the other one, results in forming an antiparallel double
stranded hairpin like structure (also called hairpin loop or Stem-loop) by folding back upon
itself [4, 13, 24, 27, 38].

An example of such hairpin like structure is illustrated in Fig. 1. For DNA sequencing, it
is preferred to avoid such secondary structures [13]. In this work, all the codewords of the
constructed conflict free DNA codes are free from hairpin like structures with stem length
more than 2.

A DNA string can be read using specific hybridization between the DNA string and its
complement DNA string [23]. If the DNA strings in a code are not different enough among
themselves then nonspecific hybridization will occur and it will be a prominent cause of
error. Therefore, a set of DNA codewords is preferred in which DNA strings are sufficiently
different among themselves. Hamming distance between two strings of same length over
the same alphabets is the number of positions in which the symbols in the strings are differ-
ent. So, construction of DNA code with Hamming constraint (ensures the difference among
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Fig. 1 An example of hairpin like secondary structures in a single stranded DNA

DNA codewords), reverse constraint (ensures the difference between DNA codewords and
their reverse DNA strings), and reverse-complement constraint (ensures the difference
between DNA codewords and their reverse-complement DNA strings) is preferred. In lit-
erature, DNA codes with reverse and reverse-complement constraints are constructed from
finite fields and finite rings in [9, 17, 29, 33].

The thermal stability of a DNA string depends on the GC-content (the total number of
G′s and C′s) in the DNA string [35]. On the other hand, the high GC-content leads to
the insertion and deletion error during polymerase chain reaction (PCR). Therefore, such
DNA codes are preferred in which each DNA codeword has the same GC-content and
equal to almost half of its length and the constraint for the DNA codes is called GC-
content constraint. In [14, 15, 30, 33], DNA codes with balanced GC content are studied.
DNA codes with reverse, reverse-complement and GC-content constraints are studied in
[7, 30]. In [3], a revised lower bound on size of DNA codes with GC-content and reverse-
complement constraints are obtained. In fact, DNA codes with balanced GC content and
without Homopolymers are also studied in [6, 10, 31].

In this paper, we have studied the DNA codes with multiple properties such as each
DNA string is free from consecutive reparation of DNA blocks up to a certain length. Any
DNA codeword of the DNA code sufficiently differs from other DNA codewords, reverse
of DNA codewords and reverse-complement DNA codewords. In addition, each codeword
of the DNA code is also free from hairpin like secondary structures. These properties signif-
icantly help to reduce bit-flip, insertion, and deletion errors simultaneously during reading
and writing DNA strings. The lower bounds on the maximum size of DNA code with all
those properties are also obtained in this paper. To the best of author’s knowledge, in litera-
ture, an algebraic solution for DNA codes with all the constraints is not studied yet. In this
work, an algebraic structure for the family of DNA codes is proposed where the constructed
DNA codes meet all the constraints such as Hamming, reverse, reverse-complement, and
GC-content constraints. Apart from that, all the DNA codewords do not have any consec-
utive identical sub-string(s) up to a certain length � (generalization of non-homopolymer
constraint [12, 21, 26, 32]. These are known as non-homopolymer constraint of order �). In
addition, these codewords are free from hairpin like secondary structures. In this paper, an
algorithm is given which calculates the DNA code with the property that each DNA code-
word does not have any consecutive repeated sub-string of any length. In addition, DNA
codes with Hamming constraint, reverse constraint, reverse-complement constraint, and
GC-content constraint are obtained. For a DNA code with all the constraints, the obtained
code size is improved for some specific parameters as given in [19, Table I]. Further, fam-
ily of DNA codes have been obtained with Hamming, reverse, reverse-complement, and
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GC-content constraints where, each DNA codeword is free from hairpin like secondary
structure and non-homopolymer constraint.

In Section 2, preliminary for DNA codes is discussed. Complete conflict free DNA codes
with all the constraints are studied in Section 3. A recursive mapping from binary strings to
DNA strings is discussed in Section 4, which is also an isometry between non-homopolymer
distance over binary strings and Hamming distance over DNA strings. The conditions on
binary strings are obtained, which ensure the constraints on encoded DNA strings in the
same section. In Section 5, a family of DNA codes are obtained from binary Reed-Muller
codes. Section 6 concludes the work with general remarks.

2 Preliminary

A code C with parameters (n, M, d) over an alphabet � of size q is a set of M distinct
strings (also called codewords) with length n such that the distance between any two dis-
tinct strings is at least d . Codes over {0, 1} are called binary codes. Similarly, codes over an
alphabet of size 4 are known as Quaternary codes. In particular, codes over alphabet �DNA

= {A,C, G, T } are called DNA codes (denoted by CDNA) respectively. For various applica-
tions, codes with various distances (such as Gau distance [17]) are studied in literature. In
this work, DNA codes with Hamming distance and binary codes with a newly defined dis-
tance are studied. For any strings x and y in �n, the Hamming distance dH (x, y) between
x and y is the total number of positions at which they differ. For a code C ⊂ �n, the min-
imum Hamming distance is dH = min{dH (x, y) : x �= y and x, y ∈ C}. Note that one can
find fields or rings over the alphabet �. For a ring defined over the alphabet �, a code on
� is called linear if the code is sub-module over the ring. For a field defined over the alpha-
bet �, a code on � is called linear if the code is row span of a matrix over the field. For
any linear code, the matrix is called the generator matrix if rows of that matrix are linearly
independent.

For any DNA string x = (x1 x2 . . . xn) ∈ �n
DNA, the reverse, complement and reverse-

complement DNA strings of x are xr = (xn xn−1 . . . x1), xc = (xc
1 xc

2 . . . xc
n), and xrc =

(xc
n xc

n−1 . . . xc
1) respectively where, Ac = T , Cc = G, Gc = C and T c = A. As defined

in [23], for any DNA code CDNA with parameter (n, M, dH ), the various constraints are
defined as follows:

– Hamming constraint: The Hamming distance dH (x, y) ≥ dH for any x, y ∈ CDNA and
x �= y.

– Reverse constraint: The Hamming distance dH (x, yr ) ≥ dH for any x, y ∈ CDNA and
x �= yr .

– Reverse-complement constraint: The Hamming distance dH (x, yrc) ≥ dH for any
x, y ∈ CDNA and x �= yrc.

– GC-content constraint: If the total number of G’s and C’s in each codeword is same
and equal to g then the code satisfies g-GC-content constraint. For a specific case
g = �n/2�, the �n/2�-GC-content constraint is simply called GC-content constraint.

Consider a DNA code CDNA with the minimum Hamming distance dH . For each x ∈ CDNA,
if xr ∈ CDNA then, from the distance property of code, dH (y, xr ) ≥ dH for each y ∈ CDNA

such that xr �= y. Therefore, the code satisfies the reverse constraint. Similarly, for each
x ∈ CDNA, if xrc ∈ CDNA then from the distance property of code again, dH (y, xrc) ≥ dH

for each y ( �= xrc) in CDNA, and hence the code satisfies the reverse-complement con-
straint. In consequence, researchers are curious in the construction of DNA codes which are
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closed under reverse and reverse-complement DNA strings [17]. Thus, motivated by this,
we construct a set of DNA strings for a given length such that those DNA strings satisfy
multiple constraints. In the following lemma, the distinct DNA strings of fix length with
some additional constraints are enumerated.

Lemma 1 For a given length n,

1. there exists 4	n/2
 number of distinct DNA strings x ∈ �n
DNA such that x = xr ,

2. for an even n, there exists 4n/2 number of DNA strings x ∈ �n
DNA such that x = xrc,

3. for a positive integer m (≤ n), there exists
(
n
m

)
2n distinct DNA strings x ∈ �n

DNA each
with GC-content m,

4. for an even positive integer m (≤ n), there exists
(
n/2
m/2

)
2n/2 distinct DNA strings x ∈

�n
DNA each with GC-content m and x = xrc where, n is even, and

5. for a positive integer m (≤ n), there exists η distinct DNA strings x ∈ �n
DNA each with

m - GC-content and x = xr where,

η =
{

0 if n is even and m is odd,(�n/2�
�m/2�

)
2	n/2
 otherwise.

Proof Consider x = (x1 x2 . . . xn) ∈ �n
DNA.

1) If x = xr then, xi = xn−i+1 for i = 1, 2, . . . , 	n/2
. Therefore, there exists 4	n/2

number of distinct DNA strings x ∈ �n

DNA such that x = xr .
2) If x = xrc then, xi = xc

n−i+1 for i = 1, 2, . . . , �n/2�. Therefore, there exists 4n/2 number
of distinct DNA strings x ∈ �n

DNA such that x = xrc. Note that, for any positive odd n,
any x ∈ �n

DNA can not equal xrc.
3) There are

(
n
m

)
2m ways to fill m positions out of n positions by a symbol from {C,G}. If

the remaining n - m positions are filled by a symbol from {A, T } then there are
(
n
m

)
2n

distinct DNA strings each with GC-content m.

Proofs of remaining results are similar.

For theoretical analysis, we define complement constraint for a DNA code similar to
reverse and reverse-complement constraints. A DNA code CDNA satisfies the complement
constraint, if, for any x and y in CDNA such that x �= yc, dH (x, yc) ≥ dH .

Remark 1 Consider a DNA code CDNA with the minimum Hamming distance dH . For any
codeword x ∈ CDNA, if xc and xr are also in the DNA code CDNA then, from the distance
property of code, the DNA code satisfies reverse, complement, and reverse-complement
constraints.

Remark 2 Consider a DNA code CDNA with the minimum Hamming distance dH such
that xc ∈ CDNA for each codeword x ∈ CDNA. For any codeword x, y ∈ CDNA, if
dH (x, yr ) ≥ dH then, from the reverse and reverse-complement properties of DNA, the
DNA code satisfies reverse, complement, and reverse-complement constraints.

Remark 3 Consider a DNA code CDNA with the minimum Hamming distance dH such
that xr ∈ CDNA for each codeword x ∈ CDNA. For any codeword x, y ∈ CDNA, if
dH (x, yc) ≥ dH then, from the reverse and reverse-complement properties of DNA, the
DNA code satisfies reverse, complement, and reverse-complement constraints.

147Cryptography and Communications (2021) 13:143–171



For a DNA code with some properties, the following lemma ensures the reverse-
complement constraint.

Lemma 2 For a DNA code of parameter (n, M, dH ) with reverse and complement con-
straints, if dH ≤ n/2 then the DNA code will satisfy the reverse-complement constraint.

Proof For any x, y ∈ C, dH (yrc, xc) = dH (yr , x). So, dH (x, xc) ≤ dH (x, yrc)+dH (yrc, xc)

= dH (x, yrc) + dH (yr , x). This implies, dH (x, xc) ≤ dH (x, yrc) + dH . But, dH (x, xc) = n,
so, n − dH ≤ dH (x, yrc). Therefore, if dH ≤ n/2 then dH (x, yrc) ≥ dH .

In a single stranded DNA, if there exist two sub-strings such that one sub-string
is the reverse-complement of another sub-string then the DNA strand folds back and
attaches the both sub-strings to each other and forms hairpin like secondary structures
with stems and loops of certain length [4, 13, 24, 27]. The stem size of more than 2
bases long reasonably approximates the hairpin like structures. The single stranded DNA
ATACGCGAATGCGTGC, considered in Fig. 1, contains the reverse-complementary
sub-strings ACGC and T GCG (see the bold sub-strings). The sub-strings are attached to
each other and forms a stem of length 4 base pairs, and a loop of size 4 bases long. There-
fore, in this work, DNA strings are considered to be free from hairpin like structures with
stem length of more than 2 bases long.

Definition 1 A DNA string is called free from secondary structures (of stem length more
than 2) if the DNA string does not contain any two sub-strings of length more than 2 such
that one is the reverse-complement of the other.

Remark 4 Consider a DNA string of length n (> 5) which contains two sub-strings of
length t (n ≥ t ≥ 4) such that one sub-string is the reverse-complement of the other.
Then, the DNA string will also contain two sub-strings of length 3 such that one is the
reverse-complement of the other. Therefore, it is sufficient for a DNA string, free from
secondary structures of stem length more than 2, not to contain two sub-strings which are
reverse-complement to each other.

Apart from the pairing between Watson-Crick complement base pairs, the secondary
structures can also be formed with Wobble base pairs or cross hybridization between base
pairs in a single strand DNA [4, 13, 24, 27, 38]. In this work, we have considered only those
secondary structures which have stem length more than 2 and each bounded base pair in the
stem is Watson-Crick complement pairs. We called such DNA strings free from secondary
structures in this paper.

Remark 5 A DNA string is free from secondary structures if and only if the complement of
the DNA string is also free from secondary structures. The same result holds for reverse and
reverse-complement.

For example, the DNA string ACAT CG is free from reverse-complement sub-strings of
length 3 because the reverse-complement of ACA is T GT and T GT is not a sub-string of
ACAT CG. The reverse and reverse-complement DNA strings GCT ACA and CGAT GT

are also free from reverse-complement sub-strings. Therefore, the following remark
holds.
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Remark 6 Any DNA string is free from secondary structures of stem length more than 2 if
and only if it is free from secondary structures of stem length 3.

3 On complete conflict free DNA strings

It is evident that, the process of sequencing and synthesizing of DNA strings will be
erroneous due to the existence of homopolymers and consecutive repetition of same sub-
string(s) of certain length in DNA [12, 21, 26, 32]. So it is preferable to construct DNA
codes in such a way that each DNA codeword will be free from Homopolymers or consecu-
tive repetition(s) of same sub-string(s) of certain length. In general, a sequence which is free
from the consecutive repetition of a block is known as square free sequence or repeat free
sequence in literature [22]. Thus motivated by this, we define � conflict free DNA strings
and � conflict free DNA code. Also the necessary and sufficient condition for a DNA string
to be � conflict free is given.

Definition 2 For positive integers n and � (≤ n/2), a DNA string is called � conflict free,
if the DNA string of length n is free from consecutive repetition(s) of identical sub-string(s)
of length t for each t = 1, 2, . . . , �.

For example, the DNA string AT CAT CG is 2 conflict free but not 3 conflict free as the
substring AT C has a consecutive repetition in the DNA string while any two consecutive
sub-strings of same length (≤ 2) are not same, i.e., the DNA string does not contain any
of the DNA sub-strings AT AT , T CT C, CACA, CGCG, AA, T T , CC and GG. Note
that, 1 conflict free DNA strings are also known as DNA strings free from homopolymers
in literature [1, 2, 6, 10, 31]. Also note, for any positive integer � (≥ 2), an � conflict free
DNA string is also � − 1 conflict free.

Remark 7 A DNA string is � conflict free if and only if the complement DNA string is also
� conflict free. Note that the result also holds for reverse and reverse-complement DNA
strings.

Definition 3 For positive integers n and � (≤ �n/2�), a DNA code with length n is called �

conflict free DNA code if each DNA codeword of the DNA code is � conflict free.

For example, the DNA code {ACT G, T GAC,CAGT, GT CA} is 2 conflict free DNA
code, since each DNA codeword is 2 conflict free DNA string.

One can observe that the maximum length of a DNA sub-string will be �n/2�, which
can be repeated in a DNA string of length n. Hence, from Definition 2, a DNA string will
be free from repetition(s) of DNA sub-string(s) of any length, if it is �n/2� conflict free.
For a positive integer n, let S(n) be the set of all �n/2� conflict free DNA strings each of
length n. For any z ∈ S(n) we will have zr , zc, zrc ∈ S(n). Also note that, any DNA code
CDNA ⊂ S(n) is always a �n/2� conflict free DNA code.

Various computational approaches to construct DNA codes with some additional con-
straints are studied in literature [3, 28, 33, 34, 37]. In this work, � conflict free DNA codes
are constructed using stochastic local search in a seed set of � conflict free DNA strings such
that each DNA string has a fix GC-content and all the DNA strings are free from reverse-
complement sub-strings. The computational construction for � conflict free DNA codes is
given as follows.
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Construction 1 For given positive integers n, � (≤ �n/2�) and g (≤ n), let S ⊂ �n
DNA be

the set of all � conflict free DNA strings such that GC-content of each DNA string is g and
every DNA string is free from secondary structures. For a sub-set R of random cardinality
and containing DNA strings which are randomly selected from S , the DNA code CDNA =
R∪{xr , xc, xrc : x ∈ R} is an � conflict free DNA code with Hamming, reverse and reverse-
complement constraints where, each DNA codeword is free from reverse-complement sub-
strings and GC-constant of each DNA codeword is fix g.

For example, consider n = 3, � = 1 and g = 2. The seed set will be S =
{ACG,AGC,CAC,CAG,CGA, CGT, CT C,CT G,GAC,GAG,GCA, GCT,

GT C,GT G, T CG, T GC}. Note that, for R = {CAC, CGT, ACG, T GC}, the 1 conflict
free DNA code with GC-content, reverse and reverse-complement constraints is CDNA =
{CAC, CGT, ACG, T GC, GCA,GT G} where, each DNA codeword is free from sec-
ondary structures. Also note, the DNA code size and the minimum Hamming distance of
the code are M = 6 and dH = 2.

For a given DNA string, the computational complexity to determine if the DNA string is
� conflict free (using Definition 2) is more than the computational complexity to determine
whether the DNA string is free from secondary structures (using Remark 6), and, it is again
more than the computational complexity to determine the GC-content of the DNA string.
Therefore, in order to construct the seed set S for the Construction 1, one can reduce the
computations by removing DNA strings in the following order.

1. Remove all the DNA strings from the complete set �n
DNA which do not have g-GC-

content.
2. Remove all the DNA strings from the remaining set which are not free from secondary

structures of stem length 3.
3. Remove all the DNA strings from the remaining set which are not � conflict free.

For a given length n and Hamming distance dH , the maximum size of code is subject to
interest among researches. Now, similar to [23], some notations for the maximum size of �

conflict free DNA codes are introduced here.

– For a DNA code of codeword length n and the minimum distance dH with GC-
content and reverse-complement constraints, the maximum size of the DNA code is
denoted by A

GC,rc
4 (n, dH ) where, the terms GC and rc stand for GC-content and

reverse-complement constraints.
– The maximum size of an � conflict free DNA code with length n and the minimum

Hamming distance dH is A
cf

4 (n, dH , �). So, A
cf,GC

4 (n, dH , 1) denotes the maximum
size of a DNA code of codeword length n and the minimum distance dH with GC-
content constraint such that each codeword is free from homopolymers where, the term
cf stands for conflict free property of the DNA code.

– For an � conflict free DNA code of codeword length n and the minimum distance dH

with reverse constraint such that each DNA codeword is free from secondary structures
(hairpin like structure) of length more than 2, the maximum size of the DNA code is
denoted by A

cf,hf,r

4 (n, dH , �) where, the terms hf and r stand for property free from
secondary structures and reverse constraint.

– For an � conflict free DNA code of codeword length n and the minimum distance dH

with reverse-complement constraint, A
cf,hf,rc

4 (n, dH , �) denotes the maximum size of
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the DNA code where, each DNA codeword is free from secondary structures of length
more than 2.

– For any � conflict free DNA codes of codeword length n and the minimum distance
dH with GC-contant constraint, the maximum size of the DNA code is denoted by
A

cf,hf,GC

4 (n, dH , �) where, each DNA codeword is free from secondary structures of
length more than 2.

– For any � conflict free DNA codes of codeword length n and the minimum distance
dH with GC-contant, reverse, and reverse-complement constraints, the maximum size
of the DNA code is denoted by A

cf,hf,GC,r,rc

4 (n, dH , �) where, each DNA codeword is
free from secondary structures of length more than 2.

The relations among sizes of � conflict free DNA codes with additional constraints are
given in following theorem.

Theorem 1 For a positive even integer n,

A
cf,hf,GC,r

4 (n, dH , �) = A
cf,hf,GC,rc

4 (n, dH , �),

and for a positive odd integer n,

A
cf,hf,GC,r

4 (n, dH + 1, �) ≤ A
cf,hf,GC,rc

4 (n, dH , �)

≤ A
cf,hf,GC,r

4 (n, dH − 1, �).

Proof Similar to the proof of [23, Theorem 4.1], consider an � conflict free DNA code
CDNA with codeword length n and the minimum Hamming distance dH . In addition,
each codeword of the DNA code is free from secondary structures and has fixed GC-
content. Now, for even n, the DNA code CDNA = {aibi} satisfies reverse constraint where,
the sizes of ai and bi are same and aibi is the concatenation of sequences ai and bi

in same order. Then the DNA code C ′
DNA = {aibc

i } satisfies reverse-complement con-
straint. Observe that the parameters of both the DNA codes CDNA and C ′

DNA are same

and therefore, A
cf,hf,GC,r

4 (n, dH , �) ≤ A
cf,hf,GC,rc

4 (n, dH , �). Similarly, one can prove

the inequality A
cf,hf,GC,r

4 (n, dH , �) ≥ A
cf,hf,GC,rc

4 (n, dH , �). Thus, the result follows for
even n. Again, for odd n, consider a � conflict free DNA code CDNA with parameter
(n, A

cf,hf,GC,r

4 (n, dH + 1, �), dH + 1) with reverse and GC-content constraints. Also each
codeword of the DNA code is free from secondary structures. For some x ∈ �DNA,
CDNA = {aixbi} where, the sizes of ai and bi are same and aibi is the concatenation of
sequences ai and bi in same order. Now, consider C∗

DNA = {aibi} of even length which
is obtained by deleting the middle symbol x of each codeword of the DNA code CDNA.
Therefore, from even case, A

cf,hf,GC,r

4 (n, dH + 1, �) ≤ A
cf,hf,GC,rc

4 (n − 1, dH , �). The

first inequality for odd n follows from A
cf,hf,GC,rc

4 (n − 1, dH , �) ≤ A
cf,hf,GC,rc

4 (n, dH , �).
Similarly, one can prove the second inequality for odd n.

Remark 8 Consider an � conflict free DNA code with codeword length n and the minimum
Hamming distance dH .
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– For positive integers n, � (< �n/2�) and dH (≤ n),

A
cf

4 (n, dH , �) ≥ A
cf

4 (n, dH , � + 1)

A
cf,hf

4 (n, dH , �) ≥ A
cf,hf

4 (n, dH , � + 1) and
A

cf

4 (n, dH , �) ≥ A
cf,hf

4 (n, dH , �)

≥ A
cf,hf,GC

4 (n, dH , �)

≥ A
cf,hf,GC,r

4 (n, dH , �)

≥ A
cf,hf,GC,r,rc

4 (n, dH , �).

– For positive integers n and dH (≤ n),

A
cf,GC

4 (n, dH , 1) ≥ A
cf,hf,GC

4 (n, dH , �), and
A

GC,rc
4 (n, dH ) ≥ A

cf,hf,GC,rc

4 (n, dH , �).

For n = 1, 2, . . . , 10, g = �n/2� and � = 1, 2, . . . , �n/2�, the DNA codes with various
parameters are calculated using Construction 1 and the maximum value of obtained code
sizes are listed in Table 1 where, the DNA codes satisfy reverse, reverse-complement, GC-
content constraints, and each codeword of the DNA code is �n/2� conflict free and also
free from secondary structures. For given n and �, first, the seed set S is obtained such
that each DNA string in the set contains �n/2� GC-content. Further, for a random sub-
set R of the set S , the �n/2� conflict free DNA code CDNA = R ∪ {xr , xc, xrc : x ∈ C}
is obtained. From the seed set S , the sub-set R is generated 106 times and, for each sub-
set R, the size |CDNA| is enumerated. For given n and dH , the maximum value among all
the enumerated |CDNA| (lower bound of A

cf,hf,GC,r,rc

4 (n, dH , �n/2�)) is listed in Table 1.

Note that A
cf,hf,GC

4 (n, 1, �n/2�) = A
cf,hf,GC,r,rc

4 (n, 1, �n/2�) and A
cf,hf

4 (n, 1, �n/2�) =

A
cf,hf,r,rc

4 (n, 1, �n/2�), for a positive integer n. Therefore, from Remark 7 and Definition 3,

Table 1 Lower bound of A
cf,hf,GC,r,rc

4 (n, dH , �n/2�) (the maximum size of �n/2� conflict free DNA code
with Hamming, reverse, reverse-complement and GC-content constraints, and each DNA codeword is free
from secondary structures) are given. Values given in circles are improved from the values given in [19, Table
I] or [3, Table II]. The bold values are those values which archive the values given in [19, Table I] or [3, Table
II]

1 2 3 4 5 6 7 8 9 10

––––––––482

–––––––26613

844 32 12 4 – – – – – – –

41848015 4 2 – – – – –

23290236 20 0 4 – – – –

0182256316567 4 2 – – –

02848802223818 12 0 4 – –

234642160304639 16 6 4 2 –

10 9504 564 200 104 52 28 16 8 0 4
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A
cf,GC,r,rc

4 (n, 1, �n/2�) = |S| where, |S| is cardinality of seed set in Construction 1. There-

fore, for n = 2, 3, . . . , 10, the listed lower bounds of A
cf,hf,GC,r,rc

4 (n, 1, �n/2�) are tight.
Similarly, from the definition of Hamming distance one can observe that,

A
cf,hf,GC,r,rc

4 (n, n, �n/2�) =
{

2 if n is odd,

4 if n is even.

Recall, for any odd length DNA string x, dH (x, xr ) < n, and hence, the values
A

cf,hf,GC,r,rc

4 (n, n, �n/2�) are also tight for dH = n (= 2, 3 . . . , 10) in Table 1. Values which
are written in bold font in the table indicate equal or improved values from [19, Table I] or
[3, Table II], and values written in a circle in the table are improved values from [19, Table
I] or [3, Table II] . For the equal and improved values, the corresponding code parame-
ters have been considered and the respective DNA codes and their codewords are listed in
Table 6. Apart from the existing literature, all the specified constraints have been consid-
ered in Table 1. Some of those values are better when compared with the DNA code size
with less constraints listed in Table 2.

Note that the values in Table I, [19] are the lower bounds for the maximum size of
DNA codes satisfying GC-content constraint and free from Homopolymers, and in Table
II, [3] are lower bounds for the maximum size of DNA codes satisfying GC-content and
reverse-complement constraints, on the other hand, values listed in Table 1 in this paper
are the lower bounds for the maximum size of complete conflict free DNA codes satisfying
Hamming, reverse, reverse-complement and GC-content constraints. From Remark 8 and
Table 2, some new lower bounds are obtained for A

cf,GC

4 (n, dH , 1) and A
GC,rc
4 (n, dH ). For

A
cf,GC

4 (n, dH , 1), the newly updated bounds are

A
cf,GC

4 (4, 3, 1) ≥ 12,

A
cf,GC

4 (6, 4, 1) ≥ 20,

A
cf,GC

4 (8, 6, 1) ≥ 12,

A
cf,GC

4 (9, 6, 1) ≥ 16,

A
cf,GC

4 (9, 9, 1) ≥ 2,

A
cf,GC

4 (10, 7, 1) ≥ 16, and

Table 2 List of improved lower bound of A
cf,hf,GC,r,rc

4 (n, dH , �n/2�) (the maximum size of �n/2� conflict
free DNA code with Hamming, reverse, reverse-complement and GC-content constraints and each DNA
string is free from secondary structures) from [19, Table I] and [3, table II]

DNA code Lower bound of Lower bound of Lower bound of

Parameters A
cf,hf,GC,r,rc

4 (n, dH , �n/2�) A
cf,GC

4 (n, dH , 1) A
GC,rc
4 (n, dH )

(n, dH ) Table 1 Table I in [19] Table II in [3]

(4, 3) 12 11 11

(6, 4) 20 16 16

(8, 6) 12 9 12

(9, 6) 16 15 20

(9, 9) 2 0 1

(10, 7) 16 7 16

(10, 8) 8 5 8
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Table 3 Non-Homopolymer Map and an Example with x = CG and y = AT

A
cf,GC

4 (10, 8, 1) ≥ 8.

Similarly, for A
GC,rc
4 (n, dH ), the newly achieved bounds are

A
GC,rc
4 (4, 3) ≥ 12,

A
GC,rc
4 (6, 4) ≥ 20, and

A
GC,rc
4 (9, 9) ≥ 2.

4 Mappings and their properties

For a positive integer �, the frequency of occurrence of insertion or deletion errors in an
� + 1 conflict free DNA string is less in an � conflict free DNA string. Therefore, the
chances of occurrence of these errors is significantly low in an � conflict free DNA string
for a sufficiently large �. On the other hand, the computational complexity of Construction
1 is high. Therefore, to sidestep the computational approach, a recursive mapping is defined
algebraically in this section which ensures that the obtained DNA strings will be � conflict
free. Moreover, DNA codes satisfying all the constraints are also studied with respect to the
mapping in this section.

Definition 4 (Non-Homopolymer map of order �): For a positive integer �, consider x, y ∈
��

DNA such that x �= y. Define a map f : {0, 1} × {x, xc, y, yc} → {x, xc, y, yc} such that
Table 3(a) holds.

Table 4 Parameters for conflict free DNA codes encoded from binary codes

Binary code DNA code parameters

(Encoded from) n� M dH

[5,2,5] Repetition code 5� 2 3�

[7,4,3] Hamming code 7� 16 2�

[8,4,2] Reed-Muller code 8� 256 �

(15, 256, 5) Nordstrom-Robinson code 15� 256 3�

[23,12,7] Golay code 23� 4096 4�

[24,12,8] Extended golay code 24� 4096 4�
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Table 5 List of all encoded DNA strings for (x, y) = (AT A,CGC) from [7, 4, 3] binary Hamming code.
The code rate of the DNA code is 0.1904

[7, 4, 3] Hamming code Encoded DNA code

0000000 AT ACGCAT ACGCAT ACGCAT A

1110000 T AT CGCT AT GCGT AT GCGT AT

1001100 T AT GCGT AT CGCT AT GCGT AT

0111100 AT AGCGAT AGCGAT ACGCAT A

0101010 AT AGCGT AT CGCAT AGCGT AT

1011010 T AT GCGAT AGCGT AT CGCAT A

1100110 T AT CGCAT ACGCT AT CGCAT A

0010110 AT ACGCT AT GCGAT AGCGT AT

1101001 T AT CGCAT AGCGT AT GCGAT A

0011001 AT ACGCT AT CGCAT ACGCT AT

0100101 AT AGCGT AT GCGAT ACGCT AT

1010101 T AT GCGAT ACGCT AT GCGAT A

1000011 T AT GCGT AT GCGT AT CGCT AT

0110011 AT AGCGAT ACGCAT AGCGAT A

0001111 AT ACGCAT AGCGAT AGCGAT A

1111111 T AT CGCT AT CGCT AT CGCT AT

For � = 2, one can obtain Non-Homopolymer map f of order 2 is given in Table 3(b) by
considering x = CG and y = AT . One can read the table as f (1, CG) = T A, f (1, T A) =
GC and f (0,GC) = T A etc. Using the Non-Homopolymer map of order 2 (Table 3(b)),
a binary string can also be encoded into a DNA string. Formally, the encoding using the
Non-Homopolymer map is as follows.

Encoding 1 For positive integers n and �, consider a mapping f as defined in the Defi-
nition 4. A binary string a = (a1 a2 . . . an) ∈ {0, 1}n is encoded into u = (u1 u2 . . .un) ∈
{x, xc, y, yc}n, in such a way that ui = f (ai,ui−1) for each i = 2, 3, . . . , n and u1 = h(a1)

where, h : {0, 1} → {x, xc, y, yc} such that h(0) = h(1)c. Note that u1 ∈ {x, xc, y, yc} ini-
tiates the encoding of the binary string, and therefore the length of the encoded DNA string
u is n�. Clearly, the encoding of two distinct binary strings are always distinct. Observe
that for i = 2, 3, . . . , n, f (ai,ui−1)

c = f (ai, uc
i−1) = f (āi ,ui−1) where, āi is binary

complement of ai .

Example 1 Consider a binary string a = (0 1 1 0). Let the encoding be initial-
ized with x = CG. So, one can encode the binary string a to a DNA string
(x f (1, x) f (1, f (1, x)) f (0, f (1, f (1, x)))) = xycxy = CGT AGCT A.

For positive integers n and � (< n), consider a subset S ⊆ {0, 1}n. Each binary string
from the set S is encoded using the Non-Homopolymer map, and the set of all encoded
DNA strings is denoted by f (S). In particular, let B = f ({0, 1}n) ⊆ �n�

DNA be the set of
all possible DNA strings of length n� and they are obtained by the encoding using Non-
Homopolymer map.
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Table 6 Codewords (each of length n) for �n/2� conflict free DNA codes with Hamming, reverse, reverse-
complement and GC-content constraints. All the codes have code size improved from existing literature

Codewords for 2 conflict free DNA code with parameters (4, 12, 3)

ACT G, AGCT , AT GC, CAGT , CGT A, CT AG,

GAT C, GCAT , GT CA, T ACG, T CGA, T GAC

Codewords for 3 conflict free DNA code with parameters (6, 20, 4)

ACAGT G, ACGT GA, AGCT AG, AGT GCA, AT CAGC,

CACT GT , CAT GT C, CGACT A, CT AGCT , CT GT AC,

GACAT G, GAT CGA, GCT GAT , GT ACAG, GT GACA,

T AGT CG, T CACGT , T CGAT C, T GCACT , T GT CAC

Codewords for 4 conflict free DNA code with parameters (8, 12, 6)

ACAGAT CG, AGCT ACT C, CAT ACGT C, CGAT CT GT ,

CT CAT CGA, CT GCAT AC, GACGT AT G, GAGT AGCT ,

GCT AGACA, GT AT GCAG, T CGAT GAG, T GT CT AGC

Codewords for 4 conflict free DNA code with parameters (9, 16, 6)

ACAGT AGCT , AGCT ACT GT , AGT AGCAT C, AT ACAGACG,

AT GAT CGAG, CGT CT GT AT , CT ACGAT GA, CT CGAT CAT ,

GAGCT AGT A, GAT GCT ACT , GCAGACAT A, T ACT AGCT C,

T AT GT CT GC, T CAT CGT AG, T CGAT GACA, T GT CAT CGA

Codewords for 4 conflict free DNA code with parameters (9, 2, 9)

ACGAT AGCA, T GCT AT CGT

Codewords for 5 conflict free DNA code with parameters (10, 16, 7)

ACGT AGCAGA, ACT ACAGACG, AGACGAT GCA,

AGCGACT AT C, AT AGCT CGT G, CACGAGCT AT ,

CGT CT GT AGT , CT AT CAGCGA, GAT AGT CGCT ,

GCAGACAT CA, GT GCT CGAT A, T AT CGAGCAC,

T CGCT GAT AG, T CT GCT ACGT , T GAT GT CT GC,

T GCAT CGT CT

Codewords for 5 conflict free DNA code with parameters (10, 8, 8)

ACAT GCGAT C, CAGAT ACAGC, CGACAT AGAC,

GAT CGCAT GT , GCT GT AT CT G, GT CT AT GT CG,

CT AGCGT ACA, T GT ACGCT AG

B =
{

({u1,uc
1} × {u2, uc

2})
n−1

2 × {u1,uc
1} n is positive odd integer, and

({u1,uc
1} × {u2, uc

2})
n
2 n is positive even integer

where, {u1,uc
1} and {u2,uc

2} are pairwise disjoint and {u1,uc
1} ∪ {u2,uc

2} = {x, xc, y, yc}.
Note that, in the Example 1, the encoded DNA string CGT AGCAT is 4 conflict free and
also free from secondary structures. The GC-content of the DNA string is 4 (= �n/2�).
Therefore, in the following results, we obtained constraints on seed blocks (x and y) of the
Non-Homopolymer mapping so that the encoded DNA strings from binary strings satisfy
those additional constraints.

Theorem 2 For positive integers n (n ≥ 2), �, t and m (≤ t�), if x, y ∈ ��
DNA such that

each DNA string in the set S = {(x y1 x2 y2 . . . xt yt ), (y x1 y2 x2 . . .
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yt xt ) : xi ∈ {x, xc} and yi ∈ {y, yc} for i = 1, 2, . . . , t} is m conflict free then any
binary string from {0, 1}n will be encoded into an m conflict free DNA string using
Non-Homopolymer map.

Proof From Remark 7, if any DNA string in the set S is m conflict free then all the DNA
sub-strings (x1 y1 x2 y2 . . . xt yt ) and (y1 x1 y2 x2 . . . yt xt ) are also m conflict free. There-
fore, in the encoded DNA string u = (u1 u2 . . .

un) (using Non-Homopolymer map), for 1 ≤ i ≤ n − 2t + 1, consider (ui ui+1
ui+2 . . .ui+2t ), which is also m conflict free where, uj ∈ {x, xc, y, yc} for j = i, i +
1, . . . , i + 2t . From Definition 2, m < t�, the result follows.

For the various values of m and t in Theorem 2, one can observe the following two
propositions:

Proposition 1 For a positive integer �, if x, y ∈ ��
DNA such that each of the DNA strings

(x y), (x yc), (y x) and (y xc) is � conflict free then any binary string will be encoded into a
� conflict free DNA string using Non-Homopolymer map.

Theorem 3 For a positive integer � (≥ 2), if x, y ∈ ��
DNA such that each of the DNA string

from the set {(x y1 x1 y2 x2) : x1, x2 ∈ {x, xc} and y1, y2 ∈ {y, yc}} is free from reverse-
complement sub-string(s) of length 3 then the encoded DNA string using Non-Homopolymer
map is free from secondary structure of stem length 3.

Proof For � (≥ 2) and x, y ∈ ��
DNA, consider a DNA string (x y x y x) free from reverse-

complement sub-strings of length 3. From Remark 5, the DNA strings (xc yc xc yc xc)

will also be free from reverse-complement sub-strings of length 3. Similarly remaining all
DNA strings of 5 seed blocks are also free from reverse-complement sub-strings. Hence,
from Definition 1 and Non-Homopolymer map, the encoded DNA string obtained from any
binary string will be free from secondary structure of stem length 3.

From Remark 4, if a DNA string of length n is free from reverse-complement sub-string
of length m then the DNA string is also free from any reverse-complement sub-string of
length t (m ≤ t ≤ n). Therefore, one can observe following two propositions from Theorem
3.

Proposition 2 For a positive integer � (≥ 2), if x, y ∈ ��
DNA such that each DNA string

in the set {(x y∗ x∗ y∗), (y x∗ y∗ x∗) : x∗ ∈ {x, xc} and y∗ ∈ {y, yc}} is free from secondary
structures of stem length 3 then the encoded DNA string using Non-Homopolymer map is
also free from secondary structure of stem length 3.

Recall that any DNA string of length n is �n/2� conflict free then the DNA string is free
from any consecutive repetitions of sub-strings of any length. Following theorem gives the
condition on binary strings such that the encoded DNA string of length n� is �n�/2� conflict
free.

Theorem 4 For positive integers n and �, consider x, y ∈ ��
DNA such that the DNA strings

(x y), (x yc), (y x) and (y xc) are � conflict free. If a = (a1 a2 . . . an) is a binary string
such that 2μ <

∑λ+2μ
i=λ+1(aia2μ+i + āi ā2μ+i ) for each positive even integer 2μ from the set
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{1, 2, . . . , �n/2�} and λ = 0, 1, . . . , n − 2μ then the binary string a will be encoded (using
Non-Homopolymer map) into a �n�/2� conflict free DNA string of length n�.

Proof Consider a binary string a = (a1 a2 . . . an) which is encoded into DNA string u =
(u1 u2 . . . un) using Non-Homopolymer map. For each positive even integer 2μ from the
set {1, 2, . . . , �n/2�}, the DNA block u2μ+i ∈ {ui, u

c
i }. For any binary symbol ai , a2μ+i ∈

{0, 1},
(aia2μ+i + āi ā2μ+i ) =

{
1 if ai = a2μ+i

0 otherwise.

Therefore,
∑2μ

i=1(aia2μ+i + āi ā2μ+i ) = 2μ if and only if ai = a2μ+i for each i =
1, 2, . . . , 2μ. If the origin is shifted with λ, and 2μ <

∑λ+2μ
i=λ+1(aia2μ+i + āi ā2μ+i ) for

each λ and μ, then there is not exist the consecutive identical sub-string of length 2μ

in the binary string. From Non-Homopolymer map, for a binary string, two consecutive
sub-strings of odd length cannot be encoded into identical DNA sub-strings. Therefore,
from Non-Homopolymer map and Proposition 1, the encoded DNA string will be a �n�/2�
conflict free.

The GC-content of encoded DNA string is calculated in the following lemma.

Lemma 3 For positive integers n and �, consider x, y ∈ ��
DNA with GC-content gx and gy.

For the encoded DNA string u = (u1 u2 . . .un) ∈ {x, xc, y, yc}n using Non-Homopolymer
map, the GC-content of u will be

gu =
{

gu1 + (gu1 + gu2)(n − 1)/2 if n is odd integer,
(gu1 + gu2)n/2 if n is even integer.

Proof For positive integers n and � (< n), let a binary string a = (a1 a2 . . . an) ∈ {0, 1}n
be encoded into some u = (u1 u2 . . . un) ∈ {x, xc, y, yc}n using Non-Homopolymer map. In
the Non-Homopolymer map, if u1 ∈ {x, xc} then DNA blocks u2j ∈ {y, yc} and u2j+1 ∈
{x, xc}, for 1 ≤ 2j, 2j + 1 ≤ n. Since, the GC-content of a DNA string and its complement
DNA string are the same, the GC-content of each sub-string (u2j u2j+1) is gx + gy. Hence,
if n is even, the GC-content of the encoded DNA string u is gu = (gx + gy)n/2 and if n is
odd then gu = gx + (gx + gy)(n − 1)/2. Similarly, if u1 ∈ {y, yc} then gu = (gx + gy)n/2
for even n and gu = gy + (gx + gy)(n− 1)/2 when n is odd. Hence, the lemma follows.

From Lemma 3, one can observe the following two propositions.

Proposition 3 In Lemma 3, if gx + gy = � then

gu =
{

gu1 + �(n − 1)/2 if n is odd integer
�n/2 if n is even integer.

The following proposition ensures that the GC-content of the encoded DNA string (using
Non-Homopolymer map) is almost 50% of the length.

Proposition 4 For positive integer n and �, let x, y ∈ ��
DNA. If the GC-content of x and y

are ��/2� and 	�/2
 respectively, then the GC-content of any encoded DNA string u (using
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Non-Homopolymer map) of length n� is

gu =
{ �n�/2� if u1 ∈ {x, xc}, and

	n�/2
 if u1 ∈ {y, yc}.

Theorem 5 For positive integers n and �, let x, y ∈ ��
DNA. Using Non-Homopolymer map,

if a binary string (a1 a2 . . . an) is encoded into some u ∈ {x, xc, y, yc}n then the binary
string (ā1 a2 . . . an) is encoded into uc where, ā1 is the binary complement of a1.

Proof The proof is done using induction on the index i (i = 1, 2, . . . , n). Now from
the Non-Homopolymer map, f (0, z)c = f (0, zc) and f (1, z)c = f (1, zc), for each z ∈
{x, xc, y, yc}. Consider the binary strings (a1 a2 a3 . . . an) and (ā1 a2 a3 . . . an), that are
encoded into some DNA strings (u1 u2 u3 . . .un) and (v1 v2 v3 . . . vn). From the Non-
Homopolymer map, uc

1 = h(a1)
c = h(ā1) = v1. Let uc

i = vi , for some i ∈ {1, 2, . . . , n}.
Consider uc

i+1 = f (ai+1,ui )
c = f (ai+1,uc

i ) = f (ai+1, vi ) = vi+1. Therefore, from induc-
tion, the binary strings (a1 a2 a3 . . . an) and (ā1 a2 a3 . . . an) are encoded into DNA strings
which are complement to each other.

In the following two theorems, the Hamming distance between the two DNA strings is
calculated for binary strings with Hamming distance 1 and 2.

Theorem 6 For positive integers n and �, consider the binary strings a = (a1 a2 . . . an) and
b = (a1 a2 . . . ai−1 āi ai+1 . . . an) (1 ≤ i ≤ n), that are encoded into DNA strings u =
(u1 u2 . . .un) and v = (v1 v2 . . . vn) where, āi is binary complement of ai . Then, dH (u, v) =
�(n − i + 1).

Proof Consider the binary strings a = (a1 a2 . . . ai−1 ai ai+1 . . . an) and b = (a1 a2 . . . ai−1
āi ai+1 . . . an) which can be encoded into u = (u1 u2 . . .ui−1 ui

ui+1 . . .un) and v = (v1 v2 . . . vi−1 vi vi+1 . . . vn) respectively. From Non-Homopolymer
map, vj = uj (j = 1, 2, . . . i − 1) and vj = uc

j (j = i, i + 1 . . . , n). Therefore, dH (u, v) =
�(n − i + 1), since dH (x, xc) = dH (y, yc) = �.

Theorem 7 For positive integers n and �, consider the binary strings a = (a1 a2 . . . an) and
b = (a1 a2 . . . ai−1 āi ai+1 . . . aj−1 āj aj+1 . . . an ) (1 ≤ i < j ≤ n) that are encoded into
DNA strings u = (u1 u2 . . .un) and v = (v1 v2 . . . vn) where, āi is binary complement of ai .
Then, dH (u, v) = �(j − i).

Proof The proof is similar to the Theorem 6 and follows from the fact that for any DNA
string x, (xc)c = x.

The following theorem provides a bound on the Hamming distance on the encoded DNA
strings.

Theorem 8 For positive integers n, � and σ (≤ �), consider x, y ∈ ��
DNA and σ =

min {dH (z1, z2), n − dH (z1, z2) : z1 ∈ {x, xc} and z2 ∈ {y, yc}}. Let binary strings a, b ∈
{0, 1}n be encoded into the DNA strings u = (u1 u2 . . .un) and v = (v1 v2 . . . vn). For some
a, b ∈ {0, 1}, if u′ = (u f (a,un)) and v′ = (v f (b, vn)) then

dH (u′, v′) ≥
{

σ(dH (a, b) + dH (a, b)) if dH (a, b) is even
σ(dH (a, b) − dH (a, b) + 1) if dH (a, b) is odd.
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Proof The proof follows from the following two facts. (1) For a positive integer m and any
x, y ∈ �m

DNA, if dH (x, y) = t then dH (xc, y) ≥ m − t , and (2) For z ∈ {x, xc, y, yc} and
a, b ∈ {0, 1}, f (c, z)c = f (c, zc) = f (c̄, z). So we can derive,

dH (u′, v′) ≥

⎧
⎪⎪⎨

⎪⎪⎩

σ(dH (a, b) + 1) if dH (a,b) is even and a �= b

σdH (a,b) if dH (a,b) is even and a = b

σdH (a,b) if dH (a,b) is odd and a �= b

σ(dH (a, b) + 1) if dH (a,b) is odd and a = b.

Hence the result follows.

Motivated by Theorem 8, one can observe the following proposition.

Proposition 5 For positive integers n and �, consider x, y ∈ ��
DNA and � = dH (z1, z2), for

each z1 ∈ {x, xc} and z2 ∈ {y, yc}. Let two binary strings a, b ∈ {0, 1}n be encoded into
the DNA strings u = (u1 u2 . . .un) and v = (v1 v2 . . . vn). For some a, b ∈ {0, 1}, if u′ =
(u f (a,un)) and v′ = (v f (b, vn)) then

dH (u′, v′) =
{

dH (u, v) + �dH (a, b) if dH (a, b) is even
dH (u, v) + �(1 − dH (a, b)) if dH (a, b) is odd.

In order to establish the proposed mapping as an isometry from the set of binary strings
to the set of DNA strings where, Hamming distance is taken for the set of DNA strings, we
introduce a new distance between two binary strings in the following definition.

Definition 5 Let n(> 1) be an integer and � be an alphabet of size q (≤ 2). For any a =
(a1 a2 . . . an), b = (b1 b2 . . . bn) ∈ �n, let P = {i : ai �= bi and i ∈ {1, 2, . . . , n}} and

S =
{

P if dH (a, b) is even
P ∪ {n + 1} if dH (a, b) is odd.

If S �= ∅, we can denote S = {s1, s2, . . . , s|S|} such that, for each sj < sj+1, j =
1, 2, . . . , |S| − 1. We define a map dNHo : �n × �n → R such thatl

dNHo(a,b) =
{

�
∑|S|/2

i=1 (s2i − s2i−1) if |S| > 0,

0 if |S| = 0,

where � is a positive integer.

Remark 9 The map dNHo : �n × �n → R is indeed a distance (called Non-Homopolymer
distance), because it holds all the properties including triangle inequality of distance. The
first three properties of metric are easy to prove and the triangle inequality property can be
proved using induction on length n. For a code C ⊆ �n, the minimum distance dNHo =
min{dNHo(a, b) : a �= b, and a,b ∈ C}.

For example, consider n = 5, � = 2 and � = {0, 1}. For a = (1 1 1 1 0) and b =
(0 1 1 0 0), dNHo(a,b) = 6 where, S = {1, 4}.
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Theorem 9 For positive integers n and �, the Non-Homopolymer map is a distance
preserving encoding between ({0, 1}n, dNHo) and (B, dH ).

Proof The theorem is proved using induction on the string length n. The base case, n = 1,
is obvious from the Non-Homopolymer map and the Non-Homopolymer distance. For the
inductive step, assume that the distance is preserved for n = k where, a = (a1 a2 . . . ak) and
b = (b1 b2 . . . bk) with the support set S, are encoded into DNA strings u = (u1 u2 . . .uk)

and v = (v1 v2 . . . vk). To prove that the distance is preserved for n = k + 1, consider a′
= (a ak+1) = (a1 a2 . . . ak ak+1) and b′ = (b bk+1) = (b1 b2 . . . bk bk+1) with the support
set S′ where, ak+1, bk+1 ∈ {0, 1}. Let the strings a and b be encoded into DNA strings u′
= (u1 u2 . . .uk uk+1) and v′ = (v1 v2 . . . vk vk+1) where, uk+1, vk+1 ∈ {x, y, xc, yc}. Now,
there are four cases. (i) Consider dH (a,b) is even and ak+1 = bk+1. Note that both uk and vk

are member of either {x, xc} or {y, yc}. On the other hand, dNHo(a′,b′) = dNHo(a, b), since
S′ = S. (ii) If dH (a, b) is even and ak+1 �= bk+1 then uk+1 = vc

k+1. So, for � = dH (x, xc)

= dH (y, yc), dH (u′, v′) = dH (u, v) + � and dNHo(a′,b′) = dNHo(a,b) + � since, S′ =
{k + 1, k + 2} ∪ S. (iii) If dH (a, b) is odd and ak+1 = bk+1 then dH (u′, v′) = dH (u, v) + m

and dNHo(a′,b′) = dNHo(a,b) + � since, S′ = {k + 2} ∪ S\{k + 1}. (iv) If dH (a,b) is odd
and ak+1 �= bk+1 then dH (u′, v′) = dH (u, v) and dNHo(a′, b′) = dNHo(a,b) since, S′ = S.
Hence, the result follows from Proposition 5.

Theorem 10 For a binary code C(n,M, dNHo) where, dNHo is the Non-Homopolymer
distance (Definition 5), there exists a DNA code f (C) with codeword length n�, size M and
the minimum Hamming distance dH = dNHo.

Proof The proof follows from the Non-Homopolymer map and Theorem 9.

Theorem 11 For any binary code C with the minimum distance dNHo ≤ n�/2 (n, � ∈ Z
+),

there exists a DNA code f (C)(n�,M, dH ) with complement constraint.

Proof Let binary strings a and b of length n be encoded into DNA strings u and v of length
n�. From the property of the complement of a DNA string, dH (u, vc) ≥ n� − dH (u, v).
From Theorem 9, dH (u, v) = dNHo(a,b) ≤ n�/2. Therefore, dH (u, vc) ≥ n�/2 and hence,
the result follows.

Theorem 12 For a positive integer n, if a binary linear code with codeword length n con-
tains (1 0 0 . . . 0) as a codeword, then the encoded DNA code (using Non-Homopolymer
map) will satisfy complement constraint.

Proof Consider a binary linear code containing the codeword (1 0 0 . . . 0) of length n. For
any codeword a = (a1 a2 . . . an) of the binary linear code, (1 0 0 . . . 0) + (a1 a2 . . . an) =
(ā1 a2 . . . an) = b is also a codeword of the code. Therefore, from Theorem 5, for each binary
codeword a, there exists a binary codeword b such that the encoded DNA strings from a
and b will be complement to each other. Hence, by the distance property, the theorem is
proved.

Theorem 13 For positive integers n and �, let x, y ∈ ��
DNA. Then, for any encoded DNA

strings u, v ∈ f ({0, 1}n) using Non-Homopolymer map,

dH (u, vr ) ≥
{

n min{dH (x, yr ), dH (x, yrc)}, if n is even,
min {dH (x, xr ), dH (y, yr ), dH (x, xrc), dH (y, yrc)} , if n is odd.
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Proof For x, y ∈ ��
DNA, let the binary strings a, b ∈ {0, 1}n of length n be encoded into

DNA strings u = (u1 u2 . . . un), v = (v1 v2 . . . vn) in {x, xc, y, yc}, where u2i , v2i ∈
{u2, uc

2} and u2i+1, v2i+1 ∈ {u1,uc
1} for 1 ≤ 2i, 2i + 1 ≤ n. The set f ({0, 1}n) is

the collection of all possible DNA strings such that obtained DNA blocks will be from
{u2, uc

2} and {u1,uc
1} at even positions and odd positions respectively. Consider dH (u, vr ) =∑n

j=1 dH (uj , vr
n−j+1). Now two cases may arise.

Case 1: If n is odd, then j and n − j + 1 both are either even or odd. If both j and
n − j + 1 are even then uj , vn−j+1 ∈ {u2,uc

2}, and if both j and n − j + 1 are
odd then uj , vn−j+1 ∈ {u1,uc

1}. Therefore, u, vr ∈ f ({0, 1}n) and, from the Non-
Homopolymer map, dH (uj , vr

n−j+1) ≥ min{dH (x, xr ), dH (y, yr ), dH (x, xrc),

dH (y, yrc)}.
Case 2: If n is even, then the parity j and n − j + 1 will be different. So, for even

j , uj ∈ {u2,uc
2} and vn−j+1 ∈ {u1,uc

1}, and, for odd j , uj ∈ {u1,uc
1} and

vn−j+1 ∈ {u2,uc
2}. Therefore, from Non-Homopolymer map and the fact that,

for any z1, z2 ∈ ��
DNA, dH (z1, zr

2) = dH (zr
1, z2), we obtain dH (uj , vr

n−j+1) ≥
min{dH (x, yr ), dH (x, yrc)}. Hence the result follows for every n.

Similarly one can get result for reverse-complement constraint as given in the following
preposition.

Proposition 6 For positive integers n and �, let x, y ∈ ��
DNA. Then, for any encoded DNA

strings u, v ∈ f ({0, 1}n) using the Non-Homopolymer map,

dH (u, vrc) ≥
{

n min{dH (x, yr ), dH (x, yrc)}, if n is even,
min {dH (x, xr ), dH (y, yr ), dH (x, xrc), dH (y, yrc)} , if n is odd.

Theorem 14 For an even positive integer n and a positive integer �, consider x, y ∈ ��
DNA

such that dH (x, yrc) = dH (x, yr ) = �. Then, the DNA codes constructed using the Non-
Homopolymer map will satisfy the reverse constraint.

Proof If dH (x, yrc) = dH (x, yr ) = � then, from Theorem 13, dH (u, vr ) ≥
n min {dH (x, yr ), dH (x, yrc)} = n�. But the length of the encoded DNA string is n�

so, dH ≤ n� and therefore, dH (u, vr ) ≥ dH for any DNA code constructed using the
Non-Homopolymer map.

Lemma 4 For positive integers n and �, if the binary strings a and b of length n are encoded
into DNA strings u and v using the Non-Homopolymer map then

n − �dH (a, b)/2� ≥ 1

�
dH (u, v) ≥ 	dH (a, b)/2
.

Proof For a positive integer n, if S ⊆ {1, 2, . . . , n, n+1} is a set with even cardinality such
that, for each sj ∈ S (j = 1, 2, . . . , |S| − 1), sj < sj+1 then one can observe that:

n − |S|
2

≥
|S|/2∑

i=1

(s2i − s2i−1) ≥ |S|
2

.
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From the Definition 5, dH (a, b) ∈ {|S|, |S| − 1}, and therefore, the result follows.

Theorem 15 For positive integers n and �, suppose a binary code exists with the minimum
Hamming distance dH and the minimum distance dNHo. Then, �(n − �dH /2�) ≥ dNHo ≥
�	dH /2
.
Proof For any code C with the minimum Hamming distance dH , if a,b ∈ C then
	dH (a, b)/2
 ≥ 	dH /2
 and n−�dH /2� ≥ n−�dH (a, b)/2� ≥ 	dH /2
. The proof follows
from Lemma 4 and Theorem 9.

In the following theorem, a constraint on binary string is imposed in such a way that the
encoded DNA string of length n� will be �n�/2� conflict free.

Theorem 16 For positive integers n and �, and any positive even integer 2μ ∈
{1, 2, . . . , �n/2�}, consider a binary code with codeword length n, such that for each
codeword (a1 a2 . . . an),

2μ <

λ+2μ∑

i=λ+1

(aia2μ+i + āi ā2μ+i ),

where λ = 1, 2, . . . , n − 2μ. Then there exists a �n�/2� conflict free DNA code with
codeword length n�.

Proof The proof follows from Definition 3 and Theorem 4.

Lemma 5 Consider two seed blocks (xi , yi ) i = 1, 2 such that d(x1, x2) = d(x1, xc
2) =

d(y1, y2) = d(y1, y
c
2) = �, and a binary code C with the parameter (n,M, dNHo). The

parameter of the DNA code CDNA = CDNA1 ∪CDNA2 will be (n�, 2M,dH ) where, the DNA
code CDNAi

is encoded from the binary code C using Non-Homopolymer map with the seed
block (xi , yi ).

Proof From Theorem 10, the parameters of the encoded DNA code CDNAi
is (n�, M, dH )

for i = 1, 2. The codeword length of both the encoded DNA codes CDNA1 and CDNA2 are
same and equal to n. Therefore, the codeword length of the DNA code CDNA1 ∪CDNA2 will
also be n. The size of the DNA code CDNA1 ∪ CDNA2 will be not be more than 2M . Let a =
(a1 a2 . . . an) be a codeword in C. Let the codeword a is encoded into u = (u1 u2 . . .un) ∈
CDNA1 and v = (v1 v2 . . . vn) ∈ CDNA2 using seed blocks (x1, y1) and (x2, y2). The encoded
DNA strings u1 ∈ {x1, xc

1}, v1 ∈ {x2, xc
2} where, x1 �= x2 and x2 �= xc

2. Therefore, u �= v for
any case and hence, the encoded DNA strings are not identical. It follows that the size of
the DNA code CDNA1 ∪CDNA2 will be 2M . In addition, if d(x1, x2) = d(x1, xc

2) = d(y1, y2)

= d(y1, y
c
2) = � then dH (u, v) = n� (≤ dH ) for any u ∈ CDNA1 and CDNA2 . Therefore, the

minimum Hamming distance of the DNA code CDNA1 ∪ CDNA2 will be dH .

One can generalize Lemma 5 in the following proposition.

Proposition 7 Consider r seed blocks (xi , yi ) i = 1, 2, . . . , r such that d(xi , xj ) =
d(xi , xc

j ) = d(yi , yj ) = d(yi , y
c
j ) = � (1 ≤ i < j ≤ r), and a binary code C with the

parameter (n,M, dNHo). The parameter of the DNA code CDNA =
⋃r

i=1 CDNAi
will be

(n�, rM, dH ) where, the DNA code CDNAi
is encoded from the binary code C using the

Non-Homopolymer map with the seed block (xi , yi ).
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One can observe the following remark from reverse, complement and reverse-
complement DNA strings.

Remark 10 Using the Non-Homopolymer map, from some seed blocks (x, y), an � conflict
free DNA code is obtained with reverse, reverse-complement and GC-content constraints
such that each DNA string is free from secondary structures if and only if an � conflict free
DNA code can also be obtained from seed blocks (xr , yr ) with reverse, reverse-complement
and GC-content constraints such that each DNA string is free from secondary structures.
The statement is also true for DNA codes generated from seed blocks (xc, yc), (xrc, yrc),
(y, x), (yr , xr ), (yc, xc) and (yrc, xrc) using the Non-Homopolymer map.

Lemma 6 Consider, for i = 1, 2, two seed blocks (xi , yi ) such that d(x1, x2) = d(x1, xc
2) =

d(y1, y2) = d(y1, y
c
2) = �, and two binary codes Ci with the parameter (n,Mi, dNHoi

). The
parameter of the DNA code CDNA = CDNA1 ∪ CDNA2 will be (n�, M, dH ) where, the DNA
code CDNAi

is encoded from the binary code Ci using the Non-Homopolymer map with the
seed block (xi , yi ), M = M1 + M2 and dH = min{dNHoi

: i = 1, 2}.

Proof The proof is similar to that of the proof of Lemma 5 and it follows from the definition
of the minimum Hamming distance of a code.

Proposition 8 For i = 1, 2, . . . , r , consider seed blocks (xi , yi ) such that d(xi , xj ) =
d(xi , xc

j ) = d(yi , yj ) = d(yi , y
c
j ) = � (1 ≤ i < j ≤ r), and binary codes Ci with the

parameter (n,Mi, dNHoi
). The parameter of the DNA code CDNA =

⋃r
i=1 CDNAi

will be
(n�, M, dH ) where, the DNA code CDNAi

is encoded from the binary code C using Non-
Homopolymer map with the seed block (xi , yi ), M =

∑r
i=1 Mi and dH = min{dNHoi

: i =
1, 2, . . . , r}.

Proposition 9 As considered in Proposition 8, for a DNA code CDNA =
⋃r

i=1 CDNAi
with

the parameter (n�,
∑r

i=1 Mi, dH ), the code rate is:

R = log4
(∑r

i=1Mi

)

n�
≤ r

2�
.

The bound on code rate in the Proposition 9 is obtained by taking Mi = 2n for each
i = 1, 2, . . . , r .

Remark 11 For any � conflict free DNA code CDNA with the parameters (n�, 4n, dH ) and
encoded from C = Z

n
2 using the Non-Homopolymer map, the code rate is 1/2�. Note that

for � = 2, the code rate is 1/4. In addition, the DNA code satisfies all the constraints reverse,
reverse-complement, GC-content. All the DNA codewords are also free from secondary
like structures and homopolymers.

Lemma 7 For dH < n�/2, there exists DNA code CDNA(n�,M, dH ) encoded from a binary
code C(n,M, dNHo) such that

M ≥ 2n

∑
⌈

2
�
dH

⌉
−1

i=0

(
n
i

)
. (1)
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Proof From Lemma 4, one can observe that dH (a,b) ≤
⌈

2
�
dH (u, v)

⌉
for any binary code-

words a and b in C which can be encoded into DNA codewords u and v in CDNA. The

bounds are true for any distinct a and b in C therefore, d ′
H ≤

⌈
2
�
dH

⌉
where, d ′

H is the

minimum Hamming distance for the binary code C. From the Gilbert-Varshamov bound for
binary code, one can obtain the bounds in (1) for dH < n�/2.

Now, one can easily obtain the following proposition.

Proposition 10 If there exists an � conflict free DNA code CDNA with all the constraints
reverse, reverse-complement, GC-content such that each DNA codeword is free from
secondary like structures then

A
cf,hf,GC,r,rc

4 (n, dH , �) ≥ 2n

∑
⌈

2
�
dH

⌉
−1

i=0

(
n
i

)
, for dH < n�/2.

Lemma 8 For dH ≥ n�/2, there exists DNA code CDNA(n�,M, dH ) encoded from a binary
code C(n,M, dNHo) such that

M ≥ 2n

∑2n−
⌈

2
�
dH

⌉

i=0

(
n
i

)
. (2)

Proof From Lemma 4, one can observe that dH (a,b) ≤ 2n −
⌈

2
�
dH (u, v)

⌉
+ 1 for any

binary codewords a and b in C which can be encoded into DNA codewords u and v in CDNA.

The bounds are true for any distinct a and b in C therefore, d ′
H ≤ 2n −

⌈
2
�
dH

⌉
+ 1 where,

d ′
H is the minimum Hamming distance for the binary code C. From the Gilbert-Varshamov

bound for binary code, one can obtain the bound in (2) for dH ≥ n�/2.

Now, one can easily obtain the following proposition.

Proposition 11 If there exists an � conflict free DNA code CDNA with all the constraints
reverse, reverse-complement, GC-content such that each DNA codeword is free from
secondary like structures then

A
cf,hf,GC,r,rc

4 (n, dH , �) ≥ 2n

∑2n−
⌈

2
�
dH

⌉

i=0

(
n
i

)
, for dH ≥ n�/2.

In Fig. 2, the lower bound on A
cf,hf,GC,r,rc

4 (n, dH , �) is plotted for n = 16 and 20.

5 Conflict free DNA codes

For various binary codes, the parameters of encoded DNA codes are listed in the Table 4.
For x = AT A and y = CGC, the 5 conflict free DNA code (21, 16, 6) with reverse, and GC-
content constraints are obtained from [7, 4, 3] binary Hamming code is given in Table 5.
The parameter of the DNA code is (21, 16, 6) and each DNA string is free from hairpin like
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secondary structures of stem length 5. For any positive integer � = 2, 3, 4, 5, DNA pairs
(x, y) ∈ ��

DNA are listed in Tables 7 and 8 with various parameters. For any pair (x, y)
given in Table 8, one can get � conflict free DNA codes from any binary code using the
Non-Homopolymer map, where the DNA code satisfies Hamming, GC-content, reverse and
reverse-complement constraints. Similarly, for any pair (x, y) given in Table 7, one can get
DNA codes from any binary code using the Non-Homopolymer map where, the DNA code
satisfies Hamming and GC-content constraints where, each DNA codeword is free from
reverse-complement sub-strings (Tables 6, 7 and 8).

5.1 Reed-Muller code:

The binary Reed-Muller codes were introduced by Reed and Muller in 1954 [25]. For two
non-negative integers m and r (r ≤ m), the rth order binary Reed-Muller code R(r,m) is
a linear code of length 2m, code size 2

∑r
i=1 (m

i ) and the minimum Hamming distance dH =
2m−r . The generator matrix of R(r,m) is

Gr,m =
(

Gr,m−1 Gr,m−1
0 Gr−1,m−1

)
, for 1 ≤ r ≤ m − 1,

where

Gm,m =
(

Gm−1,m

1 1 . . . 1 0

)
,

G0,m is the all one matrix of size 1 × 2m, and 0 is a zero matrix with 2
∑r

i=1 (m
i ) - 2

∑r−1
i=1 (m−1

i )

rows and 2m−1 columns.
In the following theorem, the minimum distance (Definition 5) is obtained for Reed-

Muller codes.

Theorem 17 For positive integers m, r (0 ≤ r ≤ m) and �, there exists a DNA code
CDNA(�2m, 2

∑r
i=1 (m

r ), �2m−r−1) for the binary Reed-Muller codeR(r,m).

Fig. 2 For n = 16 and n = 20, graph between lower bound of A
cf,hf,GC,r,rc

4 (n, dH , �) and dH /�

is plotted where, the horizontal axis represents dH /� and vertical axis represents lower bound of
A

cf,hf,GC,r,rc

4 (n, dH , �) as calculated in Preposition 10 and Proposition 11

166 Cryptography and Communications (2021) 13:143–171



Table 7 Pairs (x, y) ∈ �� such that (i) GC-content sum of x and y is �, and (ii) each DNA string in the set
{(x y∗ x∗ y∗), (y x∗ y∗ x∗) : x∗ ∈ {x, xc} and y∗ ∈ {y, yc}} is free from secondary structures

� #(x, y) (x, y)

2 24 (AA,CC), (AA,GG), (CA, T C), (CA,AG), (GA,AC), (GA, T G),

(CC, T T ), (T C,CA), (T C,GT ), (AG,CA), (AG,GT ), (GG,AA),

(CT ,AC), (CT , T G), (GT , T C), (GT ,AG), (T T , CC), (T T ,GG),

(AC,GA), (AC,CT ), (CC,AA), (GG, T T ), (T G,GA), (T G,CT )

3 32 (T AA,GCC), (T AA,GGC), (T AA,CCG), (T AA,CGG),

(T T A,GCC), (T T A,GGC), (T T A,CCG), (AT T ,GCC),

(T T A,CGG), (GCC, T AA), (GCC, T T A), (GCC,AAT ),

(GCC,AT T ), (GGC, T AA), (GGC, T T A), (AT T ,GGC),

(GGC,AAT ), (GGC,AT T ), (CCG, T AA), (CCG, T T A),

(CCG,AAT ), (CCG,AT T ), (CGG, T AA), (AT T ,CCG),

(CGG, T T A), (CGG,AAT ), (CGG,AT T ), (AAT,GCC),

(AAT,GGC), (AAT,CCG), (AAT,CGG), (AT T ,CGG)

4 32 (T CCA,AGGT ), (AGCA, T CGT ), (GT CA,AGT C),

(GT CA, T CAG), (ACGA, T GCT ), (T GGA,ACCT ),

(CT GA, T GAC), (CT GA,ACT G), (GAAC,CT T G),

(T GAC,CT GA), (T GAC,GACT ), (CT AC,GAT G),

(CAT C,GT AG), (AGT C,GT CA), (AGT C,CAGT ),

(GT T C,CAAG), (CAAG,GT T C), (T CAG,GT CA),

(T CAG,CAGT ), (GT AG,CAT C), (GAT G,CT AC),

(ACT G,CT GA), (ACT G,GACT ), (CT T G,GAAC),

(GACT, T GAC), (GACT,ACT G), (ACCT, T GGA),

(T GCT,ACGA), (CAGT,AGT C), (CAGT, T CAG),

(T CGT,AGCA), (AGGT, T CCA)

Proof For positive integers m (> 1) and � (≤ 2m−1), consider a binary Reed-Muller code
R(r,m) and the corresponding encoded DNA code f (R(r,m)) for some pair (x, y) ∈
(��

DNA)2. From Theorem 9, the codeword length and code size for f (R(r,m)) will

be �2m and 2
∑r

i=1 (m
r ). From Theorem 15, the minimum distance dNHo ≥ �	dH /2
 =

�2m−r−1. For a positive integer t , we denote 0t = (0 0 . . . 0) and 1t = (1 1 . . . 1), each of
length t . Then the binary strings 02m and (02m−2m−r 12m−r ) will be in R(r,m). Therefore
dNHo ≤ dNHo(02m, (02m−2m−r 12m−r )) = �2m−r−1. Hence, dNHo = �2m−r−1 for the binary
R(r,m). So, from Theorem 9, the minimum Hamming distance for f (R(r,m)) will be dH

= �2m−r−1.

Note that by choosing appropriate seed blocks one can obtain DNA codes with various
constraints. For example, if one chooses DNA seed blocks from Table 8 and con-
structs the Reed-Muller type code (Theorem 17) then the DNA code will satisfy reverse,
reverse-complement and GC-content constraints. In addition, each DNA codeword of the
Reed-Muller code is � conflict free. Similarly, if one chooses DNA seed blocks from Table 7
and constructs the Reed-Muller type code (Theorem 17) then the encoded DNA code is
� conflict free with GC-content constraint and each codeword is free from secondary
structures.

167Cryptography and Communications (2021) 13:143–171



Table 8 Pairs (x, y) ∈ �� such that (i) dH (x, y) = dH (x, yrc) = dH (x, yr ) = �, (ii) GC-content sum of x and
y is �, and (iii) each DNA string in the set {(x y∗ x∗ y∗), (y x∗ y∗ x∗) : x∗ ∈ {x, xc} and y∗ ∈ {y, yc}} is �

conflict free

� #(x, y) (x, y)

3 8 (AT A,CGC), (AT A,GCG), (CGC,AT A), (CGC, T AT ),

(GCG, T AT ), (T AT ,CGC), (GCG,AT A), (T AT ,GCG)

4 32 (AT CA,CGAC), (GT CA,CGAT ), (AT GA,GCAG), (CT GA,GCAT ),

(AGT A,GACG), (CGT A,GACT ), (CGAC,AT CA), (T GAC,AT CG),

(AT GC, T CAG), (CT GC, T CAT ), (AGT C, T ACG), (CGT C, T ACT ),

(GACG,AGT A), (T ACG,AGT C), (AT CG, T GAC), (GT CG, T GAT ),

(GCAT,CT GA), (T CAT,CT GC), (CGAT,GT CA), (T GAT,GT CG),

(CAGT,GCT A), (T AGT,GCT G), (ACT A,CAGC), (GCT A,CAGT ),

(CAGC,ACT A), (T AGC,ACT G), (GCAG,AT GA), (T CAG,AT GC),

(ACT G, T AGC), (GCT G, T AGT ), (GACT,CGT A), (T ACT,CGT C),

5 112 (ACGCA,CT AT C), (ACGCA,GAT AG), (CT GCA,GACAT ),

(GCT CA,CT AGT ), (AGCGA,CAT AC), (AGCGA,GT AT G),

(CGT GA,GT CAT ), (CGT GA,GT ACT ), (AT CT A,GCGAC),

(AT CT A,GCACG), (AT CT A,CAGCG), (AT CT A,GCT CG),

(AT GT A,CGAGC), (AT GT A,GACGC), (AT GT A,CGT GC),

(AT GT A,GCT CG), (CT GT A,GCAGT ), (CT GT A,GACGT ),

(T CGAC,AT CT G), (CAT AC,AGCGA), (CAT AC, T CGCT ),

(CGAGC,AT CT A), (CGAGC,AT GT A), (CGAGC, T ACAT ),

(T GAGC,AT CAG), (T GAGC,ACT AG), (AGT GC, T CAT G),

(CGT GC,AT CT A), (CGT GC,AT GT A), (CGT GC, T ACAT ),

(T GAT C,ACT CG), (CT AT C,ACGCA), (CT AT C, T GCGT ),

(AT GT C, T GACG), (T ACAG,ACT GC), (T ACAG,ACGT C),

(GAT AG, T GCGT ), (ACT AG, T GAGC), (GCACG, T AT GA),

(GCACG, T ACAT ), (GCACG, T AGAT ), (GCACG,AGT AT ),

(ACT CG, T GAT C), (ACT CG, T AGT C), (GCT CG, T GAT A),

(GCT CG, T ACAT ), (GCT CG, T AGAT ), (GCT CG,AT AGT ),

(GT AT G, T CGCT ), (AGCT G, T AGAC), (AT CT G, T CGAC),

(GACAT,CGT CA), (T ACAT,CGAGC), (T ACAT,CGT GC),

(T ACAT,CT GCG), (T ACAT,GCT CG), (CAGAT,GT CGA),

(T AGAT,GT CGC), (T AGAT,CGT GC), (T AGAT,GCACG),

(GCACT,CAT GA), (GCACT,CAGT A), (GT ACT,CGT GA),

(T CGCT,GT AT G), (CGAGT,GAT CA), (CGAGT,GACT A),

(T GCGT,CT AT C), (T GCGT,GAT AG), (GAT CA,CGAGT ),

(GCT CA,CT GAT ), (GT CGA,CAGAT ), (CAT GA,GCACT ),

(AT CT A,CGAGC), (AT CT A,CGT GC), (GT CT A,CGACT ),

(GT CT A,CAGCT ), (AT GT A,CGCAG), (AT GT A,GCACG),

(T AGAC,AGT CG), (T AGAC,AGCT G), (AGT AC, T CACG),

(CGAGC, T AT CA), (CGAGC, T AGAT ), (CGAGC,ACT AT ),

(AGT GC, T ACT G), (CGT GC, T CAT A), (CGT GC, T AGAT ),

(CGT GC,AT ACT ), (ACGT C, T ACAG), (AT GT C, T GCAG),
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Table 8 (continued)

� #(x, y) (x, y)

(T GCAG,AT GT C), (GAT AG,ACGCA), (GCACG,AT CT A),

(GCACG,AT GT A), (T CACG,AT GAC), (T CACG,AGT AC),

(GCT CG,AT CT A), (GCT CG,AT GT A), (T CAT G,AGT GC),

(GT AT G,AGCGA), (AT CT G, T CAGC), (GACAT,CT GCA),

(T ACAT,GCGT C), (T ACAT,GCACG), (CAGAT,GCT GA),

(T AGAT,CGAGC), (T AGAT,GCT CG), (T AGAT,CGCT G),

(CAGCT,GT CT A), (T CGCT,CAT AC), (CT AGT,GCT CA),

(GACGT,CT GT A)

6 Conclusions

We have scratched the surface of an interesting area of DNA codes that can be used in
building efficient DNA data storage models.This article concentrates on two different
approaches, computational and algebraic; to design DNA codes satisfying different con-
straints effective for practical usage. Computational approach improves the lower bounds
on the size of the DNA codes in many cases from previous study under a new constraint
(generalization of Homopolymers constraint) apart from the general constraints consid-
ered in the same aspect. On the contrary, the algebraic approach presents a new isometry
between binary codes and DNA codes. Utilizing the recursive isometry, new classes of
DNA codes has been constructed that are efficient. It is noteworthy to mention that the
new codes are also free from hairpin like secondary structures. It would be an interesting
future task to find bounds on DNA codes with the new constraint in mind and constructing
optimal codes meeting those bounds. Extending the isometry from binary to q-ary case will
also be an interesting future task.

References

1. Blawat, M., Gaedke, K., Hütter, I., Chen, X.M., Turczyk, B., Inverso, S., Pruitt, B.W., Church, G.M.:
Forward error correction for DNA data storage. Procedia Comput. Sci. 80, 1011–1022 (2016)

2. Bornholt, J., Lopez, R., Carmean, D.M., Ceze, L., Seelig, G., Strauss, K.: A DNA-based archival storage
system. ACM SIGOPS Operating Syst. Rev. 50(2), 637–649 (2016)

3. Chee, Y.M., Ling, S.: Improved lower bounds for constant GC-content DNA codes. IEEE Trans. Inf.
Theory 54(1), 391–394 (2008). https://doi.org/10.1109/TIT.2007.911167

4. Chheda, N., Gupta, M.K.: RNA As a permutation. arXiv:1403.5477v1 (2014)
5. Church, G.M., Gao, Y., Kosuri, S.: Next-generation digital information storage in DNA. Science

337(6102), 1628–1628 (2012). https://doi.org/10.1126/science.1226355
6. Erlich, Y., Zielinski, D.: DNA Fountain enables a robust and efficient storage architecture. Science

355(6328), 950–954 (2017). https://doi.org/10.1126/science.aaj2038
7. Gaborit, P., King, O.D.: Linear constructions for DNA codes. Theor. Comput. Sci. 334, 99–113 (2005)
8. Goldman, N., Bertone, P., Chen, S., Dessimoz, C., LeProust, E.M., Sipos, B., Birney, E.: Towards prac-

tical, high-capacity, low-maintenance information storage in synthesized DNA. Nature 494(7435), 77
(2013)
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