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Abstract

Based on the applications of codes with few weights, we define the so-called relative four-
weight codes and present a method for constructing such codes by using the finite projective
geometry method. Also, the t-wise intersection and the trellis of relative four-weight codes
are determined.
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Trellis
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1 Introduction

A linear code C of length n is defined as a subspace of GF(g)", where GF(q) is a finite
field with g elements, and the code C is called binary when g = 2. The 7-wise intersecting
codes and their wide applications were first introduced in [13], and then further studied by
Cohen et al. [2, 3] and Encheva et al. [5]. The ¢-wise intersecting codes are a generalization
of intersecting ones, which correspond to t = 2 and satisfy that any two non-zero codewords
have intersecting supports. Finding the judgment criteria and a constructing method for
t-wise intersecting codes is meaningful research work.

The importance of another concept, the trellis of a linear code [6, 15, 17], is in that it can
be used to estimate the complexity of the Viterbi decoding algorithm.
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A linear code with few weights [4] is useful in authentication codes, secret sharing
schemes, and association schemes apart from its applications in consumer electronics, com-
munication and data storage systems. Many recent papers are dedicated to constructing
linear codes with few weights [7, 8, 16] by using the defining set and the technique of
exponential sums.

The finite geometry method was first introduced in [1] and [14], and it has been effec-
tively generalized at present to study codes with respect to the rank-metric in [12]. By
using the finite geometry method, Liu and Wu [10] provided a technique of constructing
codes with few weights, namely, the so-called relative two-weight and three-weight codes.
Besides the applications already mentioned for codes with few weights, Liu and Wu further
showed that relative two-weight and three-weight codes can be applied to the wire-tap chan-
nel of type II with the coset coding scheme. The geometry structures of relative two-weight
and three-weight codes were given in [10]. By using these geometry structures, the 7-wise
intersection of relative three-weight codes was calculated in [9], and the trellis of relative
two-weight codes was estimated in [11].

Based on the results of relative two-weight and three-weight codes, one can find that
these codes have good geometric structures, and by using their geometric structures, one
can easily construct these codes and determine some important parameters, say, generalized
Hamming weights. In fact, by using the geometric structures and the combination tech-
niques, the determination of the general support weight distribution of subcodes of relative
two-weight and three-weight codes is also possible. All the present results and observations
strongly motivate us to generalize relative two-weight and three-weight codes to codes with
four weights, that is, relative four-weight codes. The paper will exactly aim at this goal,
and we will define relative four-weight codes and then determine their geometric structures.
Also, we will calculate the -wise intersection and estimate the trellis of relative four-weight
codes by using the geometric structures we have obtained.

The rest of the paper is organized as follows: Section 2 is devoted to basic definitions and
results. The geometric construction of relative four-weight codes is presented in Section 3.
The ¢-wise intersection of relative four-weight codes is determined in Section 4. The trellis
is estimated in Section 5 and in the Appendix we will exhibit some key lemmas which are
used to obtain the #-wise intersection of relative four-weight codes.

2 Definitions and foundations

The support of a codeword c, denoted by x(c), is defined as the set of its non-zero
coordinate positions. It is obvious that the Hamming weight of c, denoted by w(c),

is w(c) = |x(c)|. The intersection of the two codewords ¢ and ¢’ is denoted by
x(c) N x(c'). The t-wise intersection of a linear g-ary code C is defined as t =
min {| ﬂ}(zl x(c)| | c1,c2, -+, ¢t are any ¢ linearly independent codewords } and C is -

wise intersecting if + > 0. Let C; be a kj-dimensional subcode of C and C, be a
ko>-dimensional subcode of C satisfying C; € C» € C, then C is called a relative three-
weight code concerning C| and C»,, provided that C; \ {0}, C» \ C; and C \ C; are all
constant-weight codes.

Definition 2.1 Let C be an [n, k] code, and C; € C, € C3 be a ky, kp and k3-dimensional
subcode of C, respectively. Then, C is called a relative four-weight code with respect to C1,
C; and C3 and is denoted by C(wy, wa, w3, wa), if C1 \ {0}, C2 \ C1, C3\ C2 and C \ C3
are all constant-weight codes with weights w1, w», w3 and wy, respectively.
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Remark 2.2 In Definition 2.1, if the constant-weight codes C3 \ C and C \ C3 have the
same weight, that is, w3 = wy, then a relative four-weight code reduces to a relative three-
weight one defined in [10]. A relative four-weight code is thus a generalization of a relative
three-weight one.

A subcode D of C is called a relative (r, rq, r2,r3) subcode of C with r| < rp <
r3 < r if D satisfies dimD = r, dim(D N C;) = ry, dim(D N C;) = rp and
dim(D N C3) = r3. Let <cy, ¢2, - - - , ¢;> be the subcode of C generated by ¢y, ¢2, -+, ;.
Define ™ = max{dim(<ci,c2,--,¢;> N C;)suchthatcy, o, -+, ¢ areany ¢
linearly independent codewords in C},i = 1, 2, 3. Assume that, G to be a generator matrix
of a k-dimensional g-ary linear code. The columns of G as points of the (k— 1)- dimensional
projective space PG(k — 1, ¢) such a view point induces a map m(-) from PG(k — 1, ¢) to
the set of non-negative integers: m : PG(k — 1,g) — N where N = {0, 1,2, ---} and for
any p € PG(k — 1, g), m(p) is the number of occurrence of p as a column of G. The value
of p is denoted by m(p) and the m(-) is called a value assignment or value function. Define
the value of § € PG(k — 1, q) by m(S) = X,esm(p). In addition, let L C {1,2,---,k}
and p = {t1, 2, -+ , tx} € PG(k — 1, q), then define Pr(p) = (vy, v2, -+ , Uk), Where

i — t; ifi e L
"7 ] 0 otherwise.

For a subset W C PG(k — 1, q), define Pr.(W) = {Pr(p) | p € W}. Clearly, Pr.(W) is
a vector space, since W is a projective subspace of PG(k — 1, ¢). For a projective subspaces
V of PG(k — 1,¢q) and integers I = 1,2,--- ,k — 1, we define vl = {peV|p=
0,0,---,0, pry1, -+, px}. That s, V! is the set of points of V which are all 0 in the first /
co-ordinates. Clearly V! may be an empty set. If V! = @, then it is a projective subspaces of
V.LetL; ={1,2,--- ,ki}, Lo ={ki + L k1 +2,--- ,ko}, L3 = {ko + 1, ko +2,--- , k3}.
For a non-negative integers &, n, v, §, we denote by Py a projective subspace of V of
PG(k—1, g) satisfying dim P, (V) = & —1,dim P.,(V¥) = n—1,dim P, (VF) = y —1
and dim Py (V*3) = § — 1. Hence, a projective subspace of dimension 0 is a set consisting of
a single point and the empty set is viewed as a projective space of dimension — 1. Therefore,
dim(P; ) =& +n+y+8— 1.

Y
Let

Po = {p € PGk — 1, ) | Pr,(p) # 0}

Pl = (p € PGk —1,) | P,(p) =0, Pr,(p) #0 & Pry(p) =0)
Py = (p € PGk —1,q) | Pr,(p) # 0}

P(?m ={pePGk—-1,9)| P,(p) =0fori =1,2,3}.

We \yill show that the Yalues m(Poloo), ’fl(Pl()oo)7 m(P(%O) and m(?’(?m) play an important
role in the characterization and construction of the relative four-weight codes.

Lemma 2.3 Let Cy be a ki-dimensional subcode of C, Cy be a ky-dimensional subcode
and C3 be a kz-dimensional subcode satisfying C1 C Co, C C3 C C. There is a one-
one correspondence between the non-zero codewords ¢y € Cy, ¢c; € Ca2 \ C1, ¢3 €

ki—1 ki

Ci \Crandc € C\ Cz and Iihe subspaces P(kz—k1)(k3—k2)(k—k3)’ P(kz—k1—l)(/<3—k2)(k—k3)’
1 1 .

P(szkl)(krszl)(kfk3) and P(krkl)(k37k2)(k7krl), respectively. The one-one corre-

spondence satisfies that if c1, c¢2, c3 and c correspond to P(];clzjq)(krkz)(kfkg’
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ki k1 ki .
1; (ka—k1—D)ka—k) k—ks) Plky—k) (s k=D k—k3) 91D Play 1) k3 —ky) (k—k3—1)» TESPeCtively,
then

mPGk —1,q9)) =n

ki—1
n—wler) = mPg, ) s —ko) (i—ks))

_ ki
n—w(e2) = m(Pg, 4 1)y —kp) hk—ky)
_ ki
n—w(e3) = m(Pg, 4 ks—ky—1)(k—ky)) a0d

k
n=w(e) = mCP, 45 —ky)k—ks—1))"

Proof First, we start to prove fourth equation. Let ¢3 € Csz \ C», then the code c3 is
given by ¢3 = (X1, , Xk Xk 41, 5 Xkys Xkg+15 ** 5 Xk3, 0, -+, 0)G, where G is a
generator matrix of C. Assume that the first k; rows of G generate the subcode Cj,
the next (ko — kj) rows of C; and the first k; rows of G together generate the sub-
code Cj, the next (k3 — k2) rows of G and the first k rows of G together generate the
subcode C3. Since ¢3 € (C3 \ C7) there exists some j satisfying ko +1 < j < k3
such that x; # 0. Consider the space U of GF(¢)* which is orthogonal to the vector
(X1, X2, =+ Xkys Xk 415 7 s Xkys Xkot 1+ 5 Xkg, 0, -+, 0), Then, dim P, (U) = ky — 1,
dim Py, (UR) = ky — ki — 1, dim P, (U*?) = k3 — ko — 2 and dim P(U*3) = k — k3 — 1.
This implies, U is exactly P(l;:z_kl)(h_ k1) (k—ks) corresponding to the codeword c3. There-

fore, n — w(c3) = m(P(];clz—kl)(k;—kz—l)(k—k3))' Now, the first equation has to be proved,
since the columns of the generator matrix as the points of the projective space PG(k — 1, q)
is clear. The proof of the other equation is similar to the above one, hence the proof can be
skipped. O

3 Construction of relative four-weight codes

In this section, we will present the geometric construction of a relative four-weight code
and determine the parameters of a relative four-weight code. Though relative four-weight
codes have one weight more than relative three-weight codes, the relations of the projective
subspaces become much more complicated than that of relative three-weight codes. The
way to get the geometric structure of relative four-weight codes is by induction and by fully
using the relations of different projective subspaces.

3.1 The determination of the geometric structure

Theorem 3.1 Consider C; C Cy C C3 C C and C be n length linear code and let C1, C;
and C3 be generated by the first ki, ko and k3 rows of G, respectively. Then, C is a relative
Sfour-weight code with respect to C1, Cp and C3 if and only if their following value functions
are true

m(Pgyo) is a constant for all points Pgy,
m(Pf)OO) is a constant for all points P10007
m(POOIO) is a constant for all points Pé)]o and

m(Pt())()l) is a constant for all points Pé)m
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Proof Assume that the value function m(-) has same values on Pooo’ P100’ P(g)]o and

0 .. . ki—1 . .
Py, - This implies that the subspaces P(kz—k])(k}—kz)(k—k3) will have the same value. Since

P{;{‘;lkl) (ha— kz)(k*k3) contains the same number of points from the set of points Poloo’ P1000

P 010 and P 001, respectively. It follows from Lemma 2.3 that all the non-zero codewords of
C1 have the same weight. Similarly, we know that all the non-zero codewords of C> \ Ci
have the same weight and all the non-zero codewords of C3 \ C» and C \ C3 have the same
weight. Therefore, C is a relative four-weight code with respect to Cy, C, and Cs.

Conversely, we assume that C is a relative four-weight code. In order to show that the
value function has the same values on the points Poloo’ P1000’ POO10 and POO01 , respectively. We
will prove the following general result

m(P 8) = constant for any fixed (&, n, y, §). A3.1)

The (3.1) is true. If we denote § +n+y +8 =k — jforany j € {0, 1, ...,k — 1}, the
equation in (3.1) will be true. We can prove the theorem by induction on j.

For j =0, wehave §E +n+y +48 = kandPss = PGk — 1,q), som(Pya) =
mPGk — 1, q)) = n.

For j = 1, wehave £ +n+y +6 = k— 1 and Pt 6 is equal to one of the four

. ki—1 ki
klids of subspaces Pg., k) uy k) k—ks)» Pk (k1D ka—ka) k) Py k) ks~ 1) k—ky) 30D
P(klrkl)(krkz)(kfkrl)' It follows from. Lemlna 2.3, ‘m('PWS) isa Constant:
Now, we assume (3.1) is true for j < jo, that is, it is true for any fixed four quatral
&, n,v,9) sat1sfy1ng.§ +n4+y+38>k— jo. We will show (3.1) is true for j = jp in the

following. For any P Ve satisfyingé +n+y +6 = k — Jjo, there exists a PS, e satisfying

E+n'+y' +8 =k— (jo—23) such that Pnéy P /)/’6/ We may distinguish the parameter
into the following cases.

(Case 1) If§ =&+ 3, then n =n,y =y and§ =4, since

m(Ps ) = (g +2m(Po) —gm(Py,y),

m(nga) = (q+2) (P;;:SI) —gm (Pns,y/a,). Thus, m(Pfys) is constant, by the inductive
hypothesis.
(Case2)If¢' =&£+2, 7 =n+1,thend’ =4 andy =y, since

’ 2
m(PY ) = qm(P,f;S )+ m(PfHW» am(P}y).
2

m(Py,) = m(Pyh) + Lm(P
hypothesis.
(Case3)If8' =8 +2, 7 =n+1,then&’ = 5 and y =y, following the procedure
in Case 2, we obtain m(PS 8) = m(P V(5+2) + m(P(n+l)y8) m( j,y,a,), which is
constant.
(Cased) Ify' =y +2,7 =n+1,then§’ = S and 8’ = §, following the procedure
in Case 2, we obtain m(PS 5) = m(Pr](y+2)8 + m(P(n+1)y8) m(Pf,yw), which is
constant.
(Case5)If &’ =& +2,y =y + 1, then n’ = nand §' = &, following the procedure

£ . . .
1)y s~ (Pn’y/ ) which is constant, by the inductive

2 ! S
in Case 2, we obtain m(PE 5) = m(Pj;_a ) + %m(an_i_l)ys) — ém(Pg/y,s/), which is
constant.

(Case 6) If y' =y +2,8/ =8+ 1,then &’ = S and n =7, following the procedure

g’ Lo
in Case 2, we obtain m(PWa) =m(P (y+2)8) + m(Pny(5+1)) m( n’y/é’)’ which is
constant.
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(Case 7)If&' =6 4+28 =8+ 1,theny’ = y and 77 =, followmg the procedure
2

in Case 2, we obtain m (P, ys) m(Pf;s ) + m(PW(SH)) m(

constant.

(Case8)If¢' =&+1,n =n+1and 8 =8+ 1, then y’ = y. Following the procedure

. . 1 /

in Case 2, we obtain m(Pfya) = m(Pé-g )+ m(Pfys) + m(Pfy(S_H)) — ém(Pj,yrs,),

which is constant.

(Case9)If¢’ =&6+1,n =n+1and y = y +1, then §' = §. Following the procedure

in Case 2, we obtamm(Pg s) _m(PS )— m(P"+1)y5)+m(P5y(5+l)) m(Pj,y,s,),

which is constant.

(Case10)If&' =&+1,y' = y+1and 8’ = §+1, then ' = . Following the procedure
1 ’

in Case 2, we obtalnm(Pg 5) = m(Pr?;:S )— ém(Pf(yH)a)—l—m(Pfy(aH))—ém(Pj,y,s,),

which is constant.

(Case 1) If &' =&, 0 =n+ l y =y + land &' =6 + l , following the procedure

in Case 2, then we obtain m (P yB) = m(P(n+1)y5) m(P (y+1)8) + m(PW((;H))

77 J/,5,) which is

im(Pn’y’a’)’ which is constant.
(Case 12)If &' =&, 7' =1, y' =y, then ' = 8 + 3. Following the procedure in Case

1, we obtain m(Pg 3) = (‘Hz)m(PS (8+1)) (PS/ ,5,) which is constant.
(Case 13) If &' = E n=n48= 8 then ' = )/ + 3 Following the procedure in Case
1, we obtain m( m/é‘) = (q+2)m(P‘§(y+1)5) m(P /8,) which is constant.

(Case14)If &' =&,y =y,8 =6,thenn =n+ 3 Followrng the procedure in Case
1, we obtain m(PEE 5) = (‘Hz)m(P(nH))/S) ém(Pj,y,y), which is constant.
Hence, this is true for j = jo. The theorem is proved by the induction hypothesis.

O

Remark 3.2 Theorem 3.1 may be viewed as an effective generalization of the main result in
[10], and it plays a key role in constructing a relative four-weight code and the calculation
of the ¢-wise intersection and the trellis in later sections.

3.2 The parameters of a relative four-weight code

From Theorem 3.1, we can construct a generator matrix G for a relative four-weight code as
follows: choose the appropriate k-dimensional column vectors over GF (q)(or equivalently,
pomts of PG(k — l ¢)) and use them as the columns of G, such that m(Pooo) m(Ploo)

m(P 0) and m(F, l) are all constant, respectively. Then, the code C by G is a generator
matrix for relative four-weight code. Let k1, k> and k3 be any positive integers such that
k] < k2 < k3 < k. Taking L] = {l,2,~-- ,k]}, L2 = {k] + l,- kz} and L3 =
{ko + 1, -, k3}. We know that, there are exactly < : ¢ h g

q— l
k—ky _gk—k3 . k—k3 _ . . .
Pl % points PY;, and "‘]Tl points PY,, and G is a generator matrix with n

columns, the length of C is given by n, where

—gk ki . 1 .
17— points Pooo’ points

gk — gkH

1 k2
n = ?m(Pooo) +

gk — gk
—1

k—k k—k k—k
q 2 q 3 3

1 0
— m(PY,).

q
m(Pjo) + m(Pgi) +

1
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From Lemma 2.3, we get

_ k-1
wler) = n=mPg, k)t —ky)h—ks)-
It is clear that the projective sub phi-1 tains L =2 Soings Pl
1S clear al c pl‘O]eC 1ve Su SpaCe (kz—]ﬂ)(k}—kz)(k—k}) contains T pOln S 000°
gkh gk k—ky _ gh—k

> points PO~ and L= boints PO . Th
1 1 points Py, and 4_—— points Py, . Thus,

: 0 g
points PlOO’

k—1 k—k k—k k—k;
—q 1 | 2

q 0
P

g1 m(Pypp)

k—k3

m(PFL 4 m(Plg) + 2

(k) (a—k)k—ks)) =
k—ky k—k3
q —q 0
+ L T Oy +
-1 (Poro)

q 0
Pyoi).
g1 m(Poop)
From the above two equations, we have
w; = w(cr)
= qk’lm(POlOO), forall c; € C;.
Similarly, apply the above method, and we arrive
wy = (@* " = g hm(Plg)) + (@ T Hm (P,
wy = (¢"" = ¢ T m(Plog) + (@ = T hm(Py)
+@* R hm(Pg),

and

ws = ("1 = g Tm(Pl) + (@ — g hm(Ply) + (¢ — R hm(p )
+@* D m(PGy))-

Lemma 3.3 Let C(wy, wy, w3, wa) be a relative four-weight code with respect to a k-
dimensional subcode C|, ko-dimensional subcode C, and k3-dimensional subcode C3, and
let G and m(-) be generator matrix and value function, respectively. Then, m(-) satiesfies

1;)11’ for p € Sy,
gy for p €
9t ’ ’

m(P) =\ gws—(g" —Dw —(g*2—g G2
4 g 2w3—(gh l)yinl (@2=q")ws for p € Sz,
¢S wa—(gh —Dwi =2~ D= =Dy g e g,

q
where S; C PG(k —1,9) for1 <i <4and S ={p | P, #0}, S ={p | P, =
O! PL2750 & PL3:O},S3:{P|PL3 #O}GndS4:{P|PL1 :PLZZPL3:0},
where Ly = {1,2,--- ,ki}, Ly ={k1 +1,--- ,ko}and L3 = {k + 1, --- , k3}.

Proof From the above geometric construction, we have

w; = w(cy) = qk_lm(POlOO), for all c; € Cy.

Then, it will be

1 wi
m(P()()()) = 761]‘71’
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again, we have

wy = (¢"7" = ¢ Dm(Pagg) + (¢ Hm(PRy).

Substituting the value of m(POIUO) into the above equation, we get

q“ 1wy — wi(gh —1)

0
m(Pygy) = P

Similarly,
w3 = (¢~ = g T hm(Pg) + (¢ 7T = g T hm(Plyg) + (" Dm(Py).

Substituting the values of m(Poloo) and m(Pé)lo) into the above equation, and after
simplification, we arrive

g2 w3 — ("1 — Dwy — (¢° — g*)Hw,

0
m(Py;0) = P

Again,
wy = (qk—l _qk—kl—l)m(POlOO) + (qk—/q—l _qk—kz—l)
m(Ph) + (@271 — g =B hym (B o) + (T Hm(PS,),

and substituting the above all value functions, finally we get

0« qBws—(g" = Dwi — (@* — g")wy — (45 — ¢*)ws
m(POO]) - k—1 .
q
O
Example 3.4 Consider a value function
lifpes,
_J)3ifpes,,
mP) =1\ 4ifpeSs,
6 if p € Sy,

forq = 2andletk = 5, ky = 2, ko = 3, k3 = 4. Then, we have w; = 16, wy = 24,
w3 = 26 and wq = 28, where L1 = {1, 2}, L, = {3} and L3 = {4}.
By the above procedure, we generate the generator matrix G as follows.

1111111100000000111111110
ooo1111111111111101111100
1110011011111111010111011
1111111111101101011111110
0000000011111111000000000

0000000000
0000000001
1000000001
0110000000
0001111111
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Note that each of the 24 points Poloo appears in G once; each of the 4 points P]OOO appears
three times; each of the 2 points P(?]O appears in G four times and there is only one point
P(?O] which appears in G for six times.

Remark 3.5 Based on the above geometric construction and by borrowing the method in
[10], one can show that relative four-weight codes will behave similarly as relative three-
weight codes in that they are optimal in certain cases in the wire-tap channel II. Further,
since relative four-weight codes have only four-weights and the weight distribution is clear
also based on the geometric structure, they can also be applied to secret sharing schemes
based on linear codes [4], and we omit these detailed arguments.

4 The intersection of relative four-weight codes

The ¢-wise intersection of a linear code is in general difficult to calculate. By using the
geometric structure, the #-wise intersection of binary relative three-weight codes is obtained
in [9]. Since we have gotten the geometric structure of a relative four-weight code, we also
expect to calculate the #-wise intersection of a relative four-weight code. However, a relative
four-weight code has more complicated structure than a relative three-weight code, which
leads to the complexity of ¢ linearly independent codewords. It is thus tedious to get the ¢-
wise intersection of a relative four-weight code, and we will have to classify the analysis into
many cases, and in each case we will generalize the method in [9] by developing the skill
of the matrix operation. The novelty of our work is in that in each case we will construct
an invertible matrix which is a product of invertible matrices and expanding the generator
matrix, which leads to the 7-wise intersection of binary relative four-weight codes.

Lemma 4.1 [9] The t-wise intersection of a linear constant-weight code w is equal to
(Q;l)t—lw.

As in the case of relative three-weight codes, it is a key to construct the generator
matrix of linearly independent codewords. By organize the ¢ linearly independent code-
words c1, ¢2,¢3, -, ¢ into a matrix form 7T;«,, we can get the t-wise intersection of
four-weight codes as below.

c1
Cc2 Gk
= X;x1tG = (X X _ 1xn
rxk Xtk » Xixk—kp)) |:G(k—k1)><n
Ct

Gk xn
= (X X _ 2
(Xt xkys Xix(k—ky)) I:G(ksz)xn

Gk xXn
= (X , X _ 3 .
(Xixkys Xrx(k—k3)) |:G(k7k3)><ni|
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Note that rank(X;xx) = t, and that the block matrices Gg,xn, Gr,xn and
Gisxn(k1 < ky < k3) are generator matrices of C1, C2 and C3, respectively.

Lemma 4.2 Let C be a relative four-weight code and it has the subcode D =
<c1,¢2,-++,¢> 15 a relative (t,11,1,13) code, then rank(X;xu—r)) = t — t,
rank(Xix(k—ky)) =t — tr and rank(X;x k—k3)) =1t — 13.

Proof Since < cy,c2,---,¢; > is a relative (z, t1, tr, t3) subcode, there is an invertible
matrix Y;«; such that

thtthk - (YtXtXth]v thtth(k—lq))
= (YtXtXl‘szv YtXl‘XtX(k—kz))
= (thtXlxk3, thtth(k—k3))

[ Xk Onxi—kn ]
! /
L X —tyxky K=y x k)

Xiwky  Onxto—k  Onxk—ky)
= Xz/tz —1)xk; letz—tl)x(kz—kl) Ot —11)x (k—k2)
L XG—ykr Xl—iyxtka—tn) X(—myxk—kr)
[ Xl Onxto—k) Oy x(ks—k)  Oryx(k—ks)
Xéltz 1) xk; X(;zftl)x(kz D) 0(’2 11)x (ko —ky) 0(t2 1) x (k—k3)
Xy -tk X(:t/:ftz)x(kz k) X(lz 1) (ks—k2) 0<f3 02)x (k—k3)

X///
L (1—13) %k (t—=13)x (kp—k1) (t 13) % (k3 —k2) (t 13) x (k—k3)

with mnk(X,1 by ) = tl,rank(X(t 1) (ke kl)) =t — tl,rank(X(t )X (ke k2)) =t —t and
rank(X(t )X (ke k;)) =t — 13. Therefore, we have

rank(X;xk—k)) = rank(Yi<) Xexk—k)

rank(X(,_, ) (e—k;))
r—1,

rank(Yex:) Xix (k—ko)

rank(X;xx—k,))

1
rank(X ) x (k-ky))
r—1,

rank(X;xk—iy)) = rank(Yrxe) Xix (k—ks)

"
rank(X ) x (k—ks))
=1 —13.

O

The t-wise intersecting of the relative four-weight code C (w1, wy, w3, wy) is closely
related to the size of wy, wy, w3 and wy. Denote m; = m(p;) for j = 1,2, 3,4, where
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pj € §; for every j. The above notation is same as in Lemma 3.3 and from (3.2), we get
the following

k-1
wp = miq s
=k —1
wy —w2 = ¢q" "' (my —my),
k—ky—1
wy —w3 =g 2 (my—m3),
k—k3—

1
w3 — w4 =g (m3 —my).

We move towards the calculation of the 7-wise intersection of relative four-weight codes.
It is based on the relation among wj, wy, w3 and w4. According to these relations, we
altogether get twenty four cases, in which cases 1 and 2 are completely different from the
rest of the cases. So that, they required a separate calculation analysis. The remaining cases
can be grouped into six major classes. The first major class cases (3, 4, 5, 6 and 7) with first
key lemma, the second major class cases (8, 9 and 10) with second key lemma, the third
major class cases (11, 12, 13, 14 and 15) with third key lemma, the fourth major class cases
(16, 17 and 18) with fourth key lemma, the fifth major class cases (19, 20 and 21) with fifth
key lemma and the sixth major class cases (22, 23 and 24) with sixth key lemma followed
by the other cases, can be proved respectively. To avoid the tedious procedure, all the key
lemmas are presented in the Appendix to make the work easier.

Now, we classify the cases of the calculation of the 7-wise intersection as follows.

Theorem 4.3 The t-wise intersection of relative four-weight codes C(w1, wa, w3, wa) is
equal to

1. (%)’_lwl, Wwq > w3 > wy > wi.

e | \ppE ] g gmnx
O wy = G wyp —wo) = ()72 T wy — wa)
max
| npgtiax X <t

—(3)'75 T (w3 — wa), 3

wp > wy > w3 > wy

L Lo gma Lopgmax

3w = T —wn) = ()77 (w - ws)

lmax - ty t‘l)nax <t

—(w3 — wa), 3 2

2. w] > wy > w3 > Wq

e | \ppe ]

3wy — (T Wy — wo) — (wy — w3)

max __ smax __ max

—(w3 — w4) e =n =0 <t
,

wp > wy > w3 > wy

l;nax — té‘nax — ti‘nax =t

Ivi—
3wy — (wy —wy),
wp] > w2 > w3 > Wyq.
max
e | opgmax e tmax <
min{(})~Tw; — (T ws —w3); D) wy), {3
w2 > Wy > W4 > W3

3' P
soreLlye=1 1ye—1 5=t
min{(3)"" wi — (w4 —w3); (7)) wi}, -
- w2 > Wy > W4 > W3
max
. Laie 17— gmax_| Colv— t <t
min{(})~Tw; — () T ws —w3); 3wy}, 3
4 w2 > wqg > W > w3

| 1 tmax =t
min{(3)~wy = (g = w); (3w ), .

wy > wy > wp > w3
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max
. Ihf— 1\ f—gmax_| Lo t <t
min{(})~Tw; — () T ws —w3); (DT wy}, |3
5 w2 > w4 > w3 > W
: Lyi—1 1yi—1 f§""x=t
min{(3)"" wy — (ws —w3); (3)" " wi},
wy > wy > w3 > W)
max
e Lo gmax Lo g
min{(})~Tw; — ()5 T ws —w3); (DT wy}, |3
6 w4 > W2 > w3 > W
e ly—1 L Lyl =t
min{(5)"" w1 — (wg —w3); ()" wi}, 5
w4 > W2 > w3 > Wy
max
. 1hi— 1 \7—gmax_| - 2 <t
min{(3)"~'w; — (3)'7" (wg —w3); () wy), {3
7 wy > wy > wp > w3
oLyl L oly—1 =t
min{(5)"" w1 — (ws —w3); (3)"" wi},
w4 > W2 > W > w3
(%)”lun + (%)”"’l(wz —wy) — (%)”’Z’I(wg —wa), ™ <1, "™ <rand w3 > wg > wy > wy
8. (5w + ()1 w2 — wi) — (w3 — wa), if £ =1, M < tand w3 > wg > wy > w)
(%)”lun + (w2 — wy) — (w3 — wa), if (" =" =rand w3 > wg > wy > wy.
(%)’_lwl + (%)’_"_l(wz —wy) — (%)’_’Z_I(wg —wp), if ™ <, (™ <tand w3 > wy > wy > wy
9. (%)t—lu)l + (%)t—n—l(wz —wp) — (w3 — wy), if ™ =1, 1™ <rand w3 > wy > wy; > wy
(%)’_lwl + (w2 — wy) — (w3 — wy), if "™ =" =rand w3 > wy > wy > wy.
(%)’*le + (%)1—11—1(11}2 —wp) — (%)’*lzfl(w.g —wy), if™ <1, 1™ <randwz > wy > wy > wy
10. (%)’*lwl +(%)‘*"*l(w27w1)7(u)37w2), if™ =1, "™ < rand w3 > wy > wy > wy
(%)”lwl + (w2 — wy) — (w3 — wy), if "™ =™ =7 and w3 > wy > wy > wy.
(5w + ()T ws — wa)
max
L gmax_ { pgiit_] oy
+(3)'B T ws —wg) — (3T (wr —wy), {3

wy > w3 > wy > wy
max

(O wr + (52 N ws — wa)

1 g gmax_
+(ws —wg) — ()71 Hwr —wo),
11. w) > w3 > wy > W4

Ay =lwy + (w3 —wp)

max __ max
=g, P <t

max _ t;nax =1, tinax <t

&)
wy > w3 > wy > Wy

max
gl

(w3 — wg) — (HTT T wy - wy),

1 1 tmax - tmax p— thIX - t
() 'wr 4 (w3 — wyg) — (wy —w3), 3 2 !
wp; > w3 > w2 > w4.

Gy =lwy + (32w — wo)

1 ngmax | | fgmax g <t
+(3)5 T ws —wa) — ()T T wp —w), {3
wy] > w3 > Wy > Wy
e L opgmax_
O+ (32 (ws — wo)

max max
| gmax_ X — gt <t
w3 —wg) — ()7 Ly —wy), 3 2
12. wy] > w3 > Wy > Wy

(3 wy + (w3 —w)

A

| ggmax
+(w3z —wg) — (3)'71 (wy — wy),
wyp > w3 > Wy > Wy
max max max
1\t— 2 =1 =1 =1
DO wy + (w3 — wy) — (wi — w3), 3 2 !
w) > w3 > wWqg > wW2.
max

(O wr + ($)72 N ws — wa)

<t

1 max_ | pgmax_ nax

+(3)'T T ws —wa) — ()T T wr —wp), {3
w3 > wp > w2 > w4

Iae | gmax_

O+ 32wz — wy)
max max

1 fgmax_ pmax — gmax g
(w3 —wg) — (3 wi —wy), 3 2
13. w3 > wp > wy > Wa

(3 wp + (w3 —w2)

max
i

max

max max max
1yr—rax—] t =t,t =t,t <t
+(ws —wa) — ()T T H(wr — wy), 3 2 !

w3 > wp > w2 > w4
max _ jmax _ ;max _
=" =" =t

-
(3" 'wi 4 (w3 — wa) — (wi — w3),
w3 > wy > wy > Wy
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15.

16.

17.

max

(B () ws —wo)

max max

+(HE  ws —wa) — B wy — w),

max

3w+ ()72 ws — w)

max
=t

+(ws —ws) — ()T Hwy —w),

(5 wp + (w3 —w2)

max

(w3 — wg) — (HTT " wy —wy),

3wy + (w3 — wy) — (wi — w3),

max
1

G =twy + (32 ws — wo)

max max
1

+(HE  ws = wa) — ()T wy — wo),
Gy =lwy + 5wz — wo)
+(w3 — wg) — (HTT " wy - wy),

(5 wp + (w3 —w2)

max

+(ws — wg) — (HTT " wy —wy),

By =lwy + (w3 — wy) — (wi — w3),

Oy =lwy + ()2 (wy — wo)
=T wr —w2) — ()T (wy — w3),
O wi + (5 ws — wy)

—(Hy == wy — wo) — (s — w3),

(3 wp + (w3 —w2)

max

=M wy = wa) — (wy — w3),

(O wy + (w3 — w2)

—(Hy == wy — wo) — (s — w3),

max

3w+ ()72 N ws — wo)

fnax max _|

Twr —wz) = ()T T wy — w3),

1 —
-y

G =lwy + 3w — wo)

max

—(Hr = wy — wa) — (wy — w3),
Ay =lwy + (w3 —wy)
=Ly = wy — wa) — (wy — wa),
(D wy + (w3 —w2)

max

=M wy — wa) — (wy — w3),

<t

w3 > wp > wWqg > w2

max __ max
N

w3 > wp > wy > wy

P = = P <t

w3 > wp > wWqg > w2

t;ﬂax — ténax — tinax =t

w3 > wp > wg > wr.

<t

w3 > wqg > Wy > w2

max __ max
o = < p

w3 > wy > wp > wy

P = = P <t

w3 > wqg > W > w2

ténax — t;nax — t}nax =t

w3 > wg > wp > wr.

<

wyp > wqg > w3 > w2

max __ max
o =g, <t

wy > wg > w3 > wy

max _ smax __ max
Y =05""=1, 4

wp > wqg > w3 > w2
max _ t{nax — t:’nax -t

&)
wy] > wg > w3 > Ww).

<t

wg > wp > w3 > wy

max __ max
=g, <t

wyg > W > w3 > w2

max _ smax __ max
O = X = g g

wg > wp > w3 > wy

t;nax — t;nax — t}'nax =t

Wwg > W > w3 > wa.

<t

<t
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e L gmax
() Ywy + (3)'" T(ws — wy)
max
L gmax_ | ggmax X g
=T wr —w2) = ()T T wa —wy), |3
wp > wqg > w3 > w2
e L
3wy + ()2 (ws — wo)
max __ max
—B) T g = wa) = (g — wy), S
18 wy] > wq > W3 > Wy
. L
D wy + (w3 — wa)
[max — tmax — t, tmax <t
=) Wi = wa) = (wy = w3), S :
wp; > wgqg > w3 > w2
1 —
3wy + (w3 — wy)
a tmax — tmax — tmax - t
—(B T = w2) = (wa - w3), 5o T2
wy] > wq > w3 > Wy,
L | pmx
DO wy + (H)E " (ws — w3)
max
L gmax_ | g gmax _ X g
=TT wr —w2) = ()T T wr —wy), 3
w); > wqg > w2 > w3
1 —
() wy + (wg — w3)
‘ a tmax — t, tlﬂﬂX < t
—(Hr= M wy —wo) = (H T wy —w3), |3 2
19. w] > wq > wy > w3
1\7—
(3" "wi + (wg — w3)
tmax = tmax = t, tmax < t
*(%)I_’:m_l(wl —wz) — (w2 — w3), 3 2 !
wyp > wqg > w2 > w3
max max max
1\t — 2 =1 =1 =t
()" w4 (wg = wi), 3 2 !
wy] > wq > Wy > W3,
L L
O wy + ($) T (wg — wa)
max
L gmax | fgmax pmax g
()™ wp —wy) = ()72 T wy —ws), {3
wyp > w2 > wWqg > w3
1 —
()" 'wi + (wg — w3)
2 " tmax = t, tmax < t
—(BT i —wy) = (DT wy —wy), {3 2
20. wy] > wy > W4 > W3
1 —
(DM wy + (ws — w3)
max max max
a = = <
—3 T g = wa) = (w2 = w), Ik T
wyp > w2 > wq > w3
max max max
1\t — 2 =1 =1 =1
()" 'wy + (wg —wy), 3 2 !
w] > wy > W4 > W3.
1yi— 1yr—mx ]
D wy + ()75 (wg — wa)
max
L gmax | fpmax X g
()" wp —wy) = ()72 Twa —ws), {3
w4 > wp > wy > w3
Ivi—
(D wy + (ws — w3)
max max
| g gmax_ Lty (A — g pmax
=3 wy = wy) — ($) 72wy — ws), 3 2
21. w4 > wp > wy > w3

O ="wy + (ws — w3)

max

=D W = w2) — (w2 — w3),

(5 wy + (ws —wy),
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1yvi— 1 g gmax_ | pgmax _

O wy — G wy —wy) — (32T N wy — ws)
_pmax _ o <t

() ws — wy), 3

wy > wp > w3 > w4

max

L Ly T
3wy — G wy —wi) = ()72 (wy — wa)
max

B =1t <t
22. —(w3 — wg), 3 )
wy > W) > w3 > Wy
max max max
Lae | max_ P = M = P <
O wy — H)T wy — wi) — (w2 — wa), 3 2 !

wy > W > w3 > W4
tmax — [max — tmaX :t
Iyi—
) Mwy — (wy — wi) — (w2 — wa), 3 2 !

wy > Wy > w3 > W4

max max

() wr = ()T — wn) = ()7 (wa — wy)

max
1 ogmax e <t
=5 (w3 — wy), 3
w2 > w3 > W) > w4
BHr=lwy = (O wy —wi) — (3 wa — w3)
max __ max
=t ™ <t

wy > w3 > wp > Wy

23. — (w3 — wy),

max

max max max
e Ly (AN pmax g pmax g
() hwp = ()T wy — wi) — (wy — wy), 3 2 !

w2 > w3 > W > w4
max max max
1\t— 2 =1 =1 =t
3wy — (wy — wy) — (wr — wa), 3 2 !

wy > w3 > Wy > W4

Lae L gmax | ggmax

O wy = HT wr —wi) — (52T T (wy — wa)
max

a <

—(H " s — wa), =t

wy > w3 > wqg > W

Lae | g gmax_ | g pmax _

3w = ()T wr —wn) = ()77 (w2 — ws)

=1 % <t

wy > w3 > wy > Wy

24. —(w3 — w4),
max max max
L L op sy (NAX — pMaX g gmax g
(3w — ()T wy — wi) — (wy — wa), 3 2 ol
w2 > w3 > W4 > W
max max max
1y A — pmax — gmax _
()" twy — (wy —wy) — (wa — wy), 3 2 !

wy > w3 > wa > Wy

Proof Now, we are ready to prove the theorem by considering first two cases independently
and the remaining cases can be proved by major classes as explained above.

Case 1: Since wgy > w3 > wy > wj, we prove that mg > m3 > my > mj holds,
then its generator matrix G of the code C can be written as G = (G, G2, G3, G4), where
G consists of all points in PG(k — 1, 2) with each point repeating m times and all the
points in Sy U S3 U S4 constitute the columns of G, with each point repeating my — m
times. Columns of the generator matrix G3 consist of all points of S3 and each point repeats
m3 — my times and columns of the generator matrix G4 include of all points of S4 and each
point repeats m4 — m3 times. Then, G| generates a k-dimensional constant-weight code
C’ with weight m125~1 and length [y = m k-1, G, generates a (k — k)-dimensional
weight code C” with weight (my — m1)2¥=%1=1 and length I, = (my — m1)(2KK1 — 1),
G5 generates a (k — k»)-dimensional weight code C” with weight (m3 — m»)2¥~*%2~1 and
length I3 = (m3 — m2) (2% — 1) and G4 generates a (k — k3)-dimensional weight code
C"" with weight (my4 — m3)2¥=%3~1 and length I = (m4 —m3)(2*"% — 1). Letcy, - - , ¢
be any ¢ linearly independent codewords in C such that
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c c} cf cf’

= XixkG, | © | = XexkG1, | 0 | = XixkG2, | © | = XixxkG3 and
I c c/ c
c;///
= X;xkGa. It can be concluded that each above codeword ¢;(i = 1,2, ---,1)

C;///
can be divided into four sectors. That is, ¢; = (¢}, ¢/, ¢/, c/") with ¢; € C’, ¢/ € C”,
¢ € C"” and ¢ e C". Obviously, the codewords ¢/, --- , ¢, are linearly indepen-

dent. Moreover based on Lemma 4.2, the rank of the codewords ¢/, --- , ¢/, ¢{",---, ¢/

and c{”, .-+, ¢/ are (t — 1), (t — 12) and (¢ — t3), respectively. From Lemma 4.1, we
conclude that inter; = (3)'"'m2871, 0 < inter, < (37" Nmy — my)2kh-l
0 <inters < (%)’_’2_1(m3 —mp)2k=k2=land 0 < intery < (%)’_t3_1(m4 — m3)2k—ks—1,
Therefore, inter = inter| + intery + intery + intery. Thus, inter = (%)”1m12k’l is
reachable, whenever ¢| = 0, ¢/’ = 0 and ¢|” = 0 are equivalent to ¢; € Cy, ¢; € C2 and
c1 € Cs, respectively. Since dim(C1) > 1, we can select an arbitrary non-zero codeword ¢
from C; and expand it to ¢ linearly independent codewords c1, - - - , ¢; in C. Therefore, the
t-wise intersection of binary relative four-weight code is (%)t’lml 2k=1 — (%)”l wy.

Case 2: If w; > wy > w3 > wy then m| > my > m3 > my, similar to the analysis
in Case 1, these matrices G, G, G3 and G4 can be introduced. G4 = (G, Gy, G2, G3)
and G includes all the points in S> U S3 U S4, which constitute the columns of G with
each point repeating m| — my times and the columns of G, consist of all points of S3 with
each point repeating m, — m3 times. Columns of the generator matrix G3 consist of all
points of S4 and each point repeats m3 — my4 times and columns of the generator matrix
G4 consist of all points in PG(k — 1, 2) with each point repeating m; times. Then, G|
generates a (k — k)-dimensional constant-weight code C’ with weight (m; — my)2k—ki—1
and length [} = (m; — my)(2kk1 — 1), G, generates a (k — k)-dimensional weight code
C” with weight (my — m3)2¥=%2~1 and length I, = (my — m3)(2¥~%2 — 1), G5 generates
a (k — k3)-dimensional weight code C”” with weight (m3 — m4)2¥~%3~! and length I3 =
(m3 — my)(2¥% — 1) and G4 generates a k-dimensional weight code C”” with weight
m12¥=1 and length Iy = m1(2k — 1). Let ¢; be an arbitrary codeword of the ¢ linearly

C1
independent codewords c1, - - - , ¢; € C with the matrix form | = Xexk G. Then, we
Ct
have ¢” = (i, ¢}, ¢/, ¢/") forany i € {1,2,---,t} with¢] € C', ¢/ € C", ¢/ € C"”
and ¢ e C". Besides rank(c]”,---,¢/") = t, whereas rank(c|,---,c;) =t — 11,
rank(c{,---,c/) =t —ty and rank(c{’,--- ,c/") = t — t3 by Lemma 4.2. Furthermore,
inter = inter4 —inter) —inter, —interz with 0 < inter; < (%)”“’1 (m) —mp)2k—Hki—1,
0 < inter, < ()27 (my —m3)2k~%2=1,0 < inters < (3)' 757 (m3 — m4)2k"%~1 and
intery = (3)'~'m;2*~!, by Lemma 4.1.
Next, we state that

1 t—1 1 t—t1—1 1 t—t)—1
inter = <§> m12k_]—<5) (m1—m2)2k_k‘_l—<§> (my—mz)2kk1
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can reachable when < ¢y, ¢p, -+, ¢; > is arelative (¢, 11, tp, t3) subcode (f] < 1) < t3 <
t). Let ¢y, -+, ¢; be arbitrary ¢ linearly independent codewords and < ¢y, -+ ,¢; > is a
relative (¢, t1, f2, 13) subcode of C. According to the proof of Lemma 2.3, there exists an
invertible matrix Y;;, Z;x; and Wy, such that

" mnn nn "
Xll xk3 th X (kp—k1) thx(k3—k2) Xllx(k—k3)
" X//// X//// X////
(ta—t1)xky T (ta—t)x(ka—ky) “ (t2—t1)x(k3—ka) “*(ta—t1)x (k—k3)
X//// " n nn

(13—12) xky (11/3/*12)><(k2*k1) (/53/*t2)><(k3*k2) (/lls/*lz)x(k*h)

"
Xi—mxky X—1)xto—k)) X(-n)x(ks—ky) X (1—13)x (k—ks)

thtztxthxtthk =

: " n n .
with each row of th w (k—k3)" X(tz—t])x(k—k3) and X(t3—t2)><(k—k3) is the same as the last row
" : : : " " .
of X(tft3)><(kfk3)' Similarly with each row of th Y (s—ky) and X(tzf.tl)x(/qsz) is the same as
the last row of th”—zg)x(kg—kz)' Denote ¢y, - - - , ¢; the rows of matrix Wy, Z;; Yrx: XixkG.
Then, we conclude that these ¢ linearly independent codewords have the intersection

inter = intery — intery — intery — inters

1 t—1 1 t—t1—1 1 t—tr—1
(5) mlzk—‘—<5> <m1—m2)2k—k'—1—<5) (my—m3)2t—~!

1 t—t3—1
—(5) (m3 — my)2k=k~1

1 t—1 1 t—t1—1 1 t—tr—1 1 t—t13—1
(E) wy — (E) (wi —wy) — <2> (w2 —w3) — (5) (w3 — wa).

Thus, for all parameters #1, #, and 3, we get the -wise intersection of binary relative four-
weight codes in the case w; > wy > w3 > w4,

G tw = G wy — wa) — (D (wy — ws)

(D (ws — wy), it <t
1y7- it — 1yi—tp—
3w = 3T Wi — wy) — ()T (wy — ws)
2 2 2
trrtﬁr} inter = { —(w3 — wa), if 5" =t and ™ < ¢
1,12,13 1\f— INt—t — N
(3w — 3wy — w) — (w2 — w3)
—(w3 —wy), if (09 = (0% = ¢ and 1M < ¢
D wy — (wy — wa), if (X = pnax — gmax —

Hereafter, we have to prove the major classes one by one which consist of all the remaining
cases.

Major class 1: In this major class, it can be considered that all the five cases (3, 4, 5,
6 and 7) have similar proof. Although the cases seem to be different, the condition will
be same that is m; < mo, my > ms3 and m3 < my. Using the first key lemma stated in
the Appendix and the procedure adopted in Case 2, we can estimate the intersection of the
relative (¢, 11, 1, 13) (t] < tp < t3 < t) subcode,

1 t—1 1 t—t1—1
inter = (5> m12k_] + (§> (mo —m1)2k_k‘_1

1 t—tr—1 1 t—t3—1
- <§> (ma — m3)2k—ke=t <5> (ma — m3)2k~ks=1,

@ Springer



214 Cryptography and Communications (2021) 13:197-223

According to Lemma 1.1 in the Appendix, for any ¢ linearly independent codewords with
property that their generating subspace is relative (#1, 2, #3) subcode of C, if the correspond-
ing intery # 0, we have, inter = inter| + inter, — inters — inters, with the inter; =
() "'myinter; = (1)1 my—my)2k 1=V and inters = (3) 727 (m3—my)2k—R 1,
When intery = (%)’_’3_1(m4 — m3)2k—ks=1 i5 reachable, inter will have its minimum
value.

For any given ¢t codewords with the aforementioned properties, there exists three
invertible matrices Y;x;, Z;x; and W, such that

X//// " " "

11 xk3 Xf1><(k2—k1) Xt1><(k3—k2) thx(k—ks)
m m " 1y

X X X
Wit Zrset Yescr X ok = (ta—t1) xky 5[’/2/*f1)><(k2*k1) g/t/zlfll)x(kssz) S/[/Z/*tl)x(k*kﬁ

"
X(/z;/—tz)xkl X(/tg—tz)x(kz—kn X(/t/z/—tz)x(kg—kz) X(/z/;—u)x(k—ka)
Xi—mxky X—t)xta—k)) X(-n)x(ks—ka) X (1—13)x (k—ks)

" " " :
where each row of thx(k—kg)’ X(zzftl)x(kfkg) and X(t3712)><(k7k3) is equal to the last

ro/w of the matrix XE;’_Q)X(,{_,(}) and each row/s of Xl/;/;(k3—k2)’ Xé/f/z/—'fl)x(lﬂ—kz) and
X (;;/th)x (ks_ky) are the same as the last row of X (,t/fts)x (ks—ky)- Thus, taking t.he rows of
matrix Wy« Zix: Yix: XixkG to be new t linearly independent codewords and still denoting
themby ¢y, - - , ¢;, we can conclude that intersection, inter = (3)'~'w; +(3)' ™" (wy —
wi) = (3) 727 (w3 = w2) — ()75 (wa — wy).

In addition, if intery = 0, we will have inter = intery — inter, + inters — intery,
with inter; = (%)’_lml ,interp = 0 and intery = 0. Thus, the minimum value of inter
is (%)’_]mIZk_k‘, when intery, = inter; = 0. Next, we state that inter, = inters = 0
can be reached, since dim(C) > 1, we select ¢ linearly independent codewords c¢; € Cj,
and expand to it ¢ linearly independent codewords ci,---,c;. It can be checked that
intery = intery = 0. Thus, if intery = 0, the minimum intersection of ¢ linearly inde-
pendent codewords will be inter = (%)’ —lp2k-1, Summarizing the above discussion, we
conclude that all ¢ linearly independent codewords (c1,c2, -+ ,¢;) witht) < th <t3 <t
subcodes of C will have minimum intersection

1 t—1 1 t—t—1 1 t—tr—1
inter = min <§> m12k_1 + <7) (my — ml)Zk_k‘_1 — <7> (my — m3)2k_k2_1

2 2

1 t—13—1 ik 1 t—1 ‘

- (E) (mg — m3)2k=k=1 (E) my 2k
1 t—1 1 t—t—1 1 t—th—1

{(2) wy + (E) (w2 —wy) — (5) (w2 — w3)
1 t—t3—1 1 t—1

—(§> (wg — w3); (5) UJI}-

Therefore, the t-wise intersection of binary relative four-weight codes, for m; < mo,
my > m3 and m3 < my, is
1\t— 1\¢—¢max_ 1y— .
{ (G fwy — ()75 g — wa); () wn), i <
— N — .
{5 wy — (wg —w3); 3wy}, if (% =g,
Major class 2: In this the cases 8, 9 and 10 are considered. Since the condition m| < m3,
my < m3 and m3 > my4 is same for all the three cases, we will get similar result as in Case

min inter =
1,0,13
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2. Following the second key lemma in the Appendix, the intersection will be

1 r—1 1 t—t1—1
inter = (5) m12]‘_1 + (5> (mo —m1)2"‘_k1_1

1 t—tr—1 1 t—t3—1
- <§> (m3 — mp)2k—ke=1 <5> (m3 — my)2kk=1,

Next, it is stated that the equations intery = 0, inters = (%)’_Q_l (m3 — mp)2k—H2~1
and intery; = (%)”’1’1(m2 — m)2¥=k1—1 are reachable whenever < c¢1,ca, -+ ,¢; > is
arelative (¢, 11, 12, 13) (11 < t» < t3 < t) subcode. Any ¢ linearly independent codewords,
<cp,--+,c >isarelative (¢, 1, 12, t3) subcode of C. So that we can always find that there
are invertible matrices Y;x;, Z;x; and W;y;, such as,

" " " "
XI|><k Xt1><(k2—k1) thx(kg—kz) Xl[X(k—k})
" X//// X//// X////

(n—t)xky (=) x(ka—k1) " (a—11)x(k3—kz) " (t2—11)x (k—k3)
X//// " " 0
(t3—1p) xkq (t3—12) X (ka—k1) (t3—1) x (k3—k2) (13—12)x (k—k3)
" " n

"
Xi—mxky X—1)xto—k)) X-n)x(ks—ka) X (1—13)x (k—ks)

where each row of X;; ¢ (k—ky) and X é/t/z/—tl)x(ks— k) i/s equal to the last row of the matrix
XE’,’_IS)X(,(_,@ and each row of X;;”X(,q_kz) and thlzl—zl)x(kg
row of Xz/t/—tg)x(ks—kz)' Then, considering the rows of matrix Wy, Z;x;Yix: X;xxG a new
t linearly independent codewords but still denoting them by cy,---,c;, we can infer
that inters = 0, inter; = (%)”lm]Zk’l, intery = (%)”’1’1(1112 — m)2kk-1 and
intery = (%)’ —2=1 (3 — my)2k—*2=1 Hence, all the ¢ linearly independent codewords of
which generating subspaces are relative (¢, t1, 2, 13) (t] < t» < t3 < t) subcodes, have the
minimum intersection inter = (%)”lun + (%)t”l’l(wz —wy) — (%)”’2’1(w3 — wy).
Therefore, the 7-wise intersection of binary relative four- weight codes in major class 2 is

Wikt Zest Yixe Xexk =

ko) is the same as the last

(%)I_lwl + 3wy —wy) — 3N ws — wy), i M < rand 1 <t

ZIIT}ZiI% inter = 1 (7)™ lwy + (3) 717w — wi) — (w3 — wo), if ('™ =t and ™ <t
’ ) wy 4+ (w2 — wy) — (w3 — wo), if ™ =" =1

Similar to this, by using the corresponding key lemmas stated in the Appendix, we can also
prove the major classes 3, 4, 5 and 6 in the same method so, we omit the detailed proof. [

Remark 4.4 While generalizing the above theorem for any ¢ > 2, we may also obtain the
t-wise intersection of any g-ary relative four-weight code for cases 1, 2 and major class
2. For major class 1, it is more complicated to generalize the z-wise intersection of g-ary
(g > 2)code, since we are not able to arrive a similar result as in Lemma 1.1 (Refer to the
Appendix) which can be used to prove that major class.

5 The trellis of relative four-weight codes

A trellis of a k-dimensional block code C is a directed graph. The set of nodes (or called
states) of the graph can be partitioned into subsets Sy = {So}, S1, ..., Su—1 > Sy = {Su}. An
edge from a state in S;_| terminates at a state in S;, 1 <i < n. For binary codes, each edge
is labeled by O or 1, such that C is the set of edge label sequences obtained by traversing all
paths from Sy to S,,. For a linear code, each S; is a vector space.
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Given a trellis of the code, the maximum-likelihood soft-decision decoding is achieved
by applying the well-known Viterbi algorithm. The complexity of this decoding is deter-
mined by the trellis complexity.

Define
s*(C) = Om'alx dim{S;} 5.1
and o
s(C) = n}rin S*{m(C)}, 5.2)

where the minimization is performed over all permutations 7 acting on the coordinate
positions of C.

Let S; o be the state in S; that corresponds to all zero path from Sy. Then, the sets of label
sequences associated with the sets of paths from Sp to S; o and from S; o to S, , are called
the past subcode C ;,’) and the future subcode C (i), respectively.

It is mandatory to recall x (c) stands for support of the codeword ¢ in other words, the
set of the non-zero co-ordinate positions of ¢, whereas {1, - - - , n} the set of the coordinate
positionsand i~ = {1, ..., i}, it ={i+1,.. n}forl <i < n are well known. Using these

notations, we may also describe Cl(,i) and C(fi) as follows:

Cy = fceCxci’)

. (5.3)
CY' = feeCx@cit)
Note that . ‘
dim(8;) = k — dim(C{) — dim(C}). (5.4)

The following lemma is a relation between trellis complexity and intersection of binary
relative four-weight codes.

Lemma 5.1 Let C be a binary relative four-weight code. If the intersection of any two
non-zero codewords is at least three, then s(C) > k — 2.

Proof We prove this lemma by contradiction. Suppose s(C) < k — 3.

Then, according to the definition of (5.1) and (5.2), there exists a permutation g of a
co-ordinate position of the code C such that s(C) = s*(mo(C)) < k — 3. Thus, for any
co-ordinate position 1 < i < n, by using the (5.4), we have

dim(o(Cp) ) + dim(mo(C ) ) > 3. (5.5)

If there exists some i such that dim(no(Cp)(i)) > 0 and dim(no(Cf)(i)) > 0, then there
are non-zero codewords c¢; € mo(C p)(i), ) € My (Cf)(” and, they have no intersection by
(5.3). This contradiction shows that C is intersecting. This implies that dim (7o (C p)(i)) >0
and dim (o (C f)(i )) > 0 are not possible. Hence, only one of the following can occur.

1. Ifdim(mo(Cp)P) = 0, then dim(7ro(Cy)) > 0.
2. Ifdim(mo(Cp)®) > 0, then dim(mro(C 7)) = 0.

The above facts yield that C is a mimimum code with a distance d. We can find ip > d — 1
such that dim (770 (C )~V = 0 and dim(wo(C r)@~) > 0 or dim (7o (Cp)*~4*+V) > 0
and dim (o (C )" ~4+D) = 0.

We state that dim (wo(C p)(iO‘H)) = 1. Otherwise there exists two linearly independent
codewords ¢ and ¢ such that ¢y, ¢2 € mp(C p)(i0+1). Thus, we can find non-zero codewords
c1 and ¢ intersect exactly at the (ig+ D co-ordinate position due to dim(no(C,,)(iO)) =0.
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We can thus find a non-zero element o € GF(g) such that 0 # ci+acy € mp(C p)(iO)l, which
is a contradiction to dim (g (CI,)(’U)) = 0. This argument shows that dim (7o (Cp)(’U‘H)) =
1.

Finally, we get

$(C) = s™(m(C))
k — dim(o(C) D + dim (o (C ) 0+ D)
k—2.

v

Which is a contradiction to s(C) < k — 3. O

Appendix

Key Lemmas for Theorem 4.3 In order to prove all the major classes in Theorem 4.3, we
introduce the first key lemma which will be used in the cases 3, 4, 5, 6 and 7 in which
my < my,my > m3and m3 < my . Then, the generator matrix G of C can be written in the
following form (G, G3, G4) = (G1, G3) in which G consists of all points in PG(k — 1, 2)
with each point repeating m times and all the points in S, U S3 U S4, constitute the columns
of G, with each point repeating m, —m times. Columns of the generator matrix G3 consist
of all points of S3 and each point repeats m, —m3 times and columns of the generator matrix
G4 consist of all points of S4 and each point repeats m4 — m3 times. Then, G| generates a
k-dimensional constant- weight code C’ with weight m 121 and length [} = mi12k =1, G,
generates a (k — k1 )-dimensional weight code C” with weight (m, — my)2F—*1—1 and length
o = (my —m)2K"K1 — 1, G3 generates a (k — k»)-dimensional constant-weight code C””
with weight (m, — m3)2/‘_"2_1 and length I3 = (m — m3)2k_k2 — 1 and G4 generates a
(k — k3)-dimensional constant-weight code C”” with weight (m4 — m3)2¥=%=1 and length

Iy = (mg —m3)2k"K — 1. Letcy, -, ¢ be arelative (t,11,0,53)(13 < th < t] < 1)
subcode.
/ 1 "
o 1 “l “l
2 ) ) )

Denote | . | = XiskG, | . | = XexkG1, | . | = XixkG2, | . | = XixkG3,

¢ c ) )

n

€1
C/Z///

= XixkG4.
C;///

Then, we have for any i € {1,2,---,t}, (ci,c/”,c/") = (c},c]), where ¢} € C',
¢/ € C", ¢ € C" and ¢/” € C". In addition that, ¢/, --- ,¢; are linearly indepen-
dent codewords, whereas rank(c{,---,c/) =t —t, rank(c{’,--- ,¢/") =t — 1, and
rank(c]”, -, ¢/") =t — 13 by Lemma 4.2. For satisfication, inter, inter, inters, inters
and inters will be represented as follows. inter = | (i_, x (i), intery = |(i_; x(c)l,

intery = |\, x|, inters = [N, x(c!)| and intery = g x(c/")|. Based
on the Lemma 4.1, we have inter = inter; + inter, — inters — intery with inter; =
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() 'm125710 < intery < (371 my — m)28 K710 < inters < (527N my —
m3)28 %21 and 0 < intery < (%)"’3_1(m4 — m3)2%¥=%3=1 then we have the following
lemma.

Lemma 1.1 Assume g = 2 and w3 > max{w;, wy, wa} and let D =< c1,--- ,c¢; > be

a relative (t, 11,0, 13)(13 < tp < 11 < t) subcode of C with intery # 0, then interz <
Inf—pr— e —

(f)t t l(m3_m2)2k ky 1.

Cl
2
Proof Write | . | = X;xxG, then similar to the proof of the Lemma 4.2, there exists an

Ct
invertible matrix Y;; such that

ks Oupxtta—t1) O xtks—k)  Oryx(k—ks)
"
Yoo X — X(,z —) %k (,2 ok O—m)xks—ka) Ota—1)x (k—ks)
txtdtxk = X X 0
(t3 n)xky “(t3—1)x(ky—ki) (l% n)x(k3—ky) - (B—0)x(k—k3)
" "
(1—=13)xky (1—=13)x (kp—k1) (f 13) x (k3—k2) X(I 13)x (k—k3)

with rank(X,l " ) =t1, rank(X(t2 —t)x(kp— kl)) =n—t, rank(X(t3 1) x(ks— kz)) =R—0n
and ra”k(X(z—z3)><(k—k3)) =1t —1.

Thus,
0 0
0 0
"\ =
¢ Ct2+1 0
Yisa | + | = : : ; (A.1)
C;// C;/// E;;/ 0
=" =/
Ci3+1|Ct+1
=/ =/
C C
in which rank(ct 41 s C) =t — 1o and rank(c;”jrl,-u ¢y =t — 1. We
/17 i
1 (€1
have rank | | : = t — 1. Without loss of generality, let (ct2 1. ¢) be a
C;N C;///
maximal linearly independent set of (c{’,---,¢;”). Then, the last (r — f2) rows of the
i " i "
1|4 Ch+1 sz+1
matrix | ¢ |, which is : : , i1s a maximal linearly independent set of
NU/APRIG N/ "
Cr |G Cr Ct
" "
Pix(t+1) " Plxt cl el
its all rows. So, there exists a matrix : R such that N =
"
pt2><(t2+l) o pt2><t C[ Cl
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" "
Pix(np+1) " Plxt Cort1 |Cr+1
: : , that is
Piyx(+1) **° Dixt cg” c
i "
¢ Plx(t+1) ** Plxt C12+1
- - : (A2)
i "
Ct2 Ptyx(tr+1) " Pnxt C;
and
i "
Sl Pix(t+1) **° Plxt Crt1
= : S : . (A3)
C;;” Pox(+1) *** Phxt c
Based on (A.3) and rank(c{”, --- ,c{"") = t — t3, without loss of generality, we assume
(c;;/jrl, .-+, ¢;/”) to be a maximal hnearly independent set of (c¢{”,-- -, ¢/”). Then, there
T+ x(t34+1) T+ xt
exists a matrix : . : , such that
Ttsx(z+1)  *°°  Tixt
C//// ////
th+1 Fo+D)x@3+1) ~ - r(f2+1)><l z3+1
: = : : (A4)
C;;N Ttsx(tz+1)  ~°°  Tpxt W
Substitute the (A.4) in (A.3), we get
T+ x(i+1) ~ - ”(t2+1)xt
" : ////
9 Pix(n+1) *°* Plxt : Cht1
r .. r
. — . . . 13X (t13+1) t3><t (AS)
"
C;Z Ptryx(tr+1) *°° Pryxt /W
0

Since inters # 0, there must be a co-ordinate position jo € {1,2,---,l4} such that
Jo€x(c), VIl <i<t.

T+ 1)x(13+1) * " T(tp+1)xt
Then, (A.4) implies that .. : - | and (A.5) implies
Tyx(iz+1) Trxt 1 1
T+ ) x(i4+1) *° Fo+)xt
Plx(n+1) *** Plxt : g : 1 1
. . . Tizx(z+1)  ° Tnxt N
: : : 0 =11
Poyx(t+1) " Pnxt . . 1 1
0 1
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Thus,
Pix(n+1) ** Plxt 1 1
N I HE (A6)
Pooyx(n+1) " Pnxt 1 1
1---1
We set Q;ZIZHX(Q/‘”) = {j1,j2,---,jr}andlet | © . | be the matrix which con-
1---1
e
sists of the jtlh, jtzh, -+, j columns of the matrix :
)
Pix(n+1) “* Plxt L1 1.1
From (A.2) and (A.6), we have .ot =1¢: .. t|,which
Piyx(tnt]) -+ Proxi 1---1 1---1
gives (i_; x(c) = m:=t2+1 x(c!"). When inter; = |ﬁ§:t2+1 x (N1, we will get

inters = (%)t_’z_l(m3 — mp)2k—ke—1,

Since (cg 41> »¢/) are t — 1t linearly independent codewords of constant-weight ¢’
with weight (m3 — m2)25~%2~1, using Lemma 4.1, it will follow that | (), ,; x (c/")| =
() 727 m3 — mp)2% k=1 Thus, inters = (3)! =27 (m3 — mp)2k—F2~1, O

We introduce the second key lemma in the cases 8, 9 and 10 in which m; < my,
my < m3 and m3 > my holds. Their generator matrix G of the code C can be written
as (G, G3, G4) = (G1, Gy) in which G consists of all points in PG(k — 1, 2) with each
point repeating m times and all the points in Sy U S3 U S4 constitute the columns of G,
with each point repeating my — mj times. Columns of the generator matrix G3 consist of
all points of $3 and each point repeats m3 — m, times and columns of the generator matrix
G4 consist of all points of S4 and each point repeats m3 — m4 times. Then, G| generates a
k-dimensional constant-weight code C” with weight m12%¥=1 and length [} = my (2k - 1),
G, generates a (k — kj)-dimensional weight code C” with weight (mp — m 2k—ki—1
and length I, = (my — m)) 2k — 1), Gs generates a (k — kp)-dimensional weight
code C" with weight (m3 — m2)2¥7%2~1 and length I3 = (m3 — mp)(2*~%2 — 1) and

G4 generates a (k — k3)-dimensional weight code C”” with weight (m3 — m4)2K—%3—1
and length Is = (m3 — ma)(2¥% — 1). Assume that ¢y, --- , ¢; with the matrix form
g
Cl
= X;xxG, are any t linearly independent codewords in C. Obviously, for any
Ct
i €{1,2,---,1}, we have (¢;, ¢/, c]") = (c}.c]), where ¢c; € C', ¢/ € C",c/" € C"”
and ¢/” e C"”. Additionally rank(c},---,c;) = t, based on Lemma 4.2, we have
rank(c|,---, ¢y =t —t;,rank(c{’, -, ¢y =t —npand rank(c{”,--- ,c/") =t — 3.

Furthermore, inter = intery + inter, — intery — inters with inter; = (%)”lmﬂk’l,
0 < inter, < ()17 (my —m)2k"M1=1,0 < inters < ()~ (m3 — mp)2k~%2~! and
0 <inters < (3)'"™1(m3 — m4)2¥~53~1 by Lemma 4.1.

We introduce the third key lemma in cases 11, 12, 13, 14 and 15 in which we deduce that
wy is greater than wy, wy is less than w3 and w3 is greater than wy yields m; > mo, my <
m3 and m3 > my. Then, the generator matrix G of C can be written in the following form
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(G, G1) = (G2, G3, Gyg) in which the block matrix G consists of all points in Sy U S3 U Sy
and constitute the columns of G| with each point repeating m| —m; times. G consists of all
points in PG (k — 1, 2) and each point appears m times. All points in S3 constitute columns
of G3 and each point occurs m3 —m> times and all the points in S4 constitute columns of G4
and each point occurs m3 — m4 times. Thus, G generates a (k — kj)-dimensional constant-
weight code C’ with weight (m] — my)2k—%1=1 and length 1 = (m; — mo) (2K k1 — 7).
G, generates a k- dimensional constant-weight code C” with weight m(2*~! and length
I, = m1(2¥—1). G generates a (k —k»)-dimensional constant-weight code C"” with weight
(m3 — m2)2¥=%2=1 and length I3 = (m3 — m3)(2¥"%2 — 1) and G4 generates (k — k3)-
dimensional constant-weight (m3 — m4)2"_1‘3_1 and length Iy = (m3 — m4)(2k—"3 —1).

Assume that, cq,---, ¢; are any ¢ linearly independent codewords with the matrix form

c C/ c// C/// C////

1 1 1 1 1

= XixkG, | - | = XexkG1, | 0 | = XixkGo, | - | = XixkGzand | ¢ | =

Ct C; C;/ C;// C;///
X:xxG4. Obviously, forany i € {1,2,---, ¢}, we have (¢;, ¢}) = (c/, ¢/, ¢/""), where c; €
C',c/ eC” ¢ € C"and ¢/” € C". Additionally, rank(cy,--- , ¢/) = t. From Lemma
4.2, we have rank(cy, --- , ¢;) = (t —t)), rank(c{,--- ,¢/) =t —ta, rank(cy’,--- ,c/") =
t — 13 and rank(c{”,--- , /") = t — 13. Therefore, we have inter = intery + inters +

intery — intery with intery = (%)t_lmIZk_l, 0 <inter] < (%)’_"_l(ml — mp)2k—ki—1,
0 < inters < (§) ™27 m3 —mp)2* %2~V and 0 < intery < (3)' ™5 (m3z — my)2F—5~1
by Lemma 4.1.

We apply the fourth key lemma in the cases 16, 17 and 18 in which m| > my, my <
m3 and m3 < my4. Then, the generator matrix G can be written in the following form
(G, G1, G4) = (G2, G3) in which the block matrix G includes all the points in S, US3U Sy,
which constitute the columns of G| with each point repeating m; — m, times. Columns of
the generator matrix G, consist of all points in PG(k — 1, 2) and each point appears n1]
times and all points in S3 constitute columns of G3 and each point occurs m3 — mj times,
columns of the generator matrix G4 consist of all points of S4 and each point repeats m4—m3
times. Then, G| generates a (k — k;)-dimensional constant-weight code C’ with weight
(m1 — mo)2¥=%1=1 and length [y = (m; — my)2kk —1). G, generates a k-dimensional
constant-weight code C” with weight m 1251 and length I, = mi 2K — 1), G3 generates
(k — k3)-dimensional constant-weight code C”” with weight (m3 — m2)25~%2~1 and length
I3 = (m3 —m2)(2¥%2 — 1) and G4 generates (k — k4)-dimensional constant-weight (m4 —
m3)2k—*3—1 and length Iy = (m4 — m3)(2k_k3 —1). Using the same procedure as above, we
get the intersection inter = intery+intery—inter; —inters with inter, = (%)”1m12k’1,
0 < inter; < ()17 iy —mp)2k~M1=1,0 < inters < ()~ (m3 — mp)2k~*2~1 and
0 < intery < (3)'571(mg —mz)2k=h-1,

Next, we apply the fifth key lemma in the cases 19, 20 and 21 in which m; > m>,
my > m3 and m3 < my4 . Then, the generator matrix G of C can be written in the following
form (G, G1, G2) = (G3, G4) in which the block matrix G consists of all points in S, U
S3 U S84, constitute the columns of G with each point repeating m| — m» times. Columns
of the generator matrix G, consist of all points of S3 and each point repeats my — ms3
times and columns of the generator matrix G4 consist of all points of S4 and each point
repeats mo — m3 times. G3 consists of all points in PG(k — 1, 2) and each point appears
m times and all the points in Sy, constitute columns of G4 and each point occurs m3 — ng
times. Then, G| generates a (k — kj)-dimensional constant-weight code C’ with weight
(m1—m2o)2k=*1=1 and length /] = (m —m2)(2kk1 —1). G, generates (k —k,)-dimensional
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constant-weight code C” with weight (m, —m3)2¥—%2~1 and length I, = (ma —m3) 2k —
1), G3 generates a k-dimensional constant-weight code C”” with weight 712~ ! and length
I3 =my (2k —1) and G4 generates (k — k3)-dimensional constant-weight (4 —m3)2k_k3_1
and length I4 = (mgq — m3)(2=*3 — 1). Similar to this, using the above procedure, we have
inter = inters + intery — intery — interp with inters = (%)”1m12k’1, 0 < intery
()17 my —mp)2*R1710 < inter, < (3)'727 (my —m3)2k "2~ and 0 < intery
()77 (my — m3)257%3~1 by Lemma 4.1.

Again, we use the sixth key lemma in the cases 22, 23 and 24 in which m; < my , my >
m3 and m3 > my4 . Then, the generator matrix G of C can be written in the following form
(G, G, G3, G4) = (Gy) in which the block matrix G consists of all points in PG(k—1, 2)
and each point appears m | times. Columns of the generator matrix G, consist of all points
of S U §3 U S4 and each point repeats m, — m times. All points in S3 constitute columns
of G3 and each point occurs my — m3 times , G4 consists of all points in S4 and each point
appears m3 — my times. Thus, G| generates a k-dimensional constant-weight code C” with
weight m125~1 and length [y = m, k-1, G generates (k — k1)-dimensional constant-
weight code C” with weight (my — m1)2K=%1=1 and length [ = (my —m1)(2¥~%1 — 1), G3
generates (k — k»)-dimensional constant-weight code C”” with weight (my — m3)(2K—%2~1)
and length I3 = (my — m3)2k%2 — 1 and G4 generates a k-dimensional constant-weight
code C"” with weight (m3 — m4)25~%3~1 and length I4 = (m3 — m4)(2¥~%3 — 1). Likewise,
using the same procedure as above, we have inter = inter; — intery — intery — intery
with inter; = (%)’_lmﬂk_l, 0 < inter, < (%)’_"_l(mz —m)2kk-1 0 < jnrers <
()27 my —m3)2 %~V and 0 < inters < (37537 (m3 —m4)2"5~1 by Lemma 4.1.

=
=
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