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Abstract
Based on the applications of codes with few weights, we define the so-called relative four-
weight codes and present a method for constructing such codes by using the finite projective
geometry method. Also, the t-wise intersection and the trellis of relative four-weight codes
are determined.
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1 Introduction

A linear code C of length n is defined as a subspace of GF(q)n, where GF(q) is a finite
field with q elements, and the code C is called binary when q = 2. The t-wise intersecting
codes and their wide applications were first introduced in [13], and then further studied by
Cohen et al. [2, 3] and Encheva et al. [5]. The t-wise intersecting codes are a generalization
of intersecting ones, which correspond to t = 2 and satisfy that any two non-zero codewords
have intersecting supports. Finding the judgment criteria and a constructing method for
t-wise intersecting codes is meaningful research work.

The importance of another concept, the trellis of a linear code [6, 15, 17], is in that it can
be used to estimate the complexity of the Viterbi decoding algorithm.
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A linear code with few weights [4] is useful in authentication codes, secret sharing
schemes, and association schemes apart from its applications in consumer electronics, com-
munication and data storage systems. Many recent papers are dedicated to constructing
linear codes with few weights [7, 8, 16] by using the defining set and the technique of
exponential sums.

The finite geometry method was first introduced in [1] and [14], and it has been effec-
tively generalized at present to study codes with respect to the rank-metric in [12]. By
using the finite geometry method, Liu and Wu [10] provided a technique of constructing
codes with few weights, namely, the so-called relative two-weight and three-weight codes.
Besides the applications already mentioned for codes with few weights, Liu and Wu further
showed that relative two-weight and three-weight codes can be applied to the wire-tap chan-
nel of type II with the coset coding scheme. The geometry structures of relative two-weight
and three-weight codes were given in [10]. By using these geometry structures, the t-wise
intersection of relative three-weight codes was calculated in [9], and the trellis of relative
two-weight codes was estimated in [11].

Based on the results of relative two-weight and three-weight codes, one can find that
these codes have good geometric structures, and by using their geometric structures, one
can easily construct these codes and determine some important parameters, say, generalized
Hamming weights. In fact, by using the geometric structures and the combination tech-
niques, the determination of the general support weight distribution of subcodes of relative
two-weight and three-weight codes is also possible. All the present results and observations
strongly motivate us to generalize relative two-weight and three-weight codes to codes with
four weights, that is, relative four-weight codes. The paper will exactly aim at this goal,
and we will define relative four-weight codes and then determine their geometric structures.
Also, we will calculate the t-wise intersection and estimate the trellis of relative four-weight
codes by using the geometric structures we have obtained.

The rest of the paper is organized as follows: Section 2 is devoted to basic definitions and
results. The geometric construction of relative four-weight codes is presented in Section 3.
The t-wise intersection of relative four-weight codes is determined in Section 4. The trellis
is estimated in Section 5 and in the Appendix we will exhibit some key lemmas which are
used to obtain the t-wise intersection of relative four-weight codes.

2 Definitions and foundations

The support of a codeword c, denoted by χ(c), is defined as the set of its non-zero
coordinate positions. It is obvious that the Hamming weight of c, denoted by w(c),
is w(c) = |χ(c)|. The intersection of the two codewords c and c′ is denoted by
χ(c) ∩ χ(c′). The t-wise intersection of a linear q-ary code C is defined as t =
min

{| ∩t
k=1 χ(ck)| | c1, c2, · · · , ct are any t linearly independent codewords

}
and C is t-

wise intersecting if t > 0. Let C1 be a k1-dimensional subcode of C and C2 be a
k2-dimensional subcode of C satisfying C1 ⊆ C2 ⊆ C, then C is called a relative three-
weight code concerning C1 and C2, provided that C1 \ {0}, C2 \ C1 and C \ C2 are all
constant-weight codes.

Definition 2.1 Let C be an [n, k] code, and C1 ⊆ C2 ⊆ C3 be a k1, k2 and k3-dimensional
subcode of C, respectively. Then, C is called a relative four-weight code with respect to C1,
C2 and C3 and is denoted by C(w1, w2, w3, w4), if C1 \ {0}, C2 \ C1, C3 \ C2 and C \ C3
are all constant-weight codes with weights w1, w2, w3 and w4, respectively.
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Remark 2.2 In Definition 2.1, if the constant-weight codes C3 \ C2 and C \ C3 have the
same weight, that is, w3 = w4, then a relative four-weight code reduces to a relative three-
weight one defined in [10]. A relative four-weight code is thus a generalization of a relative
three-weight one.

A subcode D of C is called a relative (r, r1, r2, r3) subcode of C with r1 ≤ r2 ≤
r3 ≤ r if D satisfies dimD = r , dim(D ∩ C1) = r1, dim(D ∩ C2) = r2 and
dim(D ∩ C3) = r3. Let <c1, c2, · · · , ct> be the subcode of C generated by c1, c2, · · · , ct .
Define tmax

i = max{dim(<c1, c2, · · · , ct> ∩ Ci) such that c1, c2, · · · , ct are any t

linearly independent codewords in C}, i = 1, 2, 3. Assume that, G to be a generator matrix
of a k-dimensional q-ary linear code. The columns ofG as points of the (k−1)- dimensional
projective space PG(k − 1, q) such a view point induces a map m(·) from PG(k − 1, q) to
the set of non-negative integers: m : PG(k − 1, q) → N where N = {0, 1, 2, · · · } and for
any p ∈ PG(k − 1, q), m(p) is the number of occurrence of p as a column of G. The value
of p is denoted by m(p) and the m(·) is called a value assignment or value function. Define
the value of S ⊆ PG(k − 1, q) by m(S) = �p∈Sm(p). In addition, let L ⊂ {1, 2, · · · , k}
and p = {t1, t2, · · · , tk} ∈ PG(k − 1, q), then define PL(p) = (v1, v2, · · · , vk), where

vi =
{

ti if i ∈ L
0 otherwise.

For a subset W ⊂ PG(k − 1, q), define PL(W) = {PL(p) | p ∈ W }. Clearly, PL(W) is
a vector space, since W is a projective subspace of PG(k −1, q). For a projective subspaces
V of PG(k − 1, q) and integers l = 1, 2, · · · , k − 1, we define V l = {p ∈ V | p =
0, 0, · · · , 0, pl+1, · · · , pk}. That is, V l is the set of points of V which are all 0 in the first l
co-ordinates. Clearly V l may be an empty set. If V l 	= ∅, then it is a projective subspaces of
V . Let L1 = {1, 2, · · · , k1}, L2 = {k1 + 1, k1 + 2, · · · , k2}, L3 = {k2 + 1, k2 + 2, · · · , k3}.
For a non-negative integers ξ, η, γ, δ, we denote by P

ξ
ηγ δ , a projective subspace of V of

PG(k−1, q) satisfying dimPL1(V ) = ξ −1, dimPL2(V
k1) = η−1, dimPL3(V

k2) = γ −1
and dimPL(V k3) = δ−1. Hence, a projective subspace of dimension 0 is a set consisting of
a single point and the empty set is viewed as a projective space of dimension −1. Therefore,
dim(P

ξ
ηγ δ) = ξ + η + γ + δ − 1.

Let

P 1
000 = {p ∈ PG(k − 1, q) | PL1(p) 	= 0}

P 0
100 = {p ∈ PG(k − 1, q) | PL1(p) = 0, PL2(p) 	= 0 & PL3(p) = 0}

P 0
010 = {p ∈ PG(k − 1, q) | PL3(p) 	= 0}

P 0
001 = {p ∈ PG(k − 1, q) | PLi

(p) = 0 for i = 1, 2, 3}.
We will show that the values m(P 1

000), m(P 0
100), m(P 0

010) and m(P 0
001) play an important

role in the characterization and construction of the relative four-weight codes.

Lemma 2.3 Let C1 be a k1-dimensional subcode of C, C2 be a k2-dimensional subcode
and C3 be a k3-dimensional subcode satisfying C1 ⊂ C2 ⊂ C3 ⊂ C. There is a one-
one correspondence between the non-zero codewords c1 ∈ C1, c2 ∈ C2 \ C1, c3 ∈
C3 \ C2 and c ∈ C \ C3 and the subspaces P

k1−1
(k2−k1)(k3−k2)(k−k3)

, P
k1
(k2−k1−1)(k3−k2)(k−k3)

,

P
k1
(k2−k1)(k3−k2−1)(k−k3)

and P
k1
(k2−k1)(k3−k2)(k−k3−1), respectively. The one-one corre-

spondence satisfies that if c1, c2, c3 and c correspond to P
k1−1
(k2−k1)(k3−k2)(k−k3)

,
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P
k1
(k2−k1−1)(k3−k2)(k−k3)

, P
k1
(k2−k1)(k3−k2−1)(k−k3)

and P
k1
(k2−k1)(k3−k2)(k−k3−1), respectively,

then

m(PG(k − 1, q)) = n

n − w(c1) = m(P
k1−1
(k2−k1)(k3−k2)(k−k3)

)

n − w(c2) = m(P
k1
(k2−k1−1)(k3−k2)(k−k3)

)

n − w(c3) = m(P
k1
(k2−k1)(k3−k2−1)(k−k3)

) and

n − w(c) = m(P
k1
(k2−k1)(k3−k2)(k−k3−1)).

Proof First, we start to prove fourth equation. Let c3 ∈ C3 \ C2, then the code c3 is
given by c3 = (x1, · · · , xk1 , xk1+1, · · · , xk2 , xk2+1, · · · , xk3 , 0, · · · , 0)G, where G is a
generator matrix of C. Assume that the first k1 rows of G generate the subcode C1,
the next (k2 − k1) rows of C1 and the first k1 rows of G together generate the sub-
code C2, the next (k3 − k2) rows of G and the first k2 rows of G together generate the
subcode C3. Since c3 ∈ (C3 \ C2) there exists some j satisfying k2 + 1 ≤ j ≤ k3
such that xj 	= 0. Consider the space U of GF(q)k which is orthogonal to the vector
(x1, x2, · · · , xk1 , xk1+1, · · · , xk2 , xk2+1, · · · , xk3 , 0, · · · , 0), Then, dimPL1(U) = k1 − 1,
dimPL2(U

k2) = k2 − k1 − 1, dimPL3(U
k2) = k3 − k2 − 2 and dimP(Uk3) = k − k3 − 1.

This implies, U is exactly P
k1
(k2−k1)(k3−k2−1)(k−k3)

corresponding to the codeword c3. There-

fore, n − w(c3) = m(P
k1
(k2−k1)(k3−k2−1)(k−k3)

). Now, the first equation has to be proved,
since the columns of the generator matrix as the points of the projective space PG(k − 1, q)

is clear. The proof of the other equation is similar to the above one, hence the proof can be
skipped.

3 Construction of relative four-weight codes

In this section, we will present the geometric construction of a relative four-weight code
and determine the parameters of a relative four-weight code. Though relative four-weight
codes have one weight more than relative three-weight codes, the relations of the projective
subspaces become much more complicated than that of relative three-weight codes. The
way to get the geometric structure of relative four-weight codes is by induction and by fully
using the relations of different projective subspaces.

3.1 The determination of the geometric structure

Theorem 3.1 Consider C1 ⊂ C2 ⊂ C3 ⊂ C and C be n length linear code and let C1, C2
and C3 be generated by the first k1, k2 and k3 rows of G, respectively. Then, C is a relative
four-weight code with respect to C1, C2 and C3 if and only if their following value functions
are true

m(P 1
000) is a constant f or all points P 1

000,

m(P 0
100) is a constant f or all points P 0

100,

m(P 0
010) is a constant f or all points P 0

010 and

m(P 0
001) is a constant f or all points P 0

001
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Proof Assume that the value function m(·) has same values on P 1
000, P 0

100, P 0
010 and

P 0
001. This implies that the subspaces P

k1−1
(k2−k1)(k3−k2)(k−k3)

will have the same value. Since

P
k1−1
(k2−k1)(k3−k2)(k−k3)

contains the same number of points from the set of points P 1
000, P 0

100

P 0
010 and P 0

001, respectively. It follows from Lemma 2.3 that all the non-zero codewords of
C1 have the same weight. Similarly, we know that all the non-zero codewords of C2 \ C1
have the same weight and all the non-zero codewords of C3 \ C2 and C \ C3 have the same
weight. Therefore, C is a relative four-weight code with respect to C1, C2 and C3.

Conversely, we assume that C is a relative four-weight code. In order to show that the
value function has the same values on the points P 1

000, P
0
100, P

0
010 and P 0

001, respectively. We
will prove the following general result

m(P
ξ
ηγ δ) = constant for any fixed (ξ, η, γ, δ). (3.1)

The (3.1) is true. If we denote ξ + η + γ + δ = k − j for any j ∈ {0, 1, . . . , k − 1}, the
equation in (3.1) will be true. We can prove the theorem by induction on j .

For j = 0, we have ξ + η + γ + δ = k and P
ξ
ηγ δ = PG(k − 1, q), so m(P

ξ
ηγ δ) =

m(PG(k − 1, q)) = n.
For j = 1, we have ξ + η + γ + δ = k − 1 and P

ξ
ηγ δ is equal to one of the four

kinds of subspaces P
k1−1
(k2−k1)(k3−k2)(k−k3)

, P k1
(k2−k1−1)(k3−k2)(k−k3)

, P k1
(k2−k1)(k3−k2−1)(k−k3)

and

P
k1
(k2−k1)(k3−k2)(k−k3−1). It follows from Lemma 2.3, m(P

ξ
ηγ δ) is a constant.

Now, we assume (3.1) is true for j < j0, that is, it is true for any fixed four quatral
(ξ, η, γ, δ) satisfying ξ + η + γ + δ > k − j0. We will show (3.1) is true for j = j0 in the

following. For any P
ξ
ηγ δ satisfying ξ + η + γ + δ = k − j0, there exists a P

ξ ′
η′γ ′δ′ satisfying

ξ ′ +η′ +γ ′ + δ′ = k − (j0 −3) such that P ξ
ηγ δ ⊂ P

ξ ′
η′γ ′δ′ . We may distinguish the parameter

into the following cases.

(Case 1) 1f ξ ′ = ξ + 3, then η′ = η, γ ′ = γ and δ′ = δ, since

m(P
ξ ′
η′γ ′δ′) = (q + 2)m(P

ξ+1
ηγ δ ) − qm(P

ξ
ηγ δ),

m(P
ξ
ηγ δ) = (

q+2
q

)m(P
ξ+1
ηγ δ )− 1

q
m(P

ξ ′
η′γ ′δ′). Thus,m(P

ξ
ηγ δ) is constant, by the inductive

hypothesis.
(Case 2) If ξ ′ = ξ + 2, η′ = η + 1, then δ′ = δ and γ ′ = γ , since

m(P
ξ ′
η′γ ′δ′) = qm(P

ξ+2
ηγ δ ) + m(P

ξ

(η+1)γ δ)) − qm(P
ξ
ηγ δ),

m(P
ξ
ηγ δ) = m(P

ξ+2
ηγ δ )+ 1

q
m(P

ξ

(η+1)γ δ)− 1
q
m(P

ξ ′
η′γ ′δ′) which is constant, by the inductive

hypothesis.
(Case 3) If δ′ = δ + 2, η′ = η + 1, then ξ ′ = ξ and γ ′ = γ , following the procedure

in Case 2, we obtain m(P
ξ
ηγ δ) = m(P

ξ

ηγ (δ+2) + 1
q
m(P

ξ

(η+1)γ δ) − 1
q
m(P

ξ ′
η′γ ′δ′), which is

constant.
(Case 4) If γ ′ = γ + 2, η′ = η + 1, then ξ ′ = ξ and δ′ = δ, following the procedure

in Case 2, we obtain m(P
ξ
ηγ δ) = m(P

ξ

η(γ+2)δ + 1
q
m(P

ξ

(η+1)γ δ) − 1
q
m(P

ξ ′
η′γ ′δ′), which is

constant.
(Case 5) If ξ ′ = ξ + 2, γ ′ = γ + 1, then η′ = η and δ′ = δ, following the procedure

in Case 2, we obtain m(P
ξ
ηγ δ) = m(P

ξ+2
ηγ δ ) + 1

q
m(P

ξ

(η+1)γ δ) − 1
q
m(P

ξ ′
η′γ ′δ′), which is

constant.
(Case 6) If γ ′ = γ + 2, δ′ = δ + 1, then ξ ′ = ξ and η′ = η, following the procedure

in Case 2, we obtain m(P
ξ
ηγ δ) = m(P

ξ

η(γ+2)δ) + 1
q
m(P

ξ

ηγ (δ+1)) − 1
q
m(P

ξ ′
η′γ ′δ′), which is

constant.
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(Case 7) If ξ ′ = ξ + 2 δ′ = δ + 1, then γ ′ = γ and η′ = η, following the procedure

in Case 2, we obtain m(P
ξ
ηγ δ) = m(P

ξ+2
ηγ δ ) + 1

q
m(P

ξ

ηγ (δ+1)) − 1
q
m(P

ξ ′
η′γ ′δ′), which is

constant.
(Case 8) If ξ ′ = ξ +1, η′ = η+1 and δ′ = δ +1, then γ ′ = γ . Following the procedure

in Case 2, we obtain m(P
ξ
ηγ δ) = m(P

ξ+1
ηγ δ ) + 1

q
m(P

ξ
ηγ δ) + m(P

ξ

ηγ (δ+1)) − 1
q
m(P

ξ ′
η′γ ′δ′),

which is constant.
(Case 9) If ξ ′ = ξ +1, η′ = η+1 and γ ′ = γ +1, then δ′ = δ. Following the procedure

in Case 2, we obtainm(P
ξ
ηγ δ) = m(P

ξ+1
ηγ δ )− 1

q
m(P

ξ

(η+1)γ δ)+m(P
ξ

ηγ (δ+1))− 1
q
m(P

ξ ′
η′γ ′δ′),

which is constant.
(Case 10) If ξ ′ = ξ +1, γ ′ = γ +1 and δ′ = δ+1 , then η′ = η. Following the procedure

in Case 2, we obtainm(P
ξ
ηγ δ) = m(P

ξ+1
ηγ δ )− 1

q
m(P

ξ

η(γ+1)δ)+m(P
ξ

ηγ (δ+1))− 1
q
m(P

ξ ′
η′γ ′δ′),

which is constant.
(Case 11) If ξ ′ = ξ , η′ = η + 1, γ ′ = γ + 1 and δ′ = δ + 1, following the procedure
in Case 2, then we obtain m(P

ξ
ηγ δ) = m(P

ξ

(η+1)γ δ) − 1
q
m(P

ξ

η(γ+1)δ) + m(P
ξ

ηγ (δ+1)) −
1
q
m(P

ξ ′
η′γ ′δ′), which is constant.

(Case 12) If ξ ′ = ξ , η′ = η, γ ′ = γ , then δ′ = δ + 3. Following the procedure in Case

1, we obtain m(P
ξ
ηγ δ) = (

q+2
q

)m(P
ξ

ηγ (δ+1)) − 1
q
m(P

ξ ′
η′γ ′δ′), which is constant.

(Case 13) If ξ ′ = ξ , η′ = η, δ′ = δ, then γ ′ = γ + 3. Following the procedure in Case

1, we obtain m(P
ξ
ηγ δ) = (

q+2
q

)m(P
ξ

η(γ+1)δ) − 1
q
m(P

ξ ′
η′γ ′δ′), which is constant.

(Case 14) If ξ ′ = ξ , γ ′ = γ , δ′ = δ, then η′ = η + 3. Following the procedure in Case

1, we obtain m(P
ξ
ηγ δ) = (

q+2
q

)m(P
ξ

(η+1)γ δ) − 1
q
m(P

ξ ′
η′γ ′δ′), which is constant.

Hence, this is true for j = j0. The theorem is proved by the induction hypothesis.

Remark 3.2 Theorem 3.1 may be viewed as an effective generalization of the main result in
[10], and it plays a key role in constructing a relative four-weight code and the calculation
of the t-wise intersection and the trellis in later sections.

3.2 The parameters of a relative four-weight code

From Theorem 3.1, we can construct a generator matrix G for a relative four-weight code as
follows: choose the appropriate k-dimensional column vectors over GF(q)(or equivalently,
points of PG(k − 1, q)) and use them as the columns of G, such that m(P 1

000), m(P 0
100),

m(P 0
010) and m(P 0

001) are all constant, respectively. Then, the code C by G is a generator
matrix for relative four-weight code. Let k1, k2 and k3 be any positive integers such that
k1 < k2 < k3 ≤ k. Taking L1 = {1, 2, · · · , k1}, L2 = {k1 + 1, · · · , k2} and L3 =
{k2 + 1, · · · , k3}. We know that, there are exactly qk−qk−k1

q−1 points P 1
000,

qk−k1−qk−k2

q−1 points

P 0
100,

qk−k2−qk−k3

q−1 points P 0
010 and qk−k3−1

q−1 points P 0
001 and G is a generator matrix with n

columns, the length of C is given by n, where

n = qk − qk−k1

q − 1
m(P 1

000) + qk−k1 − qk−k2

q − 1
m(P 0

100) + qk−k2 − qk−k3

q − 1
m(P 0

010) + qk−k3 − 1

q − 1
m(P 0

001).
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From Lemma 2.3, we get

w(c1) = n − m(P
k1−1
(k2−k1)(k3−k2)(k−k3)

).

It is clear that the projective subspace P
k1−1
(k2−k1)(k3−k2)(k−k3)

contains qk−1−qk−k1

q−1 points P 1
000,

qk−k1−qk−k2

q−1 points P 0
100,

qk−k2−qk−k3

q−1 points P 0
010 and

qk−k3−1
q−1 points P 0

001. Thus,

m(P
k1−1
(k2−k1)(k3−k2)(k−k3)

) = qk−1 − qk−k1

q − 1
m(P 1

000) + qk−k1 − qk−k2

q − 1
m(P 0

100)

+qk−k2 − qk−k3

q − 1
m(P 0

010) + qk−k3 − 1

q − 1
m(P 0

001).

From the above two equations, we have

w1 = w(c1)

= qk−1m(P 1
000), for all c1 ∈ C1.

Similarly, apply the above method, and we arrive

w2 = (qk−1 − qk−k1−1)m(P 1
000)) + (qk−k1−1)m(P 0

100),

w3 = (qk−1 − qk−k1−1)m(P 1
000) + (qk−k1−1 − qk−k2−1)m(P 0

100)

+(qk−k2−1)m(P 0
010),

and

w4 = (qk−1 − qk−k1−1)m(P 1
000) + (qk−k1−1 − qk−k2−1)m(P 0

100) + (qk−k2−1 − qk−k3−1)m(P 0
010)

+(qk−k3−1)m(P 0
001).

Lemma 3.3 Let C(w1, w2, w3, w4) be a relative four-weight code with respect to a k1-
dimensional subcode C1, k2-dimensional subcode C2 and k3-dimensional subcode C3, and
let G and m(·) be generator matrix and value function, respectively. Then, m(·) satiesfies

m(p) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w1
qk−1 , for p ∈ S1,

qk1w2−(qk1−1)w1
qk−1 , for p ∈ S2,

qk2w3−(qk1−1)w1−(qk2−qk1 )w2
qk−1 , for p ∈ S3,

qk3w4−(qk1−1)w1−(qk2−qk1 )w2−(qk3−qk2 )w3
qk−1 , for p ∈ S4,

(3.2)

where Si ⊂ PG(k − 1, q) for 1 ≤ i ≤ 4 and S1 = {p | PL1 	= 0}, S2 = {p | PL1 =
0, PL2 	= 0 & PL3 = 0}, S3 = {p | PL3 	= 0} and S4 = {p | PL1 = PL2 = PL3 = 0},
where L1 = {1, 2, · · · , k1}, L2 = {k1 + 1, · · · , k2} and L3 = {k2 + 1, · · · , k3}.

Proof From the above geometric construction, we have

w1 = w(c1) = qk−1m(P 1
000), for all c1 ∈ C1.

Then, it will be

m(P 1
000) = w1

qk−1
,
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again, we have

w2 = (qk−1 − qk−k1−1)m(P 1
000) + (qk−k1−1)m(P 0

100).

Substituting the value of m(P 1
000) into the above equation, we get

m(P 0
100) = qk1w2 − w1(q

k1 − 1)

qk−1
.

Similarly,

w3 = (qk−1 − qk−k1−1)m(P 1
000) + (qk−k1−1 − qk−k2−1)m(P 0

100) + (qk−k2−1)m(P 0
010).

Substituting the values of m(P 1
000) and m(P 0

010) into the above equation, and after
simplification, we arrive

m(P 0
010) = qk2w3 − (qk1 − 1)w1 − (qk2 − qk1)w2

qk−1
.

Again,

w4 = (qk−1 − qk−k1−1)m(P 1
000) + (qk−k1−1 − qk−k2−1)

m(P 0
100) + (qk−k2−1 − qk−k3−1)m(P 0

010) + (qk−k3−1)m(P 0
001),

and substituting the above all value functions, finally we get

m(P 0
001) = qk3w4 − (qk1 − 1)w1 − (qk2 − qk1)w2 − (qk3 − qk2)w3

qk−1
.

Example 3.4 Consider a value function

m(p) =

⎧
⎪⎪⎨

⎪⎪⎩

1 if p ∈ S1,

3 if p ∈ S2,

4 if p ∈ S3,

6 if p ∈ S4,

for q = 2 and let k = 5, k1 = 2, k2 = 3, k3 = 4. Then, we have w1 = 16, w2 = 24,
w3 = 26 and w4 = 28, where L1 = {1, 2}, L2 = {3} and L3 = {4}.

By the above procedure, we generate the generator matrix G as follows.
⎡

⎢⎢⎢⎢
⎣

1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0
1 1 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 0 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0
0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0
1 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1
0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 0
0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0

⎤

⎥⎥⎥⎥
⎦
.
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Note that each of the 24 points P 1
000 appears in G once; each of the 4 points P 0

100 appears
three times; each of the 2 points P 0

010 appears in G four times and there is only one point
P 0
001 which appears in G for six times.

Remark 3.5 Based on the above geometric construction and by borrowing the method in
[10], one can show that relative four-weight codes will behave similarly as relative three-
weight codes in that they are optimal in certain cases in the wire-tap channel II. Further,
since relative four-weight codes have only four-weights and the weight distribution is clear
also based on the geometric structure, they can also be applied to secret sharing schemes
based on linear codes [4], and we omit these detailed arguments.

4 The intersection of relative four-weight codes

The t-wise intersection of a linear code is in general difficult to calculate. By using the
geometric structure, the t-wise intersection of binary relative three-weight codes is obtained
in [9]. Since we have gotten the geometric structure of a relative four-weight code, we also
expect to calculate the t-wise intersection of a relative four-weight code. However, a relative
four-weight code has more complicated structure than a relative three-weight code, which
leads to the complexity of t linearly independent codewords. It is thus tedious to get the t-
wise intersection of a relative four-weight code, and we will have to classify the analysis into
many cases, and in each case we will generalize the method in [9] by developing the skill
of the matrix operation. The novelty of our work is in that in each case we will construct
an invertible matrix which is a product of invertible matrices and expanding the generator
matrix, which leads to the t-wise intersection of binary relative four-weight codes.

Lemma 4.1 [9] The t-wise intersection of a linear constant-weight code w is equal to
(
q−1
q

)t−1w.

As in the case of relative three-weight codes, it is a key to construct the generator
matrix of linearly independent codewords. By organize the t linearly independent code-
words c1, c2, c3, · · · , ct into a matrix form Tt×n, we can get the t-wise intersection of
four-weight codes as below.

⎡

⎢⎢⎢
⎣

c1
c2
...
ct

⎤

⎥⎥⎥
⎦

= Xt×kG = (Xt×k1 , Xt×(k−k1))

[
Gk1×n

G(k−k1)×n

]

= (Xt×k2 , Xt×(k−k2))

[
Gk2×n

G(k−k2)×n

]

= (Xt×k3 , Xt×(k−k3))

[
Gk3×n

G(k−k3)×n

]
.
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Note that rank(Xt×k) = t , and that the block matrices Gk1×n, Gk2×n and
Gk3×n(k1 < k2 < k3) are generator matrices of C1, C2 and C3, respectively.

Lemma 4.2 Let C be a relative four-weight code and it has the subcode D =
<c1, c2, · · · , ct> is a relative (t, t1, t2, t3) code, then rank(Xt×(k−k1)) = t − t1,
rank(Xt×(k−k2)) = t − t2 and rank(Xt×(k−k3)) = t − t3.

Proof Since < c1, c2, · · · , ct > is a relative (t, t1, t2, t3) subcode, there is an invertible
matrix Yt×t such that

Yt×tXt×k = (Yt×tXt×k1 , Yt×tXt×(k−k1))

= (Yt×tXt×k2 , Yt×tXt×(k−k2))

= (Yt×tXt×k3 , Yt×tXt×(k−k3))

=
[

X′
t1×k1

0t1×(k−k1)

X′
(t−t1)×k1

X′
(t−t1)×(k−k1)

]

=
⎡

⎣
X′

t2×k2
0t1×(k2−k1) 0t1×(k−k2)

X′′
(t2−t1)×k1

X′′
(t2−t1)×(k2−k1)

0(t2−t1)×(k−k2)

X′′
(t−t2)×k1

X′′
(t−t2)×(k2−k1)

X′′
(t−t2)×(k−k2)

⎤

⎦

=

⎡

⎢⎢
⎣

X′
t3×k3

0t1×(k2−k1) 0t1×(k3−k2) 0t1×(k−k3)

X′′
(t2−t1)×k1

X′′
(t2−t1)×(k2−k1)

0(t2−t1)×(k2−k1) 0(t2−t1)×(k−k3)

X′′
(t3−t2)×k1

X′′
(t3−t2)×(k2−k1)

X′′
(t3−t2)×(k3−k2)

0(t3−t2)×(k−k3)

X′′′
(t−t3)×k1

X′′′
(t−t3)×(k2−k1)

X′′′
(t−t3)×(k3−k2)

X′′′
(t−t3)×(k−k3)

⎤

⎥⎥
⎦ ,

with rank(X′
t1×k1

) = t1, rank(X′
(t−t1)×(k−k1)

) = t − t1, rank(X′′
(t−t2)×(k−k2)

) = t − t2 and

rank(X′′′
(t−t3)×(k−k3)

) = t − t3. Therefore, we have

rank(Xt×(k−k1)) = rank(Yt×t )Xt×(k−k1)

= rank(X′
(t−t1)×(k−k1)

)

= t − t1,

rank(Xt×(k−k2)) = rank(Yt×t )Xt×(k−k2)

= rank(X′′
(t−t2)×(k−k2)

)

= t − t2,

rank(Xt×(k−k3)) = rank(Yt×t )Xt×(k−k3)

= rank(X′′′
(t−t3)×(k−k3)

)

= t − t3.

The t-wise intersecting of the relative four-weight code C(w1, w2, w3, w4) is closely
related to the size of w1, w2, w3 and w4. Denote mj = m(pj ) for j = 1, 2, 3, 4, where
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pj ∈ Sj for every j . The above notation is same as in Lemma 3.3 and from (3.2), we get
the following

w1 = m1q
k−1,

w1 − w2 = qk−k1−1(m1 − m2),

w2 − w3 = qk−k2−1(m2 − m3),

w3 − w4 = qk−k3−1(m3 − m4).

We move towards the calculation of the t-wise intersection of relative four-weight codes.
It is based on the relation among w1, w2, w3 and w4. According to these relations, we
altogether get twenty four cases, in which cases 1 and 2 are completely different from the
rest of the cases. So that, they required a separate calculation analysis. The remaining cases
can be grouped into six major classes. The first major class cases (3, 4, 5, 6 and 7) with first
key lemma, the second major class cases (8, 9 and 10) with second key lemma, the third
major class cases (11, 12, 13, 14 and 15) with third key lemma, the fourth major class cases
(16, 17 and 18) with fourth key lemma, the fifth major class cases (19, 20 and 21) with fifth
key lemma and the sixth major class cases (22, 23 and 24) with sixth key lemma followed
by the other cases, can be proved respectively. To avoid the tedious procedure, all the key
lemmas are presented in the Appendix to make the work easier.

Now, we classify the cases of the calculation of the t-wise intersection as follows.

Theorem 4.3 The t-wise intersection of relative four-weight codes C(w1, w2, w3, w4) is
equal to

1. ( 12 )t−1w1, w4 > w3 > w2 > w1.

2.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 − ( 12 )t−tmax
1 −1(w1 − w2) − ( 12 )t−tmax

2 −1(w2 − w3)

−( 12 )t−tmax
3 −1(w3 − w4),

{
tmax
3 < t

w1 > w2 > w3 > w4

( 12 )t−1w1 − ( 12 )t−tmax
1 −1(w1 − w2) − ( 12 )t−tmax

2 −1(w2 − w3)

−(w3 − w4),

{
tmax
3 = t, tmax

2 < t

w1 > w2 > w3 > w4

( 12 )t−1w1 − ( 12 )t−tmax
1 −1(w1 − w2) − (w2 − w3)

−(w3 − w4),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w1 > w2 > w3 > w4

( 12 )t−1w1 − (w1 − w4),

{
tmax
3 = tmax

2 = tmax
1 = t

w1 > w2 > w3 > w4.

3.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min{( 12 )t−1w1 − ( 12 )t−tmax
3 −1(w4 − w3); ( 12 )t−1w1},

{
tmax
3 < t

w2 > w1 > w4 > w3

min{( 12 )t−1w1 − (w4 − w3); ( 12 )t−1w1},
{

tmax
3 = t

w2 > w1 > w4 > w3

4.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min{( 12 )t−1w1 − ( 12 )t−tmax
3 −1(w4 − w3); ( 12 )t−1w1},

{
tmax
3 < t

w2 > w4 > w1 > w3

min{( 12 )t−1w1 − (w4 − w3); ( 12 )t−1w1},
{

tmax
3 = t

w2 > w4 > w1 > w3
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5.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min{( 12 )t−1w1 − ( 12 )t−tmax
3 −1(w4 − w3); ( 12 )t−1w1},

{
tmax
3 < t

w2 > w4 > w3 > w1

min{( 12 )t−1w1 − (w4 − w3); ( 12 )t−1w1},
{

tmax
3 = t

w2 > w4 > w3 > w1

6.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min{( 12 )t−1w1 − ( 12 )t−tmax
3 −1(w4 − w3); ( 12 )t−1w1},

{
tmax
3 < t

w4 > w2 > w3 > w1

min{( 12 )t−1w1 − (w4 − w3); ( 12 )t−1w1},
{

tmax
3 = t

w4 > w2 > w3 > w1

7.

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

min{( 12 )t−1w1 − ( 12 )t−tmax
3 −1(w4 − w3); ( 12 )t−1w1},

{
tmax
3 < t

w4 > w2 > w1 > w3

min{( 12 )t−1w1 − (w4 − w3); ( 12 )t−1w1},
{

tmax
3 = t

w4 > w2 > w1 > w3

8.

⎧
⎪⎨

⎪⎩

( 12 )t−1w1 + ( 12 )t−t1−1(w2 − w1) − ( 12 )t−t2−1(w3 − w2), if tmax
2 < t, tmax

1 < t and w3 > w4 > w2 > w1

( 12 )t−1w1 + ( 12 )t−t1−1(w2 − w1) − (w3 − w2), if tmax
2 = t, tmax

1 < t and w3 > w4 > w2 > w1

( 12 )t−1w1 + (w2 − w1) − (w3 − w2), if tmax
2 = tmax

1 = t and w3 > w4 > w2 > w1.

9.

⎧
⎪⎨

⎪⎩

( 12 )t−1w1 + ( 12 )t−t1−1(w2 − w1) − ( 12 )t−t2−1(w3 − w2), if tmax
2 < t, tmax

1 < t and w3 > w2 > w1 > w4

( 12 )t−1w1 + ( 12 )t−t1−1(w2 − w1) − (w3 − w2), if tmax
2 = t, tmax

1 < t and w3 > w2 > w1 > w4

( 12 )t−1w1 + (w2 − w1) − (w3 − w2), if tmax
2 = tmax

1 = t and w3 > w2 > w1 > w4.

10.

⎧
⎪⎨

⎪⎩

( 12 )t−1w1 + ( 12 )t−t1−1(w2 − w1) − ( 12 )t−t2−1(w3 − w2), if tmax
2 < t, tmax

1 < t and w3 > w2 > w4 > w1

( 12 )t−1w1 + ( 12 )t−t1−1(w2 − w1) − (w3 − w2), if tmax
2 = t, tmax

1 < t and w3 > w2 > w4 > w1

( 12 )t−1w1 + (w2 − w1) − (w3 − w2), if tmax
2 = tmax

1 = t and w3 > w2 > w4 > w1.

11.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

+( 12 )t−tmax
3 −1(w3 − w4) − ( 12 )t−tmax

1 −1(w1 − w2),

{
tmax
3 < t

w1 > w3 > w2 > w4

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

+(w3 − w4) − ( 12 )t−tmax
1 −1(w1 − w2),

{
tmax
3 = t, tmax

2 < t

w1 > w3 > w2 > w4

( 12 )t−1w1 + (w3 − w2)

+(w3 − w4) − ( 12 )t−tmax
1 −1(w1 − w2),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w1 > w3 > w2 > w4

( 12 )t−1w1 + (w3 − w4) − (w1 − w3),

{
tmax
3 = tmax

2 = tmax
1 = t

w1 > w3 > w2 > w4.

12.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

+( 12 )t−tmax
3 −1(w3 − w4) − ( 12 )t−tmax

1 −1(w1 − w2),

{
tmax
3 < t

w1 > w3 > w4 > w2

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

+(w3 − w4) − ( 12 )t−tmax
1 −1(w1 − w2),

{
tmax
3 = t, tmax

2 < t

w1 > w3 > w4 > w2

( 12 )t−1w1 + (w3 − w2)

+(w3 − w4) − ( 12 )t−tmax
1 −1(w1 − w2),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w1 > w3 > w4 > w2

( 12 )t−1w1 + (w3 − w4) − (w1 − w3),

{
tmax
3 = tmax

2 = tmax
1 = t

w1 > w3 > w4 > w2.

13.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

+( 12 )t−tmax
3 −1(w3 − w4) − ( 12 )t−tmax

1 −1(w1 − w2),

{
tmax
3 < t

w3 > w1 > w2 > w4

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

+(w3 − w4) − ( 12 )t−tmax
1 −1(w1 − w2),

{
tmax
3 = tmax

2 < t

w3 > w1 > w2 > w4

( 12 )t−1w1 + (w3 − w2)

+(w3 − w4) − ( 12 )t−tmax
1 −1(w1 − w2),

{
tmax
3 = t, tmax

2 = t, tmax
1 < t

w3 > w1 > w2 > w4

( 12 )t−1w1 + (w3 − w4) − (w1 − w3),

{
tmax
3 = tmax

2 = tmax
1 = t

w3 > w1 > w2 > w4.
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14.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

+( 12 )t−tmax
3 −1(w3 − w4) − ( 12 )t−tmax

1 −1(w1 − w2),

{
tmax
3 < t

w3 > w1 > w4 > w2

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

+(w3 − w4) − ( 12 )t−tmax
1 −1(w1 − w2),

{
tmax
3 = t, tmax

2 < t

w3 > w1 > w4 > w2

( 12 )t−1w1 + (w3 − w2)

+(w3 − w4) − ( 12 )t−tmax
1 −1(w1 − w2),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w3 > w1 > w4 > w2

( 12 )t−1w1 + (w3 − w4) − (w1 − w3),

{
tmax
3 = tmax

2 = tmax
1 = t

w3 > w1 > w4 > w2.

15.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

+( 12 )t−tmax
3 −1(w3 − w4) − ( 12 )t−tmax

1 −1(w1 − w2),

{
tmax
3 < t

w3 > w4 > w1 > w2

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

+(w3 − w4) − ( 12 )t−tmax
1 −1(w1 − w2),

{
tmax
3 = t, tmax

2 < t

w3 > w4 > w1 > w2

( 12 )t−1w1 + (w3 − w2)

+(w3 − w4) − ( 12 )t−tmax
1 −1(w1 − w2),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w3 > w4 > w1 > w2

( 12 )t−1w1 + (w3 − w4) − (w1 − w3),

{
tmax
3 = tmax

2 = tmax
1 = t

w3 > w4 > w1 > w2.

16.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

−( 12 )t−tmax
1 −1(w1 − w2) − ( 12 )t−tmax

3 −1(w4 − w3),

{
tmax
3 < t

w1 > w4 > w3 > w2

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

−( 12 )t−tmax
1 −1(w1 − w2) − (w4 − w3),

{
tmax
3 = t, tmax

2 < t

w1 > w4 > w3 > w2

( 12 )t−1w1 + (w3 − w2)

−( 12 )t−tmax
1 −1(w1 − w2) − (w4 − w3),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w1 > w4 > w3 > w2

( 12 )t−1w1 + (w3 − w2)

−( 12 )t−tmax
1 −1(w1 − w2) − (w4 − w3),

{
tmax
3 = tmax

2 = tmax
1 = t

w1 > w4 > w3 > w2.

17.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

−( 12 )t−tmax
1 −1(w1 − w2) − ( 12 )t−tmax

3 −1(w4 − w3),

{
tmax
3 < t

w4 > w1 > w3 > w2

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

−( 12 )t−tmax
1 −1(w1 − w2) − (w4 − w3),

{
tmax
3 = t, tmax

2 < t

w4 > w1 > w3 > w2

( 12 )t−1w1 + (w3 − w2)

−( 12 )t−tmax
1 −1(w1 − w2) − (w4 − w3),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w4 > w1 > w3 > w2

( 12 )t−1w1 + (w3 − w2)

−( 12 )t−tmax
1 −1(w1 − w2) − (w4 − w3),

{
tmax
3 = tmax

2 = tmax
1 = t

w4 > w1 > w3 > w2.
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18.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

−( 12 )t−tmax
1 −1(w1 − w2) − ( 12 )t−tmax

3 −1(w4 − w3),

{
tmax
3 < t

w1 > w4 > w3 > w2

( 12 )t−1w1 + ( 12 )t−tmax
2 −1(w3 − w2)

−( 12 )t−tmax
1 −1(w1 − w2) − (w4 − w3),

{
tmax
3 = t, tmax

2 < t

w1 > w4 > w3 > w2

( 12 )t−1w1 + (w3 − w2)

−( 12 )t−tmax
1 −1(w1 − w2) − (w4 − w3),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w1 > w4 > w3 > w2

( 12 )t−1w1 + (w3 − w2)

−( 12 )t−tmax
1 −1(w1 − w2) − (w4 − w3),

{
tmax
3 = tmax

2 = tmax
1 = t

w1 > w4 > w3 > w2.

19.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 + ( 12 )t−tmax
3 −1(w4 − w3)

−( 12 )t−tmax
1 −1(w1 − w2) − ( 12 )t−tmax

2 −1(w2 − w3),

{
tmax
3 < t

w1 > w4 > w2 > w3

( 12 )t−1w1 + (w4 − w3)

−( 12 )t−tmax
1 −1(w1 − w2) − ( 12 )t−tmax

2 −1(w2 − w3),

{
tmax
3 = t, tmax

2 < t

w1 > w4 > w2 > w3

( 12 )t−1w1 + (w4 − w3)

−( 12 )t−tmax
1 −1(w1 − w2) − (w2 − w3),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w1 > w4 > w2 > w3

( 12 )t−1w1 + (w4 − w1),

{
tmax
3 = tmax

2 = tmax
1 = t

w1 > w4 > w2 > w3.

20.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 + ( 12 )t−tmax
3 −1(w4 − w3)

−( 12 )t−tmax
1 −1(w1 − w2) − ( 12 )t−tmax

2 −1(w2 − w3),

{
tmax
3 < t

w1 > w2 > w4 > w3

( 12 )t−1w1 + (w4 − w3)

−( 12 )t−tmax
1 −1(w1 − w2) − ( 12 )t−tmax

2 −1(w2 − w3),

{
tmax
3 = t, tmax

2 < t

w1 > w2 > w4 > w3

( 12 )t−1w1 + (w4 − w3)

−( 12 )t−tmax
1 −1(w1 − w2) − (w2 − w3),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w1 > w2 > w4 > w3

( 12 )t−1w1 + (w4 − w1),

{
tmax
3 = tmax

2 = tmax
1 = t

w1 > w2 > w4 > w3.

21.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 + ( 12 )t−tmax
3 −1(w4 − w3)

−( 12 )t−tmax
1 −1(w1 − w2) − ( 12 )t−tmax

2 −1(w2 − w3),

{
tmax
3 < t

w4 > w1 > w2 > w3

( 12 )t−1w1 + (w4 − w3)

−( 12 )t−tmax
1 −1(w1 − w2) − ( 12 )t−t2−1(w2 − w3),

{
tmax
3 = t, tmax

2 < t

w4 > w1 > w2 > w3

( 12 )t−1w1 + (w4 − w3)

−( 12 )t−tmax
1 −1(w1 − w2) − (w2 − w3),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w4 > w1 > w2 > w3

( 12 )t−1w1 + (w4 − w1),

{
tmax
3 = tmax

2 = tmax
1 = t

w4 > w1 > w2 > w3.
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22.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 − ( 12 )t−tmax
1 −1(w2 − w1) − ( 12 )t−tmax

2 −1(w2 − w3)

−( 12 )t−tmax
3 −1(w3 − w4),

{
tmax
3 < t

w2 > w1 > w3 > w4

( 12 )t−1w1 − ( 12 )t−tmax
1 −1(w2 − w1) − ( 12 )t−tmax

2 −1(w2 − w3)

−(w3 − w4),

{
tmax
3 = t, tmax

2 < t

w2 > w1 > w3 > w4

( 12 )t−1w1 − ( 12 )t−tmax
1 −1(w2 − w1) − (w2 − w4),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w2 > w1 > w3 > w4

( 12 )t−1w1 − (w2 − w1) − (w2 − w4),

{
tmax
3 = tmax

2 = tmax
1 = t

w2 > w1 > w3 > w4.

23.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 − ( 12 )t−tmax
1 −1(w2 − w1) − ( 12 )t−tmax

2 −1(w2 − w3)

−( 12 )t−tmax
3 −1(w3 − w4),

{
tmax
3 < t

w2 > w3 > w1 > w4

( 12 )t−1w1 − ( 12 )t−tmax
1 −1(w2 − w1) − ( 12 )t−tmax

2 −1(w2 − w3)

−(w3 − w4),

{
tmax
3 = t, tmax

2 < t

w2 > w3 > w1 > w4

( 12 )t−1w1 − ( 12 )t−tmax
1 −1(w2 − w1) − (w2 − w4),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w2 > w3 > w1 > w4

( 12 )t−1w1 − (w2 − w1) − (w2 − w4),

{
tmax
3 = tmax

2 = tmax
1 = t

w2 > w3 > w1 > w4.

24.

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 − ( 12 )t−tmax
1 −1(w2 − w1) − ( 12 )t−tmax

2 −1(w2 − w3)

−( 12 )t−tmax
3 −1(w3 − w4),

{
tmax
3 < t

w2 > w3 > w4 > w1

( 12 )t−1w1 − ( 12 )t−tmax
1 −1(w2 − w1) − ( 12 )t−tmax

2 −1(w2 − w3)

−(w3 − w4),

{
tmax
3 = t, tmax

2 < t

w2 > w3 > w4 > w1

( 12 )t−1w1 − ( 12 )t−tmax
1 −1(w2 − w1) − (w2 − w4),

{
tmax
3 = tmax

2 = t, tmax
1 < t

w2 > w3 > w4 > w1

( 12 )t−1w1 − (w2 − w1) − (w2 − w4),

{
tmax
3 = tmax

2 = tmax
1 = t

w2 > w3 > w4 > w1.

Proof Now, we are ready to prove the theorem by considering first two cases independently
and the remaining cases can be proved by major classes as explained above.

Case 1: Since w4 > w3 > w2 > w1, we prove that m4 > m3 > m2 > m1 holds,
then its generator matrix G of the code C can be written as G = (G1, G2,G3, G4), where
G1 consists of all points in PG(k − 1, 2) with each point repeating m1 times and all the
points in S2 ∪ S3 ∪ S4 constitute the columns of G2 with each point repeating m2 − m1
times. Columns of the generator matrix G3 consist of all points of S3 and each point repeats
m3 − m2 times and columns of the generator matrix G4 include of all points of S4 and each
point repeats m4 − m3 times. Then, G1 generates a k-dimensional constant-weight code
C′ with weight m12k−1 and length l1 = m1(2k − 1), G2 generates a (k − k1)-dimensional
weight code C′′ with weight (m2 − m1)2k−k1−1 and length l2 = (m2 − m1)(2k−k1 − 1),
G3 generates a (k − k2)-dimensional weight code C′′′ with weight (m3 − m2)2k−k2−1 and
length l3 = (m3 − m2)(2k−k2 − 1) and G4 generates a (k − k3)-dimensional weight code
C′′′′ with weight (m4 − m3)2k−k3−1 and length l4 = (m4 − m3)(2k−k3 − 1). Let c1, · · · , ct

be any t linearly independent codewords in C such that
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⎛

⎜
⎝

c1
...
ct

⎞

⎟
⎠ = Xt×kG,

⎛

⎜
⎝

c′
1
...
c′
t

⎞

⎟
⎠ = Xt×kG1,

⎛

⎜
⎝

c′′
1
...

c′′
t

⎞

⎟
⎠ = Xt×kG2,

⎛

⎜
⎝

c′′′
1
...

c′′′
t

⎞

⎟
⎠ = Xt×kG3 and

⎛

⎜
⎝

c′′′′
1
...

c′′′′
t

⎞

⎟
⎠ = Xt×kG4. It can be concluded that each above codeword ci(i = 1, 2, · · · , t)

can be divided into four sectors. That is, ci = (c′
i , c

′′
i , c′′′

i , c′′′′
i ) with c′

i ∈ C′, c′′
i ∈ C′′,

c′′′
i ∈ C′′′ and c′′′′

i ∈ C′′′′. Obviously, the codewords c′
1, · · · , c′

t are linearly indepen-
dent. Moreover based on Lemma 4.2, the rank of the codewords c′′

1 , · · · , c′′
t , c′′′

1 , · · · , c′′′
t

and c′′′′
1 , · · · , c′′′′

t are (t − t1), (t − t2) and (t − t3), respectively. From Lemma 4.1, we
conclude that inter1 = ( 12 )

t−1m12k−1, 0 ≤ inter2 ≤ ( 12 )
t−t1−1(m2 − m1)2k−k1−1,

0 ≤ inter3 ≤ ( 12 )
t−t2−1(m3 − m2)2k−k2−1 and 0 ≤ inter4 ≤ ( 12 )

t−t3−1(m4 − m3)2k−k3−1.
Therefore, inter = inter1 + inter2 + inter3 + inter4. Thus, inter = ( 12 )

t−1m12k−1 is
reachable, whenever c′′

1 = 0, c′′′
1 = 0 and c′′′′

1 = 0 are equivalent to c1 ∈ C1, c1 ∈ C2 and
c1 ∈ C3, respectively. Since dim(C1) ≥ 1, we can select an arbitrary non-zero codeword c1
from C1 and expand it to t linearly independent codewords c1, · · · , ct in C. Therefore, the
t-wise intersection of binary relative four-weight code is ( 12 )

t−1m12k−1 = ( 12 )
t−1w1.

Case 2: If w1 > w2 > w3 > w4 then m1 > m2 > m3 > m4, similar to the analysis
in Case 1, these matrices G1, G2, G3 and G4 can be introduced. G4 = (G,G1,G2, G3)

and G1 includes all the points in S2 ∪ S3 ∪ S4, which constitute the columns of G1 with
each point repeating m1 − m2 times and the columns of G2 consist of all points of S3 with
each point repeating m2 − m3 times. Columns of the generator matrix G3 consist of all
points of S4 and each point repeats m3 − m4 times and columns of the generator matrix
G4 consist of all points in PG(k − 1, 2) with each point repeating m1 times. Then, G1
generates a (k − k1)-dimensional constant-weight code C′ with weight (m1 − m2)2k−k1−1

and length l1 = (m1 − m2)(2k−k1 − 1), G2 generates a (k − k2)-dimensional weight code
C′′ with weight (m2 − m3)2k−k2−1 and length l2 = (m2 − m3)(2k−k2 − 1), G3 generates
a (k − k3)-dimensional weight code C′′′ with weight (m3 − m4)2k−k3−1 and length l3 =
(m3 − m4)(2k−k3 − 1) and G4 generates a k-dimensional weight code C′′′′ with weight
m12k−1 and length l4 = m1(2k − 1). Let ci be an arbitrary codeword of the t linearly

independent codewords c1, · · · , ct ∈ C with the matrix form

⎛

⎜
⎝

c1
...
ct

⎞

⎟
⎠ = Xt×kG. Then, we

have c′′′′
i = (ci, c

′
i , c

′′
i , c′′′

i ) for any i ∈ {1, 2, · · · , t} with c′
i ∈ C′, c′′

i ∈ C′′, c′′′
i ∈ C′′′

and c′′′′
i ∈ C′′′′. Besides rank(c′′′′

1 , · · · , c′′′′
t ) = t , whereas rank(c′

1, · · · , c′
t ) = t − t1,

rank(c′′
1 , · · · , c′′

t ) = t − t2 and rank(c′′′
1 , · · · , c′′′

t ) = t − t3 by Lemma 4.2. Furthermore,
inter = inter4 − inter1 − inter2 − inter3 with 0 ≤ inter1 ≤ ( 12 )

t−t1−1(m1 −m2)2k−k1−1,
0 ≤ inter2 ≤ ( 12 )

t−t2−1(m2 − m3)2k−k2−1, 0 ≤ inter3 ≤ ( 12 )
t−t3−1(m3 − m4)2k−k3−1 and

inter4 = ( 12 )
t−1m12k−1, by Lemma 4.1.

Next, we state that

inter =
(
1

2

)t−1

m12
k−1−

(
1

2

)t−t1−1

(m1−m2)2
k−k1−1−

(
1

2

)t−t2−1

(m2−m3)2
k−k2−1

−
(
1

2

)t−t3−1

(m3 − m4)2
k−k3−1
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can reachable when < c1, c2, · · · , ct > is a relative (t, t1, t2, t3) subcode (t1 ≤ t2 < t3 <

t). Let c1, · · · , ct be arbitrary t linearly independent codewords and < c1, · · · , ct > is a
relative (t, t1, t2, t3) subcode of C. According to the proof of Lemma 2.3, there exists an
invertible matrix Yt×t , Zt×t and Wt×t such that

Wt×tZt×t Yt×tXt×k =

⎡

⎢⎢
⎣

X′′′′
t1×k3

X′′′′
t1×(k2−k1)

X′′′′
t1×(k3−k2)

X′′′′
t1×(k−k3)

X′′′′
(t2−t1)×k1

X′′′′
(t2−t1)×(k2−k1)

X′′′′
(t2−t1)×(k3−k2)

X′′′′
(t2−t1)×(k−k3)

X′′′′
(t3−t2)×k1

X′′′′
(t3−t2)×(k2−k1)

X′′′′
(t3−t2)×(k3−k2)

X′′′′
(t3−t2)×(k−k3)

X′′′
(t−t3)×k1

X′′′
(t−t3)×(k2−k1)

X′′′
(t−t3)×(k3−k2)

X′′′
(t−t3)×(k−k3)

⎤

⎥⎥
⎦ ,

with each row of X′′′′
t1×(k−k3)

, X′′′′
(t2−t1)×(k−k3)

and X′′′′
(t3−t2)×(k−k3)

is the same as the last row
of X′′′

(t−t3)×(k−k3)
. Similarly with each row of X′′′′

t1×(k3−k2)
and X′′′′

(t2−t1)×(k3−k2)
is the same as

the last row of X′′′′
(t−t3)×(k3−k2)

. Denote c1, · · · , ct the rows of matrix Wt×tZt×t Yt×tXt×kG.
Then, we conclude that these t linearly independent codewords have the intersection

inter = inter4 − inter1 − inter2 − inter3

=
(
1

2

)t−1

m12
k−1−

(
1

2

)t−t1−1

(m1−m2)2
k−k1−1−

(
1

2

)t−t2−1

(m2−m3)2
k−k2−1

−
(
1

2

)t−t3−1

(m3 − m4)2
k−k3−1

=
(
1

2

)t−1

w1 −
(
1

2

)t−t1−1

(w1 − w2) −
(
1

2

)t−t2−1

(w2 − w3) −
(
1

2

)t−t3−1

(w3 − w4).

Thus, for all parameters t1, t2 and t3, we get the t-wise intersection of binary relative four-
weight codes in the case w1 > w2 > w3 > w4,

min
t1,t2,t3

inter =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 12 )t−1w1 − ( 12 )t−t1−1(w1 − w2) − ( 12 )t−t2−1(w2 − w3)

−( 12 )t−t3−1(w3 − w4), if tmax
3 < t

( 12 )t−1w1 − ( 12 )t−t1−1(w1 − w2) − ( 12 )t−t2−1(w2 − w3)

−(w3 − w4), if tmax
3 = t and tmax

2 < t

( 12 )t−1w1 − ( 12 )t−t1−1(w1 − w2) − (w2 − w3)

−(w3 − w4), if tmax
3 = tmax

2 = t and tmax
1 < t

( 12 )t−1w1 − (w1 − w4), if tmax
3 = tmax

2 = tmax
1 = t .

Hereafter, we have to prove the major classes one by one which consist of all the remaining
cases.

Major class 1: In this major class, it can be considered that all the five cases (3, 4, 5,
6 and 7) have similar proof. Although the cases seem to be different, the condition will
be same that is m1 < m2, m2 > m3 and m3 < m4. Using the first key lemma stated in
the Appendix and the procedure adopted in Case 2, we can estimate the intersection of the
relative (t, t1, t2, t3) (t1 < t2 ≤ t3 < t) subcode,

inter =
(
1

2

)t−1

m12
k−1 +

(
1

2

)t−t1−1

(m2 − m1)2
k−k1−1

−
(
1

2

)t−t2−1

(m2 − m3)2
k−k2−1 −

(
1

2

)t−t3−1

(m4 − m3)2
k−k3−1.
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According to Lemma 1.1 in the Appendix, for any t linearly independent codewords with
property that their generating subspace is relative (t1, t2, t3) subcode ofC, if the correspond-
ing inter4 	= 0, we have, inter = inter1 + inter2 − inter3 − inter4, with the inter1 =
( 12 )

t−1m1, inter2 = ( 12 )
t−t1−1(m2−m1)2k−k1−1 and inter3 = ( 12 )

t−t2−1(m3−m2)2k−k2−1.
When inter4 = ( 12 )

t−t3−1(m4 − m3)2k−k3−1 is reachable, inter will have its minimum
value.

For any given t codewords with the aforementioned properties, there exists three
invertible matrices Yt×t , Zt×t and Wt×t such that

Wt×tZt×t Yt×tXt×k =

⎡

⎢⎢
⎣

X′′′′
t1×k3

X′′′′
t1×(k2−k1)

X′′′′
t1×(k3−k2)

X′′′′
t1×(k−k3)

X′′′′
(t2−t1)×k1

X′′′′
(t2−t1)×(k2−k1)

X′′′′
(t2−t1)×(k3−k2)

X′′′′
(t2−t1)×(k−k3)

X′′′′
(t3−t2)×k1

X′′′′
(t3−t2)×(k2−k1)

X′′′′
(t3−t2)×(k3−k2)

X′′′′
(t3−t2)×(k−k3)

X′′′
(t−t3)×k1

X′′′
(t−t3)×(k2−k1)

X′′′
(t−t3)×(k3−k2)

X′′′
(t−t3)×(k−k3)

⎤

⎥⎥
⎦ ,

where each row of X′′′′
t1×(k−k3)

, X′′′′
(t2−t1)×(k−k3)

and X′′′′
(t3−t2)×(k−k3)

is equal to the last
row of the matrix X′′′

(t−t3)×(k−k3)
and each rows of X′′′′

t1×(k3−k2)
, X′′′′

(t2−t1)×(k3−k2)
and

X′′′′
(t3−t2)×(k3−k2)

are the same as the last row of X′′′
(t−t3)×(k3−k2)

. Thus, taking the rows of
matrix Wt×tZt×t Yt×tXt×kG to be new t linearly independent codewords and still denoting
them by c1, · · · , ct , we can conclude that intersection, inter = ( 12 )

t−1w1+( 12 )
t−t1−1(w2−

w1) − ( 12 )
t−t2−1(w3 − w2) − ( 12 )

t−t3−1(w4 − w3).
In addition, if inter4 = 0, we will have inter = inter1 − inter2 + inter3 − inter4,

with inter1 = ( 12 )
t−1m1 , inter2 = 0 and inter3 = 0. Thus, the minimum value of inter

is ( 12 )
t−1m12k−k1 , when inter2 = inter3 = 0. Next, we state that inter2 = inter3 = 0

can be reached, since dim(C1) ≥ 1, we select t linearly independent codewords c1 ∈ C1,
and expand to it t linearly independent codewords c1, · · · , ct . It can be checked that
inter2 = inter3 = 0. Thus, if inter4 = 0, the minimum intersection of t linearly inde-
pendent codewords will be inter = ( 12 )

t−1m12k−1. Summarizing the above discussion, we
conclude that all t linearly independent codewords (c1, c2, · · · , ct ) with t1 < t2 ≤ t3 < t

subcodes of C will have minimum intersection

inter = min

{(
1

2

)t−1

m12
k−1 +

(
1

2

)t−t1−1

(m2 − m1)2
k−k1−1 −

(
1

2

)t−t2−1

(m2 − m3)2
k−k2−1

−
(
1

2

)t−t3−1

(m4 − m3)2
k−k3−1;

(
1

2

)t−1

m12
k−1

}

=
{(

1

2

)t−1

w1 +
(
1

2

)t−t1−1

(w2 − w1) −
(
1

2

)t−t2−1

(w2 − w3)

−
(
1

2

)t−t3−1

(w4 − w3);
(
1

2

)t−1

w1

}

.

Therefore, the t-wise intersection of binary relative four-weight codes, for m1 < m2,
m2 > m3 and m3 < m4, is

min
t1,t2,t3

inter =
{ {( 12 )t−1w1 − ( 12 )

t−tmax
3 −1(w4 − w3); ( 12 )

t−1w1}, if tmax
3 < t

{( 12 )t−1w1 − ((w4 − w3); ( 12 )
t−1w1}, if tmax

3 = t .

Major class 2: In this the cases 8, 9 and 10 are considered. Since the condition m1 < m2,
m2 < m3 and m3 > m4 is same for all the three cases, we will get similar result as in Case
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2. Following the second key lemma in the Appendix, the intersection will be

inter =
(
1

2

)t−1

m12
k−1 +

(
1

2

)t−t1−1

(m2 − m1)2
k−k1−1

−
(
1

2

)t−t2−1

(m3 − m2)2
k−k2−1 −

(
1

2

)t−t3−1

(m3 − m4)2
k−k3−1.

Next, it is stated that the equations inter4 = 0, inter3 = ( 12 )
t−t2−1(m3 − m2)2k−k2−1

and inter2 = ( 12 )
t−t1−1(m2 − m1)2k−k1−1 are reachable whenever < c1, c2, · · · , ct > is

a relative (t, t1, t2, t3) (t1 < t2 < t3 ≤ t) subcode. Any t linearly independent codewords,
< c1, · · · , ct > is a relative (t, t1, t2, t3) subcode of C. So that we can always find that there
are invertible matrices Yt×t , Zt×t and Wt×t , such as,

Wt×tZt×t Yt×tXt×k =

⎡

⎢⎢
⎣

X′′′′
t1×k3

X′′′′
t1×(k2−k1)

X′′′′
t1×(k3−k2)

X′′′′
t1×(k−k3)

X′′′′
(t2−t1)×k1

X′′′′
(t2−t1)×(k2−k1)

X′′′′
(t2−t1)×(k3−k2)

X′′′′
(t2−t1)×(k−k3)

X′′′′
(t3−t2)×k1

X′′′′
(t3−t2)×(k2−k1)

X′′′′
(t3−t2)×(k3−k2)

0(t3−t2)×(k−k3)

X′′′
(t−t3)×k1

X′′′
(t−t3)×(k2−k1)

X′′′
(t−t3)×(k3−k2)

X′′′
(t−t3)×(k−k3)

⎤

⎥⎥
⎦ ,

where each row of X′′′′
t1×(k−k3)

and X′′′′
(t2−t1)×(k3−k2)

is equal to the last row of the matrix
X′′′

(t−t3)×(k−k3)
and each row of X′′′′

t1×(k3−k2)
and X′′′′

(t2−t1)×(k3−k2)
is the same as the last

row of X′′′
(t−t3)×(k3−k2)

. Then, considering the rows of matrix Wt×tZt×t Yt×tXt×kG a new
t linearly independent codewords but still denoting them by c1, · · · , ct , we can infer
that inter4 = 0, inter1 = ( 12 )

t−1m12k−1, inter2 = ( 12 )
t−t1−1(m2 − m1)2k−k1−1 and

inter3 = ( 12 )
t−t2−1(m3 − m2)2k−k2−1. Hence, all the t linearly independent codewords of

which generating subspaces are relative (t, t1, t2, t3) (t1 < t2 < t3 ≤ t) subcodes, have the
minimum intersection inter = ( 12 )

t−1w1 + ( 12 )
t−t1−1(w2 − w1) − ( 12 )

t−t2−1(w3 − w2).
Therefore, the t-wise intersection of binary relative four- weight codes in major class 2 is

min
t1,t2,t3

inter =
⎧
⎨

⎩

( 12 )t−1w1 + ( 12 )t−t1−1(w2 − w1) − ( 12 )t−t2−1(w3 − w2), if tmax
2 < t and tmax

1 < t

( 12 )t−1w1 + ( 12 )t−t1−1(w2 − w1) − (w3 − w2), if tmax
2 = t and tmax

1 < t

( 12 )t−1w1 + (w2 − w1) − (w3 − w2), if tmax
2 = tmax

1 = t .

Similar to this, by using the corresponding key lemmas stated in the Appendix, we can also
prove the major classes 3, 4, 5 and 6 in the same method so, we omit the detailed proof.

Remark 4.4 While generalizing the above theorem for any q > 2, we may also obtain the
t-wise intersection of any q-ary relative four-weight code for cases 1, 2 and major class
2. For major class 1, it is more complicated to generalize the t-wise intersection of q-ary
(q > 2)code, since we are not able to arrive a similar result as in Lemma 1.1 (Refer to the
Appendix) which can be used to prove that major class.

5 The trellis of relative four-weight codes

A trellis of a k-dimensional block code C is a directed graph. The set of nodes (or called
states) of the graph can be partitioned into subsets S0 = {S0}, S1, ..., Sn−1 , Sn = {Sn}. An
edge from a state in Si−1 terminates at a state in Si, 1 ≤ i ≤ n. For binary codes, each edge
is labeled by 0 or 1, such that C is the set of edge label sequences obtained by traversing all
paths from S0 to Sn. For a linear code, each Si is a vector space.
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Given a trellis of the code, the maximum-likelihood soft-decision decoding is achieved
by applying the well-known Viterbi algorithm. The complexity of this decoding is deter-
mined by the trellis complexity.

Define
s∗(C) = max

0≤i≤n
dim{Si} (5.1)

and
s(C) = min

π
S∗{π(C)}, (5.2)

where the minimization is performed over all permutations π acting on the coordinate
positions of C.

Let Si,0 be the state in Si that corresponds to all zero path from S0. Then, the sets of label
sequences associated with the sets of paths from S0 to Si,0 and from Si,0 to Sn , are called
the past subcode C

(i)
p and the future subcode C

(i)
f , respectively.

It is mandatory to recall χ(c) stands for support of the codeword c in other words, the
set of the non-zero co-ordinate positions of c, whereas {1, · · · , n} the set of the coordinate
positions and i− = {1, ..., i} , i+ = {i +1, ..., n} for 1 ≤ i ≤ n are well known. Using these
notations, we may also describe C

(i)
p and C

(i)
f as follows:

C(i)
p = {c ∈ C, χ(c) ⊆ i−}

C
(i)
f = {c ∈ C, χ(c) ⊆ i+}

}

(5.3)

Note that
dim(Si) = k − dim(C(i)

p ) − dim(C
(i)
f ). (5.4)

The following lemma is a relation between trellis complexity and intersection of binary
relative four-weight codes.

Lemma 5.1 Let C be a binary relative four-weight code. If the intersection of any two
non-zero codewords is at least three, then s(C) ≥ k − 2.

Proof We prove this lemma by contradiction. Suppose s(C) ≤ k − 3.
Then, according to the definition of (5.1) and (5.2), there exists a permutation π0 of a

co-ordinate position of the code C such that s(C) = s∗(π0(C)) ≤ k − 3. Thus, for any
co-ordinate position 1 ≤ i ≤ n, by using the (5.4), we have

dim(π0(Cp)(i)) + dim(π0(Cf )(i)) ≥ 3. (5.5)

If there exists some i such that dim(π0(Cp)(i)) > 0 and dim(π0(Cf )(i)) > 0, then there
are non-zero codewords c1 ∈ π0(Cp)(i), c2 ∈ π0(Cf )(i) and, they have no intersection by
(5.3). This contradiction shows that C is intersecting. This implies that dim(π0(Cp)(i)) > 0
and dim(π0(Cf )(i)) > 0 are not possible. Hence, only one of the following can occur.

1. If dim(π0(Cp)(i)) = 0, then dim(π0(Cf )(i)) > 0.
2. If dim(π0(Cp)(i)) > 0, then dim(π0(Cf )(i)) = 0.

The above facts yield that C is a mimimum code with a distance d . We can find i0 > d − 1
such that dim(π0(Cp)(d−1)) = 0 and dim(π0(Cf )(d−1)) > 0 or dim(π0(Cp)(n−d+1)) > 0
and dim(π0(Cf )(n−d+1)) = 0.

We state that dim(π0(Cp)(i0+1)) = 1. Otherwise there exists two linearly independent
codewords c1 and c2 such that c1, c2 ∈ π0(Cp)(i0+1). Thus, we can find non-zero codewords
c1 and c2 intersect exactly at the (i0+1)th co-ordinate position due to dim(π0(Cp)(i0)) = 0.
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We can thus find a non-zero element α ∈ GF(q) such that 0 	= c1+αc2 ∈ π0(Cp)(i0),which
is a contradiction to dim(π0(Cp)(i0)) = 0. This argument shows that dim(π0(Cp)(i0+1)) =
1.

Finally, we get

s(C) = s∗(π0(C))

≥ k − dim(π0(Cp)(i0+1) + dim(π0(Cf )(i0+1))

= k − 2.

Which is a contradiction to s(C) ≤ k − 3.

Appendix

Key Lemmas for Theorem 4.3 In order to prove all the major classes in Theorem 4.3, we
introduce the first key lemma which will be used in the cases 3, 4, 5, 6 and 7 in which
m1 < m2 , m2 > m3 and m3 < m4 . Then, the generator matrix G of C can be written in the
following form (G,G3,G4) = (G1,G2) in which G1 consists of all points in PG(k − 1, 2)
with each point repeating m1 times and all the points in S2 ∪S3 ∪S4, constitute the columns
of G2 with each point repeating m2−m1 times. Columns of the generator matrix G3 consist
of all points of S3 and each point repeats m2−m3 times and columns of the generator matrix
G4 consist of all points of S4 and each point repeats m4 − m3 times. Then, G1 generates a
k-dimensional constant- weight code C′ with weight m12k−1 and length l1 = m12k − 1, G2
generates a (k−k1)-dimensional weight code C′′ with weight (m2−m1)2k−k1−1 and length
l2 = (m2 − m1)2k−k1 − 1, G3 generates a (k − k2)-dimensional constant-weight code C′′′
with weight (m2 − m3)2k−k2−1 and length l3 = (m2 − m3)2k−k2 − 1 and G4 generates a
(k − k3)-dimensional constant-weight code C′′′′ with weight (m4 − m3)2k−k3−1 and length
l4 = (m4 − m3)2k−k3 − 1. Let c1, · · · , ct be a relative (t, t1, t2, t3)(t3 < t2 < t1 < t)

subcode.

Denote

⎡

⎢⎢⎢
⎣

c1
c2
...
ct

⎤

⎥⎥⎥
⎦

= Xt×kG,

⎡

⎢⎢⎢
⎣

c′
1

c′
2
...
c′
t

⎤

⎥⎥⎥
⎦

= Xt×kG1,

⎡

⎢⎢⎢
⎣

c′′
1

c′′
2
...

c′′
t

⎤

⎥⎥⎥
⎦

= Xt×kG2,

⎡

⎢⎢⎢
⎣

c′′′
1

c′′′
2
...

c′′′
t

⎤

⎥⎥⎥
⎦

= Xt×kG3,

⎡

⎢⎢⎢
⎣

c′′′′
1

c′′′′
2
...

c′′′′
t

⎤

⎥⎥⎥
⎦

= Xt×kG4.

Then, we have for any i ∈ {1, 2, · · · , t}, (ci, c
′′′
i , c′′′′

i ) = (c′
i , c

′′
i ), where c′

i ∈ C′,
c′′
i ∈ C′′, c′′′

i ∈ C′′′ and c′′′′
i ∈ C′′′′. In addition that, c′

1, · · · , c′
t are linearly indepen-

dent codewords, whereas rank(c′′
1 , · · · , c′′

t ) = t − t1, rank(c′′′
1 , · · · , c′′′

t ) = t − t2 and
rank(c′′′′

1 , · · · , c′′′′
t ) = t − t3 by Lemma 4.2. For satisfication, inter , inter1, inter2, inter3

and inter4 will be represented as follows. inter = |⋂t
i=1 χ(ci)|, inter1 = |⋂t

i=1 χ(c′
i )|,

inter2 = | ⋂t
i=1 χ(c′′

i )|, inter3 = | ⋂t
i=1 χ(c′′′

i )| and inter4 = | ⋂t
i=1 χ(c′′′′

i )|. Based
on the Lemma 4.1, we have inter = inter1 + inter2 − inter3 − inter4 with inter1 =
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( 12 )
t−1m12k−1, 0 ≤ inter2 ≤ ( 12 )

t−t1−1(m2 − m1)2k−k1−1, 0 ≤ inter3 ≤ ( 12 )
t−t2−1(m2 −

m3)2k−k2−1 and 0 ≤ inter4 ≤ ( 12 )
t−t3−1(m4 − m3)2k−k3−1, then we have the following

lemma.

Lemma 1.1 Assume q = 2 and w3 > max{w1, w2, w4} and let D =< c1, · · · , ct > be
a relative (t, t1, t2, t3)(t3 < t2 < t1 < t) subcode of C with inter4 	= 0, then inter3 ≤
( 12 )

t−t2−1(m3 − m2)2k−k2−1.

Proof Write

⎡

⎢⎢⎢
⎣

c1
c2
...
ct

⎤

⎥⎥⎥
⎦

= Xt×kG, then similar to the proof of the Lemma 4.2, there exists an

invertible matrix Yt×t such that

Yt×tXt×k =

⎡

⎢⎢
⎣

X′
t1×k1

0t1×(k2−k1) 0t1×(k3−k2) 0t1×(k−k3)

X′′
(t2−t1)×k1

X′′
(t2−t1)×(k2−k1)

0(t2−t1)×(k3−k2) 0(t2−t1)×(k−k3)

X′′
(t3−t2)×k1

X′′
(t3−t2)×(k2−k1)

X′′
(t3−t2)×(k3−k2)

0(t3−t2)×(k−k3)

X′′′
(t−t3)×k1

X′′′
(t−t3)×(k2−k1)

X′′′
(t−t3)×(k3−k2)

X′′′
(t−t3)×(k−k3)

⎤

⎥⎥
⎦ ,

with rank(X′
t1×k1

) = t1, rank(X′′
(t2−t1)×(k2−k1)

) = t2 − t1, rank(X′′
(t3−t2)×(k3−k2)

) = t3 − t2

and rank(X′′′
(t−t3)×(k−k3)

) = t − t3.
Thus,

Yt×t

⎛

⎜
⎝

c′′′
1 c′′′′

1
...

...
c′′′
t c′′′′

t

⎞

⎟
⎠ =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

0 0
...

...
0 0

c′′′
t2+1 0
...

...
c′′′
t3

0
c′′′
t3+1 c′′′′

t3+1
...

...
c′′′
t c′′′′

t

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (A.1)

in which rank(c′′′
t2+1, · · · , c′′′

t ) = t − t2 and rank(c′′′′
t3+1, · · · , c′′′′

t ) = t − t3. We

have rank

⎛

⎜
⎝

c′′′
1 c′′′′

1
...

...
c′′′
t c′′′′

t

⎞

⎟
⎠ = t − t2. Without loss of generality, let (c′′′

t2+1, · · · , c′′′
t ) be a

maximal linearly independent set of (c′′′
1 , · · · , c′′′

t ). Then, the last (t − t2) rows of the

matrix

⎛

⎜
⎝

c′′′
1 c′′′′

1
...

...
c′′′
t c′′′′

t

⎞

⎟
⎠, which is

⎛

⎜
⎝

c′′′
t2+1 c′′′′

t2+1
...

...
c′′′
t c′′′′

t

⎞

⎟
⎠, is a maximal linearly independent set of

its all rows. So, there exists a matrix

⎛

⎜
⎝

p1×(t2+1) · · · p1×t

...
. . .

...
pt2×(t2+1) · · · pt2×t

⎞

⎟
⎠ such that

⎛

⎜
⎝

c′′′
1 c′′′′

1
...

...
c′′′
t c′′′′

t

⎞

⎟
⎠ =
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⎛

⎜
⎝

p1×(t2+1) · · · p1×t

...
. . .

...
pt2×(t2+1) · · · pt2×t

⎞

⎟
⎠

⎛

⎜
⎝

c′′′
t2+1 c′′′′

t2+1
...

...
c′′′
t c′′′′

t

⎞

⎟
⎠, that is

⎛

⎜
⎝

c′′′
1
...

c′′′
t2

⎞

⎟
⎠ =

⎛

⎜
⎝

p1×(t2+1) · · · p1×t

...
. . .

...
pt2×(t2+1) · · · pt2×t

⎞

⎟
⎠

⎛

⎜
⎝

c′′′
t2+1
...

c′′′
t

⎞

⎟
⎠ (A.2)

and
⎛

⎜
⎝

c′′′′
1
...

c′′′′
t2

⎞

⎟
⎠ =

⎛

⎜
⎝

p1×(t2+1) · · · p1×t

...
. . .

...
pt2×(t2+1) · · · pt2×t

⎞

⎟
⎠

⎛

⎜
⎝

c′′′′
t2+1
...

c′′′′
t

⎞

⎟
⎠ . (A.3)

Based on (A.3) and rank(c′′′′
1 , · · · , c′′′′

t1
) = t − t3, without loss of generality, we assume

(c′′′′
t3+1, · · · , c′′′′

t ) to be a maximal linearly independent set of (c′′′′
1 , · · · , c′′′′

t ). Then, there

exists a matrix

⎛

⎜
⎝

r(t2+1)×(t3+1) · · · r(t2+1)×t

...
. . .

...
rt3×(t3+1) · · · rt3×t

⎞

⎟
⎠, such that

⎛

⎜
⎝

c′′′′
t2+1
...

c′′′′
t3

⎞

⎟
⎠ =

⎛

⎜
⎝

r(t2+1)×(t3+1) · · · r(t2+1)×t

...
. . .

...
rt3×(t3+1) · · · rt3×t

⎞

⎟
⎠

⎛

⎜
⎝

c′′′′
t3+1
...

c′′′′
t

⎞

⎟
⎠ . (A.4)

Substitute the (A.4) in (A.3), we get

⎛

⎜
⎝

c′′′′
1
...

c′′′′
t2

⎞

⎟
⎠ =

⎛

⎜
⎝

p1×(t2+1) · · · p1×t

...
. . .

...
pt2×(t2+1) · · · pt2×t

⎞

⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

r(t2+1)×(t3+1) · · · r(t2+1)×t

...
. . .

...
rt3×(t3+1) · · · rt3×t

1 · · · 0
...

. . .
...

0 · · · 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜
⎝

c′′′′
t3+1
...

c′′′′
t

⎞

⎟
⎠ . (A.5)

Since inter4 	= 0, there must be a co-ordinate position j0 ∈ {1, 2, · · · , l4} such that
j0 ∈ χ(c′′′′

i ), ∀1 ≤ i ≤ t .

Then, (A.4) implies that

⎛

⎜
⎝

r(t2+1)×(t3+1) · · · r(t2+1)×t

...
. . .

...
rt3×(t3+1) · · · rt3×t

⎞

⎟
⎠

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠ =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠ and (A.5) implies

⎛

⎜
⎝

p1×(t2+1) · · · p1×t

...
. . .

...
pt2×(t2+1) · · · pt2×t

⎞

⎟
⎠

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎝

r(t2+1)×(t3+1) · · · r(t2+1)×t

...
. . .

...
rt3×(t3+1) · · · rt3×t

1 · · · 0
...

. . .
...

0 · · · 1

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎠

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠ =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠.
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Thus, ⎛

⎜
⎝

p1×(t2+1) · · · p1×t

...
. . .

...
pt2×(t2+1) · · · pt2×t

⎞

⎟
⎠

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠ =

⎛

⎜
⎝

1
...
1

⎞

⎟
⎠ . (A.6)

We set ∩t
i=t2+1χ(c′′′

i ) = {j1, j2, · · · , jr } and let

⎛

⎜
⎝

1 · · · 1
...
. . .

...
1 · · · 1

⎞

⎟
⎠ be the matrix which con-

sists of the jth1 , jth2 , · · · , jthr columns of the matrix

⎛

⎜
⎝

c′′′
t2+1
...

c′′′
t

⎞

⎟
⎠.

From (A.2) and (A.6), we have

⎛

⎜
⎝

p1×(t2+1) · · · p1×t

...
. . .

...
pt2×(t2+1) · · · pt2×t

⎞

⎟
⎠

⎛

⎜
⎝

1 · · · 1
...
. . .

...
1 · · · 1

⎞

⎟
⎠ =

⎛

⎜
⎝

1 · · · 1
...
. . .

...
1 · · · 1

⎞

⎟
⎠, which

gives
⋂t

i=1 χ(c′′′
i ) = ⋂t

i=t2+1 χ(c′′′
i ). When inter3 = | ⋂t

i=t2+1 χ(c′′′
i )|, we will get

inter3 = ( 12 )
t−t2−1(m3 − m2)2k−k2−1.

Since (c′′
t2+1, · · · , c′′

t ) are t − t2 linearly independent codewords of constant-weight c′′′

with weight (m3 − m2)2k−k2−1, using Lemma 4.1, it will follow that | ⋂t
i=t2+1 χ(c′′′

i )| =
( 12 )

t−t2−1(m3 − m2)2k−k2−1. Thus, inter3 = ( 12 )
t−t2−1(m3 − m2)2k−k2−1.

We introduce the second key lemma in the cases 8, 9 and 10 in which m1 < m2,
m2 < m3 and m3 > m4 holds. Their generator matrix G of the code C can be written
as (G,G3,G4) = (G1,G2) in which G1 consists of all points in PG(k − 1, 2) with each
point repeating m1 times and all the points in S2 ∪ S3 ∪ S4 constitute the columns of G2
with each point repeating m2 − m1 times. Columns of the generator matrix G3 consist of
all points of S3 and each point repeats m3 − m2 times and columns of the generator matrix
G4 consist of all points of S4 and each point repeats m3 − m4 times. Then, G1 generates a
k-dimensional constant-weight code C′ with weight m12k−1 and length l1 = m1(2k − 1),
G2 generates a (k − k1)-dimensional weight code C′′ with weight (m2 − m1)2k−k1−1

and length l2 = (m2 − m1)(2k−k1 − 1), G3 generates a (k − k2)-dimensional weight
code C′′′ with weight (m3 − m2)2k−k2−1 and length l3 = (m3 − m2)(2k−k2 − 1) and
G4 generates a (k − k3)-dimensional weight code C′′′′ with weight (m3 − m4)2k−k3−1

and length l4 = (m3 − m4)(2k−k3 − 1). Assume that c1, · · · , ct with the matrix form⎛

⎜
⎝

c1
...
ct

⎞

⎟
⎠ = Xt×kG, are any t linearly independent codewords in C. Obviously, for any

i ∈ {1, 2, · · · , t}, we have (ci, c
′′′
i , c′′′′

i ) = (c′
i , c

′′
i ), where c′

i ∈ C′, c′′
i ∈ C′′, c′′′

i ∈ C′′′
and c′′′′

i ∈ C′′′′. Additionally rank(c′
1, · · · , c′

t ) = t , based on Lemma 4.2, we have
rank(c′′

1 , · · · , c′′
t ) = t − t1, rank(c′′′

1 , · · · , c′′′
t ) = t − t2 and rank(c′′′′

1 , · · · , c′′′′
t ) = t − t3.

Furthermore, inter = inter1 + inter2 − inter3 − inter4 with inter1 = ( 12 )
t−1m12k−1,

0 ≤ inter2 ≤ ( 12 )
t−t1−1(m2 − m1)2k−k1−1, 0 ≤ inter3 ≤ ( 12 )

t−t2−1(m3 − m2)2k−k2−1 and
0 ≤ inter4 ≤ ( 12 )

t−t3−1(m3 − m4)2k−k3−1 by Lemma 4.1.
We introduce the third key lemma in cases 11, 12, 13, 14 and 15 in which we deduce that

w1 is greater than w2, w2 is less than w3 and w3 is greater than w4 yields m1 > m2, m2 <

m3 and m3 > m4. Then, the generator matrix G of C can be written in the following form

220 Cryptography and Communications (2021) 13:197–223



(G,G1) = (G2,G3,G4) in which the block matrix G1 consists of all points in S2 ∪S3 ∪S4
and constitute the columns ofG1 with each point repeatingm1−m2 times.G2 consists of all
points in PG(k −1, 2) and each point appears m1 times. All points in S3 constitute columns
of G3 and each point occurs m3−m2 times and all the points in S4 constitute columns of G4
and each point occurs m3 − m4 times. Thus, G1 generates a (k − k1)-dimensional constant-
weight code C′ with weight (m1 − m2)2k−k1−1 and length l1 = (m1 − m2)(2k−k1 − 1).
G2 generates a k- dimensional constant-weight code C′′ with weight m12k−1 and length
l2 = m1(2k −1).G3 generates a (k−k2)-dimensional constant-weight codeC′′′ with weight
(m3 − m2)2k−k2−1 and length l3 = (m3 − m2)(2k−k2 − 1) and G4 generates (k − k3)-
dimensional constant-weight (m3 − m4)2k−k3−1 and length l4 = (m3 − m4)(2k−k3 − 1).
Assume that, c1, · · · , ct are any t linearly independent codewords with the matrix form⎛

⎜
⎝

c1
...
ct

⎞

⎟
⎠ = Xt×kG,

⎛

⎜
⎝

c′
1
...
c′
t

⎞

⎟
⎠ = Xt×kG1,

⎛

⎜
⎝

c′′
1
...

c′′
t

⎞

⎟
⎠ = Xt×kG2,

⎛

⎜
⎝

c′′′
1
...

c′′′
t

⎞

⎟
⎠ = Xt×kG3 and

⎛

⎜
⎝

c′′′′
1
...

c′′′′
t

⎞

⎟
⎠ =

Xt×kG4. Obviously, for any i ∈ {1, 2, · · · , t}, we have (ci, c
′
i ) = (c′′

i , c′′′
i , c′′′′

i ), where c′
i ∈

C′, c′′
i ∈ C′′, c′′′

i ∈ C′′′ and c′′′′
i ∈ C′′′′. Additionally, rank(c′′

1 , · · · , c′′
t ) = t . From Lemma

4.2, we have rank(c′
1, · · · , c′

t ) = (t − t1), rank(c′′
1 , · · · , c′′

t ) = t − t2, rank(c′′′
1 , · · · , c′′′

t ) =
t − t3 and rank(c′′′′

1 , · · · , c′′′′
t ) = t − t3. Therefore, we have inter = inter2 + inter3 +

inter4 − inter1 with inter2 = ( 12 )
t−1m12k−1, 0 ≤ inter1 ≤ ( 12 )

t−t1−1(m1 − m2)2k−k1−1,
0 ≤ inter3 ≤ ( 12 )

t−t2−1(m3 − m2)2k−k2−1 and 0 ≤ inter4 ≤ ( 12 )
t−t3−1(m3 − m4)2k−k3−1

by Lemma 4.1.
We apply the fourth key lemma in the cases 16, 17 and 18 in which m1 > m2, m2 <

m3 and m3 < m4. Then, the generator matrix G can be written in the following form
(G,G1,G4) = (G2,G3) in which the block matrixG1 includes all the points in S2∪S3∪S4,
which constitute the columns of G1 with each point repeating m1 − m2 times. Columns of
the generator matrix G2 consist of all points in PG(k − 1, 2) and each point appears m1
times and all points in S3 constitute columns of G3 and each point occurs m3 − m2 times,
columns of the generator matrixG4 consist of all points of S4 and each point repeatsm4−m3
times. Then, G1 generates a (k − k1)-dimensional constant-weight code C′ with weight
(m1 − m2)2k−k1−1 and length l1 = (m1 − m2)(2k−k1 − 1). G2 generates a k-dimensional
constant-weight code C′′ with weight m12k−1 and length l2 = m1(2k − 1), G3 generates
(k − k3)-dimensional constant-weight code C′′′ with weight (m3 − m2)2k−k2−1 and length
l3 = (m3 − m2)(2k−k2 − 1) and G4 generates (k − k4)-dimensional constant-weight (m4 −
m3)2k−k3−1 and length l4 = (m4 −m3)(2k−k3 −1). Using the same procedure as above, we
get the intersection inter = inter2+inter3−inter1−inter4 with inter2 = ( 12 )

t−1m12k−1,
0 ≤ inter1 ≤ ( 12 )

t−t1−1(m1 − m2)2k−k1−1, 0 ≤ inter3 ≤ ( 12 )
t−t2−1(m3 − m2)2k−k2−1 and

0 ≤ inter4 ≤ ( 12 )
t−t3−1(m4 − m3)2k−k3−1.

Next, we apply the fifth key lemma in the cases 19, 20 and 21 in which m1 > m2,
m2 > m3 and m3 < m4 . Then, the generator matrix G of C can be written in the following
form (G,G1,G2) = (G3,G4) in which the block matrix G1 consists of all points in S2 ∪
S3 ∪ S4, constitute the columns of G1 with each point repeating m1 − m2 times. Columns
of the generator matrix G2 consist of all points of S3 and each point repeats m2 − m3
times and columns of the generator matrix G4 consist of all points of S4 and each point
repeats m2 − m3 times. G3 consists of all points in PG(k − 1, 2) and each point appears
m1 times and all the points in S4, constitute columns of G4 and each point occurs m3 − m4
times. Then, G1 generates a (k − k1)-dimensional constant-weight code C′ with weight
(m1−m2)2k−k1−1 and length l1 = (m1−m2)(2k−k1−1).G2 generates (k−k2)-dimensional
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constant-weight codeC′′ with weight (m2−m3)2k−k2−1 and length l2 = (m2−m3)(2k−k2 −
1), G3 generates a k-dimensional constant-weight code C′′′ with weight m12k−1 and length
l3 = m1(2k −1) and G4 generates (k−k3)-dimensional constant-weight (m4−m3)2k−k3−1

and length l4 = (m4 − m3)(2k−k3 − 1). Similar to this, using the above procedure, we have
inter = inter3 + inter4 − inter1 − inter2 with inter3 = ( 12 )

t−1m12k−1, 0 ≤ inter1 ≤
( 12 )

t−t1−1(m1 − m2)2k−k1−1, 0 ≤ inter2 ≤ ( 12 )
t−t2−1(m2 − m3)2k−k2−1 and 0 ≤ inter4 ≤

( 12 )
t−t3−1(m4 − m3)2k−k3−1 by Lemma 4.1.
Again, we use the sixth key lemma in the cases 22, 23 and 24 in which m1 < m2 , m2 >

m3 and m3 > m4 . Then, the generator matrix G of C can be written in the following form
(G,G2,G3,G4) = (G1) in which the block matrix G1 consists of all points in PG(k−1, 2)
and each point appears m1 times. Columns of the generator matrix G2 consist of all points
of S2 ∪ S3 ∪ S4 and each point repeats m2 − m1 times. All points in S3 constitute columns
of G3 and each point occurs m2 − m3 times , G4 consists of all points in S4 and each point
appears m3 − m4 times. Thus, G1 generates a k-dimensional constant-weight code C′ with
weight m12k−1 and length l1 = m1(2k − 1), G2 generates (k − k1)-dimensional constant-
weight code C′′ with weight (m2 − m1)2k−k1−1 and length l2 = (m2 − m1)(2k−k1 − 1), G3
generates (k − k2)-dimensional constant-weight code C′′′ with weight (m2 − m3)(2k−k2−1)

and length l3 = (m2 − m3)2k−k2 − 1 and G4 generates a k-dimensional constant-weight
code C′′′′ with weight (m3 − m4)2k−k3−1 and length l4 = (m3 − m4)(2k−k3 − 1). Likewise,
using the same procedure as above, we have inter = inter1 − inter2 − inter3 − inter4
with inter1 = ( 12 )

t−1m12k−1, 0 ≤ inter2 ≤ ( 12 )
t−t1−1(m2 − m1)2k−k1−1, 0 ≤ inter3 ≤

( 12 )
t−t2−1(m2 −m3)2k−k2−1 and 0 ≤ inter4 ≤ ( 12 )

t−t3−1(m3 −m4)2k−k3−1 by Lemma 4.1.
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