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Abstract
We define affine equivalence of S-boxes with respect to modular addition, and explore its
use in cryptanalysis. We have identified classes of small bijective S-boxes with respect to
this new equivalence, and experimentally computed their properties.
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1 Introduction

The study of Boolean functions has an important place in the design of cryptographic
ciphers. The Advanced Encryption Standard (AES), which is a current standard of the U.S.
National Institute of Standards and Technology (NIST), benefits from theoretically designed
[11] S-boxes with high non-linearity [18] and flat differential profile [19]. Note that already
in [19], the question was posed of whether the theoretical approach of constructing S-boxes
is relevant when an attacker uses a notion of difference other than XOR. While not directly
relevant to AES, there are various cipher designs that use addition modulo 2n instead of, or
in addition to, an XOR operation. An example is the Ukrainian standard Kalyna [20] that
is very similar to AES, but the initial and final key addition layer is realized with addition
modulo 264.

Another example is the Russian standard GOST 28147-89 [25]. GOST 28147-89 has
a Feistel structure, in which the round function contains key addition, which is realized
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modulo 232, followed by an S-box layer (using small 4-bit S-boxes) and a diffusion layer
realized by bit rotation. In the case of GOST, or a similar encryption scheme, an attacker
is very likely to consider differential cryptanalysis based on differences with respect to
modular addition instead of an XOR operation.

Recently, the interest in different types of differences in cryptanalysis was reawakened by
the approach of [8], later expanded in [10]. This approach applies to the case when S-boxes
with good cryptographic properties (such as high non-linearity and a flat differential profile)
are used in the design of a cipher. However, the S-boxes contain a hidden weakness: they are
cryptographically weak against other algebraic operations, which can be used by the attacker
to mount a modified differential attack. The study in [10] focuses on differential attacks using
a hidden algebraic structure in the whole cipher. An alternative additive operation is chosen
so that one S-box is weakened, and also the linear layer remains linear with respect to the
alternative operation. In a recent work [6], Brunetta et al. investigate the problem of deter-
mining possible alternative operations for which a linear permutation can be linear also for
the new sum. They provide a procedure that can find a hidden sum for a given linear layer.

For a typical cipher design, it still might be difficult for an attacker to combine alternative
notions of differences with diffusion layers that are linear with respect to an XOR operation,
but can be non-linear with respect to alternative operations. On the other hand, we provide
a toy example of a simple cipher design that resists standard differential cryptanalysis, but
is nonetheless vulnerable against attacks based on alternative differences. However, our
main focus is to abstract the question of actual attacks and ask: can we design S-boxes that
are strong against differential cryptanalysis based on different algebraic operations? How
difficult is it to find an S-box that is strong against attacks with respect to one type of
operation and weak against attacks with respect to a different operation?

The main objective of this paper is an experimental study of the properties of small
bijective vectorial Boolean functions, with respect to operations in the ring Z2n , and their
connection to standard S-box criteria with respect to operations in F2n . While cryptographic
applications are our main motivation, we believe that our research can be of interest to a
general audience studying Boolean functions.

In practical terms, we restrict our study to small S-boxes with dimension n = 4. These
S-boxes have been extensively studied and classified with respect to their linear and differen-
tial properties and applications to lightweight cipher designs [16]. Further studies have been
conducted with respect to different cryptographic criteria [12, 24], resistance and protection
against side-channel attacks [3, 15, 21], and multiplicative complexity [27]. Experimental
studies use affine equivalence to restrict the space of all studied S-boxes to a small num-
ber of class representatives. This can be done only if the studied property is an invariant of
affine equivalence. In our study, properties with respect to modular addition are not invari-
ant under affine equivalence. We instead consider an equivalence relation corresponding to
affine functions over Z2n , which we call modular affine equivalence. In the theoretical part
of the paper, we explore some properties of modular affine equivalence. In the experimental
part of the paper, we use modular affine equivalence to reduce the space of the functions we
need to study, and restrict the results to representatives of modular affine classes.

The main focus of the experiments is the study of the cryptographic quality of S-boxes
with respect to differential cryptanalysis based on an alternative notion of difference. In the
theoretical part, we generalise the standard S-box criterion, the so-called differential profile,
and define a so-called D-criterion of an S-box. The D-criterion is based on differential uni-
formity with respect to modular addition. Theoretically, the non-linearity of S-boxes can be
generalized with respect to any quasigroup [13] (a set with a binary operation whose Cayley
table is a Latin square, i.e., each row and column is a permutation of the elements of the set).
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Affine equivalence and non-linearity of general permutations over Zn was studied by Kumar
et al. in [14], with a focus on the cryptanalysis of RC4. We use a similar notion of affine
approximation to define a non-linearity criterion: the L-criterion expresses how well an S-
box can be approximated by a (modular) affine function. Both the D- and the L-criterion
are invariant under modular affine equivalence, and we used exhaustive enumeration over
class representatives to compute the statistical distribution of S-box representatives with
given values of D- and L-criteria. In a similar way, we have analysed the entire affine
equivalence classes of optimal S-boxes (with respect to standard linear and differential
cryptanalysis).

2 Notation

We use standard terminology related to vectorial Boolean functions (S-boxes) in accordance
with [9]. However, we will slightly abuse notation to make some sections of the paper more
readable. The notation we use is summarized as follows:

– Vectors and matrices are typed in boldface: for example, u for a row vector, and M for
a matrix.

– Sets are denoted by blackboard-bold: for example, A for a set.
– The set of n-dimensional binary vectors is denoted by F2n , with vector addition denoted

by ⊕.
– The symbol Z denotes the set of integers. We use the standard notation ZN = Z/(N)

to denote the ring of equivalence classes modulo N , and Z
∗
N to represent the group of

units of ZN . We represent elements of Z/(N) by positive integers {0, 1, . . . , N − 1}.
Addition in ZN is denoted simply by +. Each integer x can be represented as a binary
vector x = (x0, x1, . . .) using the standard binary expansion x = ∑

xi2i . If N = 2n,
this binary expansion defines a natural1 bijection ι : Z2n → F2n : ι(x) = x. In the
case when we combine operations over F2n and Z2n , we do not state this explicitly. For
example, M · (x + (u ⊕ v)) is shorthand for

M · ι(x + ι−1(u ⊕ v)).

– Boolean functions are denoted by plain upper case letters. We use the term Boolean
function for any function F : F

n
2 → F

m
2 . We denote a coordinate (function) of F

by Fi : F2n → F2, i.e., F(x) = (F0(x), . . . , Fm−1(x)). A component (function) of
F is any non-zero linear combination of its coordinates. In general, the term “S-box”
can denote any (non-linear) vectorial Boolean function used in cipher designs. In this
article, we will focus on bijective S-boxes over F2n .

– Functions on the set Z2n are denoted by Greek characters. For example, α, β.
– We will again use a natural bijection between bijective functions over F2n and bijective

functions over Z2n (all of which can also be identified with elements of the permutation
group �2n of the set of integers {1, 2, . . . , 2n}). We associate a Boolean function S :
F2n → F2n with a function σ : Z2n → Z2n , such that S(ι(x)) = ι(σ (x)), where ι

denotes again the standard binary expansion.

1Note that the attacker can represent integers in Z2n in other ways, e.g. changing the ordering of the bits in
the binary expansion, or even choosing some completely different bijection between Z2n and F2n . In practice,
the representation chosen by the attacker needs to be compatible with other operations in the studied cipher.
The effect of the choice of representation has an effect on which concrete S-boxes are identified as good or
bad, but does not change the statistical results over the set of all S-boxes.
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To simplify notation, we will again omit ι in formulas. For example, we can write
S(a +b)+ c, instead of the more formal ι−1(S(ι(a +b)))+ c. In a similar way, we will
write (F ◦ π)(u), instead of (F ◦ ι ◦ π ◦ ι−1)(u).

– In all our experiments with n = 4, we use a shorthand representation for con-
crete S-boxes. Each S-box is written as a string of hexadecimal numbers. This
string is read from left to right, and each hexadecimal digit represents the output
ι(S(x)) of S corresponding to the inputs ι(0), ι(1), . . . , ι(15). For example, the string
1fd057a4923e6b8c encodes a function which maps 0000 to 0001, 0001 to 1111,
1111 to 1100, and so forth.

– We will extend the operators ⊕, +, ◦ (representing XOR, modular addition, and func-
tional composition, respectively) to apply to sets. If any of the arguments is a set, the
result of the operation is a set. For example:

a + B = {a + b : b ∈ B},
A + B = {a + b : a ∈ A, b ∈ B}.

3 Modular affine functions andmodular affine equivalence

The notion of affine equivalence is important when studying the properties of large sets of
S-boxes. Two S-boxes S1, S2 : F2n → F2n are affine equivalent, if there exist two bijective
affine functions A1, A2, such that

A1 ◦ S1 = S2 ◦ A2.

Explicitly, S1 and S2 are affine equivalent if and only if

∃A1,A2, b1,b2,∀x : S2(x) = A1 · S1(A2 · x + b2) + b1, (1)

with x ∈ F2n , A1,A2, invertible n × n matrices, and b1,b2 ∈ F2n .
Let a ∈ Z

∗
2n , b ∈ Z2n . Let α : Z2n → Z2n : α(x) = ax + b be a bijective function with

inverse α−1(x) = a−1x − a−1b. We will call α a modular affine function. Note that this
is distinct from the notion of an affine vectorial Boolean function, which we call simply an
affine function. The set of modular affine functions (understood as permutations) is closed
under composition, and forms a subgroup of the permutation group �2n of size 2n · 2n−1.

Using the binary expansion ι : Z2n → F2n : ι(x) = x, we can associate each function α :
Z2n → Z2n with a vectorial Boolean function A : F2n → F2n : A(ι(x)) = ι(α(x)), simply
written as A(x) = ax + b. The function A : F2n → F2n is in general not a linear function,
and can have coordinate functions with algebraic degree higher than 1. For example, the
function A(x) = x+1 has coordinate functions A0(x) = x0⊕1, and Ai(x) = xi⊕∏i−1

j=0 xj ,

for each i > 0.
Using modular affine functions we can define modular affine equivalence (MAE for

short) of S-boxes. Two S-boxes S1, S2 : F2n → F2n are modular affine equivalent, if there
exist two modular affine functions A1, A2, such that

A1 ◦ S1 = S2 ◦ A2.

We can also write this condition as

∃a1, a2, b1, b2, ∀x : S2(x) = a1 · S1(a2 · x + b2) + b1, (2)

with x ∈ Z2n , a1, a2 ∈ Z
∗
2n , and b1, b2 ∈ Z2n .

It is easy to see that if S1 is bijective, then S2 is bijective as well.
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In [22], the notion of EA- and CCZ-equivalence [7] for functions over finite abelian
groups was introduced. In particular, for the case of Z2n these equivalences are an extension
of the MAE given here. However, unlike basic MAE, extended MAE2 does not preserve
the bijectivity of S-boxes. Thus, we will only work with basic modular affine equivalence
further on.

3.1 Representatives of MAE classes

To efficiently work with MAE classes, we need to use some suitable representatives. Similar
to affine equivalence (AE) classes, we can restrict our enumeration to S-boxes with zero
constant term due to the following lemma (which follows from the definition of MAE):

Lemma 1 Let S : Z2n → Z2n be a function, such that S(0) = b, b ∈ Z2n . Then S′ : Z2n →
Z2n with S′(x) = S(x) − b is in the same MAE class, and S′(0) = 0.

In addition to restricting to S-boxes with a zero constant term, we can normalize the
value of S(1) using the following lemma:

Lemma 2 Let S : Z2n → Z2n , such that S(0) = 0, and S(i) = j , for some i, j ∈ Z2n

such that gcd(i, 2n) = gcd(j, 2n) = 1. Such i, j always exist if S(0) = 0 (as there are more
remaining odd elements than even). Then S′ : Z2n → Z2n , with S′(x) = j−1S(ix) is in the
same MAE class, and S′(1) = 1, S′(0) = 0.

We will call an S-box with the property S(0) = 0, S(1) = 1 a normalized S-box. As a
consequence of Lemma 2, we only need to investigate normalized S-boxes.

In each MAE class of S-boxes there can be multiple normalized representatives. Given
any S-box S1 (that is, in general, not normalized), it suffices to go through all possible
values of a1, b1 to enumerate all normalized S-boxes in the same MAE class. This can be
summarized as follows:

Lemma 3 For each bijective function S1 : Z2n → Z2n , and (a1, b1) ∈ Z
∗
2n × Z2n , there

exists a unique pair (a2, b2) ∈ Z2n × Z2n , such that S2(x) = a1 · S1(a2 · x + b2) + b1, and
satisfies S2(0) = 0, S2(1) = 1.

Proof Let x = 0, we get
a1 · S1(b2) + b1 = 0.

Thus b2 = S−1
1 (−a−1

1 b1). Because S1 is bijective, the solution exists for any choice of
a1, b1.

Let x = 1, we get
a1 · S1(a2 + b2) + b1 = 1.

From this we get
S1(a2 + b2) = a−1

1 (1 − b1),

and consequently

a2 = S−1
1

(
a−1

1 (1 − b1)
)

− S−1
1 (−a−1

1 b1).

Again, a2 always exists because S1 is bijective.

2Similar to EA-equivalence, we can extend MAE by allowing the addition of an affine function in (2).
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Note that the a2 computed in the proof of Lemma 3 is not necessarily odd. If a2 is not
odd, the computed S2 is not a bijection, and as such it is not a member of the investigated
MAE class.

To generate all normalized MAE representatives of the class that contains S1, we can
iterate through all choices of (a1, b1) ∈ Z

∗
2n × Z2n , and generate the corresponding S2’s.

The maximum possible number of MAE representatives thus generated can be 2n · 2n−1.
Because a2 is not always invertible, some classes contain a smaller number of normalized
representatives.

In our experiments, we enumerate all normalized bijective S-boxes. Then we use
Lemma 3 to partition these S-boxes into MAE classes. In further experiments, we use a
single S-box from each class to investigate those S-box properties that are invariant w.r.t.
MAE.

If we want to decide whether two bijective S-boxes are in the same class, we can use
Lemma 3 to generate normalized representatives of one of them, and check whether any
normalized representative of the second S-box is in this set. A simpler algorithm is to use
a system of equations similar to the proof of Lemma 3: for every choice of (a1, b1) ∈
Z

∗
2n × Z2n , a potential b2 is computed from S1(b2) + b1 = S2(0), and a potential a2 is

computed from a1 ·S1(a2+b2)+b1 = S2(1). If a2 ∈ Z
∗
2n , modular affine equivalence is then

decided by checking whether S2(x) = a1 · S1(a2 · x + b2) + b1 holds for each remaining x.

4 S-box characteristics with respect tomodular addition

We assume that the reader is familiar with classical linear [17] and differential [2] cryptanal-
ysis. These cryptanalytic techniques have influenced the design of modern block ciphers,
with emphasis on the cryptographic strength of the S-boxes used. The cryptographic
strength of S-boxes is typically measured by non-linearity and the maximum value of the
differential profile.

When considering the non-linearity, we use the notion of Hamming distance between
functions. In general, the Hamming distance between two vectors u, v is the number of
coordinates i with ui 
= vi . In the Boolean case, the Hamming distance of two functions
f, g : F2n → F2 can be computed as a sum over integers:

∑
x∈F2n

f (x) ⊕ g(x). In the case
of two S-boxes S1, S2 understood as functions over Z2n , their Hamming distance is the size
of the set {x ∈ Z2n : S1(x) − S2(x) 
= 0}.

The non-linearity of the function F : F2n → F2n is defined as the minimum (Hamming)
distance between any component function of F and any affine (Boolean) function on n vari-
ables. A cryptographically strong S-box must have a high non-linearity. The non-linearity
can be computed using the Walsh transform as follows [9]:

NL(F ) = 2n−1 − 1

2
max

v∈F2n∗,u∈F2n

∣
∣
∣
∣
∣
∣

∑

x∈F2n

(−1)vF(x)T ⊕uxT

∣
∣
∣
∣
∣
∣
. (3)

The differential profile of a function F expresses the number of solutions of the equation
F(x ⊕ a) ⊕ F(x) = b for given a ∈ F2n

∗,b ∈ F2n . The differential probability is then
defined as

p(a,b) = |x ∈ F2n : F(x ⊕ a) ⊕ F(x) = b|
2n

.

A cryptographically strong S-box must also have a flat differential profile, i.e., its maximum
over all possible values of a and b, should be as low as possible.
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It is known how to construct S-boxes with good non-linearity and differential profile
[11, 26]. The non-linearity and differential profile are invariant under affine equivalence.
These properties of small S-boxes with n = 4 are known, as well as all 16 AE classes with
optimal properties [16] (the non-linearity is 4, and the maximum of the differential profile
is also 4, which is the best that can be achieved for bijective S-boxes with n = 4).

In standard cipher designs based on a substitution permutation network (SPN), S-boxes
are the only source of non-linearity. Key additions can be understood as an addition of
a constant, and diffusion layers are linear. Therefore, the security of the cipher directly
depends on the properties of the S-box.

Consider now the following toy cipher design. The state of the cipher is represented as
bit vectors of length w. The design repeats the following three operations in r rounds:

– Key addition is done in Zw: y = x + k.
– An S-box layer is applied, i.e., the state is split into n-bit substrings, and each substring

xi is replaced by yi = S(xi ), where S : F2n → F2n is a chosen S-box.
– Diffusion is realized by a simple rotation by one bit.

Let us analyze this design using ordinary differential cryptanalysis. Suppose we use
a bijective S-box with n = 4, and the best possible differential probability bounded by
4/16 = 2−2 (e.g., an S-box based on finite field inversion similar to AES). In the best
attack scenario, the attacker can construct an iterative differential characteristic involving a
single S-box in each round (e.g. when an input S-box difference of 0010 maps to an output
difference of 0001). Because key-addition is now non-linear, a single bit difference propa-
gates unchanged only if the corresponding subkey bit is 0. If the subkeys are independent,
the maximum differential probability that an attacker can reach is 2−3r over r rounds. This
means that a 6-round toy design with w = 16, or a 43-round design with w = 128, should
be secure against standard differential attacks.

Now let us consider a different attacker. The attacker focuses on the first S-box (cor-
responding to the least significant bit in the state representation). Let x1, and x2 represent
the n least significant plaintext bits (as integers in Z2n ), with even (modular) difference
d = x2 − x1. Then the inputs of the first S-box are x1 + k, and x2 + k (here k is the cor-
responding subkey part), with the same modular difference d . Now let us suppose that also
the outputs of the S-box y1, y2 have a modular difference y2 − y1 = d/2 with some prob-
ability p. Rotation doubles this modular difference, if the most significant bits of the state
are the same. We can estimate this event to have probability 50%. If p is high enough, an
attacker can construct an (iterative) modular differential distinguisher, with r-round prob-
ability (p/2)r . For example3, if p = 1/2, a 6-round distinguisher has probability 2−12,
and a 43-round distinguisher has probability 2−86. In our experiments (see Section 5) we
have found S-boxes optimal w.r.t. standard differential cryptanalysis that have p as high as
12/16, which gives a distinguisher with probability 2−61 for a 43-round design.

This short analysis shows that with a suitable choice of S-boxes, our toy design can be
secure against standard differential cryptanalysis. However, the same design with the same
parameters and S-boxes is vulnerable against an attack based on modular differences.

This toy cipher example demonstrates that it is important to study S-box properties
with respect to differences in Z2n (and possibly other notions of difference). It is not clear

3The S-box 019dae4852637bfc from optimal class G4 (with δF = 4, NL = 4) has p(2,1) = 1/2.
Another example is the S-box from the same class, 01e28abc9d35674f, which has p(10,5) = 11/16.
None of the optimal S-boxes with D=12 has the property pd,d/2 = 12/16.
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whether similar techniques can be adapted to linear cryptanalysis, or whether we can com-
bine the modular differences and standard linear/differential techniques. However, the goal
of this paper is not a study of cryptanalytic techniques, but rather a study of properties of
(small) S-boxes.

With respect to modular differential cryptanalysis, we define the modular differential
profile of an S-box S : F2n → F2n as follows. For each pair (dx, dy) ∈ Z2n \ {0} × Z2n , we
define a quantity

D
(S)
(dx ,dy) = ∣

∣
{
x : S(x + dx) − S(x) = dy

}∣
∣ .

When S is known from the context, we omit it from the superscript, writing just D(dx,dy).
This definition, unlike the ordinary differential profile, is relative to the representation of

numbers by bit-vectors, as discussed in Section 2. This means that if we choose a different
bit encoding of numbers (bijection ι), an S-box S will be represented by a different function
over Z2n , with possibly different modular differential profile. This fact, however, does not
change our statistical results, as we study the set of all S-boxes (of a fixed size). Note
that given a cipher design, the attacker typically chooses the bit encoding of numbers with
respect to the cipher design, and thus in cryptanalytic applications, we might consider ι to
be fixed.

Note that unlike the XOR operation, modular addition is not its own inverse, and the
quantity D(dx,dy) is not necessarily even. We can normalize D(dx,dy) to obtain a modular
differential probability

p(dx,dy) = D(dx,dy)

2n
.

We call the multiset of all D(dx,dy) the modular differential profile of the S-box S:

D = {D(dx,dy) : (dx, dy) ∈ Z2n \ {0} × Z2n}.
The largest value of the modular differential profile D characterizes the resistance of an
S-box against modular differential cryptanalysis. To simplify the text, we refer to this
maximum as the D-criterion (of an S-box S).

Note that for a bijective S-box, the lower bound for the D-criterion is 2. Indeed, a bijec-
tive S-box is by definition a 1-to-1 function, thus D(dx,0) = 0. Because there are n possible
values of x, and n − 1 possible non-zero differences, at least one difference must occur
more than once. Our experiments (see Section 5) show that both 3-bit and 4-bit S-boxes
with D = 2 exist, although statistically, they are rare. It is not clear whether this holds in
general for any n.

While the modular differential profile is quite a straightforward generalisation of the
ordinary differential profile, in the case of non-linearity the situation is slightly different.
The space of affine functions is restricted to functions ax+b with a ∈ Z

∗
2n (since a can only

be odd, as ax + b with a even defines a non-invertible function). It is also not clear how to
measure the distance between functions. We have decided to define modular non-linearity
with a Hamming distance over symbols from Z2n , but it might be interesting to generalise
this to other distance metrics (e.g. Manhattan, or distance over concatenated binary strings
representing outputs).

For each pair (q, c) ∈ Z
∗
2n × Z2n , we define a quantity

L
(S)
(q,c) = |{x : S(x) = qx + c}| .

When S is known from the context, we omit it from the superscript, writing just L(q,c).
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The normalized L(q,c) is a measurement of how close S is to an affine function:

r(q,c) = L(q,c)

2n
.

Similarly to the modular differential criterion, we define the modular linear profile of S

to be the multiset
L = {L(q,c) : (q, c) ∈ Z

∗
2n × Z2n}.

The maximum of the modular linear profile L can be used as a measure of S-box resistance
against modular cryptanalytic attacks. To simplify the text, we refer to this maximum as the
L-criterion (of an S-box S).

We were not able to construct an attack on an SPN-like design based on linear approxi-
mations similar to a standard linear cryptanalysis. However, we can show the importance of
the L-criterion with a simplified example based on the historical Enigma machine (see e.g.,
[23]). Encryption of a plaintext letter x(t) ∈ Z2n to a ciphertext letter y(t) ∈ Z2n is given by

y(t) = S3(S2(S1(x
(t) + k1 + t) − (k1 + t) + k2) − k2 + k3) − k3.

Note that for the sake of simplicity, we have omitted many details from the real Enigma.
Let us further suppose that S1 = S2 = S3 = S, with a known modular linear profile with
maximum L attained for some pair q, c. This means that the following equation

y(t) = q3x(t) + (q3 − q2)k1 + (q2 − q)k2 + (q − 1) + k3 + (q3 − q2)t + const,

holds with probability approximately r3
(q,c) = L3/23n. If the attacker can guess or find 3

pairs (x(t), y(t)) of inputs and corresponding outputs, he can compute the keys k1, k2, k3 by
solving a simple linear equation system. The expected data complexity of such an attack is
thus 29n/L9. In the case when n = 4, the lowest value of L is L = 2, giving data complexity
227. On the other hand, we have found cryptographically optimal 4-bit S-boxes4 with L as
high as 10, in which case the expected number of input-output pairs is only 69.

4.1 Modular affine equivalence and S-box properties

In this section, we show that modular affine equivalence preserves the modular differential
and linear profile of an S-box.

Assume that S1 is modular affine equivalent to S2, so that

S2(x) = a1S1(a2x + b2) + b1.

Consider the equation S2(x) = qx + c, q ∈ Z
∗
2n , c ∈ Z2n . We can rewrite this using S1

as follows:

a1S1(a2x + b2) + b1 = qx + c.

We can substitute y = a2x + b2, or x = a−1
2 y − a−1

2 b2, respectively, to get

a1S1(y) + b1 = qa−1
2 y − qa−1

2 b2 + c.

After division by a1 and rearrangement of terms, we get:

S1(y) = (a−1
1 qa−1

2 )y + (a−1
1 c − a−1

1 qa−1
2 b2 − a−1

1 b1).

4An example is the optimal S-box 0169cf235be874ad with L = 10.
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We can thus set q ′ = a−1
1 qa−1

2 and c′ = a−1
1 c − a−1

1 qa−1
2 b2 − a−1

1 b1. Then

L
(S2)
(q,c) = L

(S1)

(q ′,c′).

This means that the values in the modular linear profile are the same (albeit rearranged with
respect to q, c), and the L-criterion is an invariant under modular affine equivalence.

A similar situation holds for the modular differential profile. Given

S2(x + dx) − S2(x) = dy,

we can rewrite this as

a1S1(a2x + b2 + a2dx) + b1 − a1S1(a2x + b2) − b1 = dy .

Again we can substitute x = a−1
2 y − a−1

2 b2, and divide by a1 to obtain

S1(y + a2dx) − S1(y) = a−1
1 dy .

Thus
D

(S2)
(dx ,dy) = D

(S1)

(a2dx,a−1
1 dy)

,

and the modular differential spectra contain the same values (albeit rearranged with respect
to dy). Thus, the D-criterion is an invariant under modular affine equivalence as well.

5 Experimental results

In this section, we summarize our experiments with small S-boxes. We have conducted a
series of experiments with custom software implemented in Python (PyPy 7.0.0 with GCC
6.2.0, Python 3.6.1). The computation was parallelized and run on a cluster of 28 Intel i9-
7940X 3.1GHz cores, using 128GB RAM, and 1TB M2 NVME SSD as storage. We have
used 24 of the CPU cores for one week in real-time to find all representatives of MAE
classes. The computation of the statistics was then simpler (details provided further on).
Computing the statistics of the representatives in each of the G0-G15 affine classes took
approximately 8 hours each.

5.1 Bijective S-boxes, n = 3

Our initial experiments were conducted with bijective S-boxes of dimension n = 3. We
have performed an exhaustive search over this group of 8! S-boxes. They belong to 58 MAE
classes. The distribution of MAE classes with respect to D- and L-criteria is summarized
in Table 1. The rows and columns of the table are indexed by the values of D, and L,
respectively. The numbers in the table represent the number of MAE classes for the given
(D, L) combination.

There are 6 classes that have D = 2, and 5 classes that have L = 2. One of these classes
has both D = 2, and L = 2. We have not studied these S-boxes in more detail, due to the
limited cryptographic interest in 3-bit S-boxes.

5.2 Bijective S-boxes, n = 4

Bijective S-boxes of size n = 4 are commonly used in cipher designs, such as GOST [25],
Serpent [1], PRESENT [5], and others. There are 16! (approximately 244) S-boxes of this
size. While it is not infeasible to enumerate this whole set, it requires a lot of computational
resources (e.g., to store this set, we need at least 152 TB of storage). Their cryptographic
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Table 1 Distribution of MAE classes of 3-bit S-boxes with respect to D- and L-criterion

D
L

1 2 3 4 5 6 7 8

1

2 1 3 2

3 7 8 1

4 2 13 6 1

5 1 2 2 2

6 2

7

8 3 1 1

properties can be more efficiently studied with the help of affine equivalence, as there are
only 302 AE classes. Of these, 16 classes are considered optimal with respect to linear and
differential cryptanalysis [16]. We will use the notation G0-G15 from [16] to denote the
optimal classes.

When considering modular affine equivalence, the situation is more complicated. Each
class can contain at most (23 · 24)2 = 214 elements (if every a1, b1, a2, b2 in (2) defines
a different S-box), thus there are at least (approximately) 244/214 = 230 classes. By per-
forming an exhaustive search over S-boxes restricted to potential MAE class representatives
(with S(0) = 0, and S(1) = 1, see Section 3.1), we were able to find 1277100855 MAE
classes. This number is very close to the lower bound, since it can be expressed as

(24)!
214

+ 75105.

While the set is still relatively large, we were able to experimentally determine D- and
L-criteria for each class in this set with moderate computational effort. The results are
graphically summarized in Fig. 1. The figure is a heat-map depicting the relative frequencies
of MAE classes for a given combination of the D-criterion (on the vertical axis), and the
L-criterion (on the horizontal axis). Low frequencies are (dark) red, going through orange
and yellow to green. White (empty) boxes depict combinations of D, L with no possible
MAE class. All non-empty boxes contain at least one MAE class, with its relative frequency
displayed as a percentage value. The numbers are for readability shortened to two decimal
places, thus very small (but non-zero) relative frequencies can be shown as 0.00%.

Fig. 1 Statistical distribution of MAE classes of 4-bit S-boxes with respect to D- and L-criterion
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The most common situation for a randomly selected S-box is D = L = 4, which happens
in approx. 30% of the MAE classes. For approx. 95% MAE classes, the criteria are bounded
by D, L ∈ {4, 5}. However, approximately 0.5% of the MAE classes satisfy D ≥ 8, or
L ≥ 8 (this means, the distinguishers use events with at least 50% probability).

Classes better than average are very rare. The lowest values of D = 2, L = 2 cannot be
obtained simultaneously. There are 170 classes with L = 2,D = 3, and 411 classes with
L = 3, D = 2, respectively.

We provide some examples of cryptographically strong S-boxes (among the class rep-
resentatives investigated) w.r.t. D- and L-criteria (we also give their differential uniformity
δF , and non-linearity NL):

– D = 2, L = 3:

– 012438c69ebf75da, first in lex-order, δF = 6, NL = 2,
– 012496ec37da5bf8, strong S-box with δF = 4, NL = 4,
– 013d95cf764ae2b8, weak S-box with δF = 16, NL = 0,
– 01462df75aec98b3, last in lex-order, δF = 8, NL = 2.

– D = 3, L = 2:

– 01325a9be7c68fd4, first in lex-order, δF = 6, NL = 2,
– 01357b962e8fdca4, strong S-box with δF = 4, NL = 4,
– 0135e8d46a29fcb7, weak S-box with δF = 12, NL = 0,
– 013fb8ac6e49d752, last in lex-order, δF = 6, NL = 2.

We were also curious, whether S-boxes that are used in cipher designs have good prop-
erties with respect to modular addition. We have selected a list of S-boxes from [24]. In
this set, D, L ∈ {3, 4, 5, 6, 7}. While most of the S-boxes have the expected properties
L = 4, D = 4, there are some examples of weaker S-boxes5:

– DES S5-1: D = 7, L = 4 (occurring with 0.53% probability in the global statistics).
Namely, we have a differential probability

Pr(S(x + 3) − S(x) = 8) = 7/16.

– GOST K8: D = 5, L = 7 (occurring with 0.36% probability in the global statistics).
There exists an affine approximation with probability

Pr(S(x) = 5x + 1) = 7/16.

– HAMSI, Serpent S2 (G1): D = 7, L = 3 (occurring with 0.12% probability in the
global statistics).

We have studied also the AE classes of DES S5-1 and GOST-K8. We have generated
all MAE representatives within each AE class, and computed the relative frequencies of
S-boxes with given values of D, L. We did not observe any irregularities within these AE
classes, and the overall distribution is similar to Fig. 1. It is very rare to obtain S-boxes with
such modular properties even in their AE class. The maximum value of the D-criterion is
D = 13 in both cases. The maximum value of the L-criterion is L = 11 in the AE class

5These results are for S-boxes represented in a standard natural binary expansion. For example, the GOST K8
S-box is given in [24] by the string 1fd057a4923e6b8c, which is represented as a permutation S(0) =
1, S(1) = 15, etc.
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of DES S5-1, and L = 12 in the AE class of GOST-K8. We have not studied whether this
property can be exploited in attacks on the corresponding ciphers.

5.3 Bijective S-boxes, n = 4, optimal classes

In addition to the previous study of the distribution of MAE classes with respect to the spe-
cific values of the D- and L-criterion, we have also studied properties of 4-bit S-boxes from
the 16 optimal classes. Although there is no reason to suspect different behaviour, we were
mostly interested in extreme cases: whether there are classes of S-boxes with significantly
better properties, and whether we can also find significantly weaker S-boxes with respect to
modular addition in these classes.

On a technical note, if we wanted to explore all S-boxes in the 16 optimal classes, the
required computational power would be 1303 times more than to explore all MAE class
representatives. Again, it is possible to save time by working only with S-box representa-
tives. To find S-box representatives for MAE classes within a single affine class, we use the
following lemma.

Lemma 4 Let A denote the set of all affine permutations over F2n . Let M denote the set
of all modular affine permutations over Z2n . Let AL ⊂ A, AR ⊂ A be sets such that
M ◦ AL = AR ◦ M = A. Let S : F2n → F2n be a bijective S-box. Then S = AL ◦ S ◦ AR

contains S-boxes from each MAE class contained in S
∗ = A ◦ S ◦ A.

Proof First, note that from the definition of AL, AR , it is easy to see that each S-box from
S is also in S

∗. Each S-box S∗ ∈ S
∗ can be written as

S∗ = β1 ◦ S ◦ β2,

with β1, β2 ∈ A. Let α1, α2 ∈ M be such that β1 = α1◦β ′
1, with β ′

1 ∈ AL, and β2 = β ′
2◦α2,

with β ′
2 ∈ AR . Thus

S∗ = β1 ◦ S ◦ β2 = α1 ◦ β ′
1 ◦ S ◦ β ′

2 ◦ α2.

Thus S∗ is MAE equivalent to the S-box S′ = β ′
1 ◦ S ◦ β ′

2, which is an element of S.

We use this lemma by computing smallest possible sets AL and AR , and enumerating S

instead of the larger S∗:

1. Let A be the set of all affine functions A : F2n → F2n , with n = 4.
2. Let AL contain MAE representatives of all classes aA(x) + b. This set contains 20160

permutations, and is can be easily seen that it has the property M ◦ AL = A.
3. Let AR contain MAE representatives of all classes A(ax + b). This set again contains

20160 permutations, and has the property AR ◦ M = A.
4. Compute AL ◦ S ◦ AR , where S is any normalized S-box in the selected AE class.

The results of the experiments are summarized in Figs. 2 and 3. We observe that in each
AE class, the best S-boxes always have (D, L) = (2, 3). The values (D,L) = (3, 2) are
only attained in classes G0, G1, G2, G8, G9, G10, G12, G14, and G15. Classes G4 and G13
contain S-boxes with (D, L) = (4, 2). Classes G3, G5, G6, G7, and G11 have a minimum
value of L = 3 (Fig. 4). Individual classes also slightly differ when considering high values
of L and D:

959Cryptography and Communications (2020) 12: –963947



1G0G

3G2G

5G4G

7G6G

Fig. 2 Statistical distribution of MAE classes of 4-bit S-boxes with respect to D- and L-criterion, within 16
optimal AE classes, G0-G7

– Nine AE classes (G0, G1, G2, G3, G4, G5, G7, G8, G12) have maximum possible value
L = 9, all other AE classes contain some S-boxes with L = 10.

– Four AE classes (G5, G7, G8, G11) have a maximum possible value D = 11, other AE
classes have D = 12.

Similarly to the global statistics, between 96% and 97% of S-boxes in each class have
D, L ∈ {4, 5} (common S-boxes). Between 0.1% and 0.2% of S-boxes have D ≥ 8 or
L ≥ 8 (bad S-boxes). The overview per class is presented in Fig. 5.

6 Conclusion

The focus of this work was an experimental investigation of the properties of (small) S-
boxes with respect to modular addition. We have computed statistics of representatives
of classes of modular affine equivalence and experimentally computed their distribu-
tion with respect to the D- and L-criteria. Experiments have also produced examples
of S-boxes that have good properties with respect to D- and L-criteria. On the other
hand, there is a non-negligible amount of S-boxes that are very weak with respect to
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9G8G

11G01G

31G21G

51G41G

Fig. 3 Statistical distribution of MAE classes of 4-bit S-boxes with respect to D- and L-criterion, within the
16 optimal AE classes, G8-G15

modular cryptanalysis. Our further analysis of the best 4-bit S-boxes in affine equiv-
alence classes G0-G15 shows that each class contains a similar ratio (0.1% - 0.2%)
of weak S-boxes. While these S-boxes are strong against classical linear and differen-
tial cryptanalysis, they either have a modular differential probability at least 1/2 (up to
12/16), or can be approximated by a modular affine function with probability at least 1/2
(up to 10/16).

Fig. 4 Statistical distribution of MAE classes of 4-bit S-boxes with respect to D- and L-criterion, within AE
class G3 (containing finite field inverse)
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Fig. 5 Statistical distribution of common and bad S-boxes within AE classes

In Section 4 we gave an example of a modular differential attack on a toy cipher based
on GOST, which is resistant against classical differential cryptanalysis. It is an open ques-
tion whether it is possible to exploit these properties to break some standard SPN based
cipher designs. On the other hand, S-boxes which resist standard cryptanalysis, but are
weak against modular cryptanalysis, are easy to find, and can be potentially used to insert
backdoors in cipher designs. Such S-boxes can even be hidden inside larger S-boxes. For
example, we can use our toy example design to construct a small bijective function on 16
bits, and only publish the final table of function values as an S-box. The hidden modular
weakness can be more difficult to spot in this hidden structure with reverse-engineering
similar to [4].

There are many questions left open. The representation of numbers as bitstrings (that
is, the choice of the bijection ι) does not influence the overall statistics. However, we can
ask how the choice of ι influences the properties of a concrete S-box we want to use. We
have not considered general bounds or theoretical estimates for general n (or non-bijective
S-boxes). There is also the question of combined differentials, where the input difference is
considered with respect to one operation, and the output difference with respect to another,
similar to the generalized non-linearity studied in [13]. Finally, a question can arise, whether
there are concrete S-boxes that are good with respect to some larger set of generalized
differences (and how to find them).
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