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Abstract

This paper presents an explicit representation for the solutions of the equation
∑ k

l
−1

i=0 x2li =
a ∈ F2n for any given positive integers k, l with l|k and n, in the closed field F2 and in the
finite field F2n . As a by-product of our study, we are able to completely characterize the a’s
for which this equation has solutions in F2n .

Keywords Linear equation · Binary finite field · Zeros of polynomials ·
Linearized polynomial
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1 Introduction

Solving equations over the binary finite field F2n is of high importance. In particular, those
involving the trace functions are crucial in many contexts in the framework of Boolean and
vectorial functions for symmetric cryptography and error-correcting codes [2, 3].
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Let F2 be the algebraic closure of F2. Let n be any positive integer and k and l be positive
integers such that l|k. In this paper, we discuss the sets of the solutions of the affine equation:

T k
l (x) :=

k
l
−1∑

i=0

x2li = a ∈ F2n , (1)

in F2 and in the finite field F2n . When l = 1, we shall simply write Tk instead of T k
1 .

Such an equation has no multiple roots since its derivative is a non-zero constant polyno-
mial. Linearized polynomials T k

l induce a linear map between fields viewed as vectorspaces
over F2. Therefore, the set of preimages of a ∈ F2n under T k

l is a coset of the kernel of
T k

l . Despite this fact is well-known, no explicit representations for such preimage sets can
be found in the literature except the quadratic equation x2 + x = a [1, 4]. In this paper, we
shall provide an explicit representation for the solutions of (1) in F2 as well as in F2n for
any n ≥ 1.

This paper is organized as follows. In Section 2, we state some properties about the
linearized polynomials involved in (1). Next, in Section 3, we study the solutions of (1). To
this end, we exploit the linearity to divide our study into two steps. Firstly, we identify the
zeros of the linearized polynomials T k

l in the algebraic closure and next in the given finite
field (Propositions 2 and 3). Secondly, in Section 3.2, we explicit all the solutions in the
algebraic closure F2 (Theorems 2 and 3). At this stage, the key step is to explicit particular
solutions of (1) (Lemmas 2 and 3). Finally, We identify in Section 3.3 all the solutions that
lies in a given finite field (Theorems 5 and 7). As a by-product of our study, we are able to
completely characterize when (1) has solutions in a given finite field (Theorems 4 and 6).

2 Preliminaries

Throughout this paper, we maintain the following notation.

• n is a positive integer.
• a is any element of the finite field F2n .
• k and l are positive integers such that l|k.
• L is any common multiple of n and k.
• We denote the greatest common divisor and the lowest commonmultiple of two positive

integers u and v by (u, v) and [u, v], respectively.
• d = (n, k).
• Given a positive integer m, we denote by μ2m+1 the multiplicative group of F2 of order

2m + 1 : μ2m+1 = {ζ ∈ F2 | ζ 2m+1 = 1} ⊂ F22m .

To begin with, we present several results that should help us in our study of the solu-
tions of (1). First of all, note that T k

l restricted to F2k is the trace map T rk
l , that is,

T k
l (x) = T rk

l (x) when x ∈ F2k . We now present some properties about the linearized
polynomials T k

l .

Proposition 1 Let k, l, k′, l′, m be positive integers such that l | k, l′ | k′ and m | l. Then,
the followings hold true:

1. T k
l ◦ T k′

l′ = T k′
l′ ◦ T k

l .
2. T l

m ◦ T k
l = T k

m.
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Lemma 1 The followings hold true:

1. For any x ∈ F2k , T k
l (x) ∈ F2l . Furthermore, T k

l (F2k ) = F2l .

2. Tk ◦ T2(x) = T 2k
k (x) = x + x2k

for any x ∈ F2.
3. For any x ∈ F2l ,

T k
l (x) =

{
x if k

l
is odd,

0 if k
l
is even.

4. For any x ∈ F2n , T n
(n,k)(x) = T

[n,k]
k (x).

Proof The first three statements are obtained by straightforward calculations. Hence, we
give a proof only for the last statement.

Since nk = [n, k](n, k), we have n
(n,k)

= [n,k]
k

. Furthermore, one has {j (n, k) mod n |
0 ≤ j ≤ n

(n,k)
− 1} =

{
ik mod n | 0 ≤ i ≤ [n,k]

k
− 1

}
because n divides ik if and only if

i is a multiple of n/(n, k) = [n, k]/k.

3 On the solutions of (1)

We shall often view the algebraic closure F2 and any finite field F2m , m ≥ 1, as vec-
torspaces over F2 and the linearized polynomials involved in (1) as linear maps between the
vectorspaces over F2. Given a finite dimensional subspace E of the linear space F2 over F2,
dim(E) denotes its dimension over F2. Let us now recall some well-known facts in linear
algebra that we shall use in the sequel. Let f be a linear map of F2 to itself. Then

dim f (E) = dim(E) − dim(ker(f ) ∩ E)

and
dim f −1(E) = dim(E ∩ Im(f )) + dim(ker(f )),

where Im(f ) := {f (x) | x ∈ F2} denotes the range of f and ker(f ) := {x ∈ F2 | f (x) =
0} denotes the kernel of f .

3.1 On the zeros of Tk
l

The zeros of the linearized polynomials T k
l are the zeros of the trace map T rk

l , that is, T
k
l

has no zeros outside F2k . Indeed, the number of the zeros of the linearized polynomial T k
l

is equal to 2k−l since its degree is 2k−l which is exactly the number of the zeros of T rk
l .

Therefore, {
x ∈ F2 | T k

l (x) = 0
}

=
{
x ∈ F2k | T rk

l k(x) = 0
}
. (2)

Now, it is well-known that T rk
l k(x) = 0 with x ∈ F2k is equivalent to x = y+y2l = T 2l

l (y)

for some y ∈ F2k (see for instance [4]). Hence, according to Item 2 of Lemma 1, it follows

Proposition 2
{
x ∈ F2 | T k

l (x) = 0
}

= Tl ◦ T2(F2k ).

Let us now study the zeros of T k
l lying in the finite field F2n . We deduce from (2) that

{x ∈ F2n | T k
l (x) = 0} = {x ∈ F2k ∩ F2n = F2d | T rk

l k(x) = 0}. (3)
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Next, observe that, since l|[d, l]|k, for any x ∈ F2d ⊂ F2[d,l] ,

T rk
l k(x) = T k

l (x) = T
[d,l]
l

(
T k

[d,l](x)
)

=
{

T
[d,l]
l (x) if k

[d,l] is odd,
0 if k

[d,l] is even
(4)

by Item 2 of Proposition 1 and Item 3 of Lemma 1. On the other hand, by Item 4 of Lemma 1,
one has T

[d,l]
l (x) = T d

(d,l)(x) for any x ∈ F2d and

{x ∈ F2d | T d
(d,l)(x) = 0} =

{
y + y2(d,l) | y ∈ F2d

}
= T

2(d,l)
(d,l)

(
F2d

) = T2 ◦ T(d,l)

(
F2d

)
.

Therefore, one has

Proposition 3

ker(T k
l ) ∩ F2n = {x ∈ F2n | T k

l (x) = 0} =
{

T2 ◦ T(d,l)

(
F2d

)
if k

[d,l] is odd,
F2d if k

[d,l] is even.

Remark 1 When l = 1, the above proposition rewrites as

{x ∈ F2n | Tk(x) = 0} =
{

T2
(
F2d

)
if k

d
is odd,

F2d if k
d
is even.

Remark 2 Proposition 3 states that

dim
(
ker(T k

l ) ∩ F2n

)
=

{
d − (d, l) if k

[d,l] is odd,
d if k

[d,l] is even.

Indeed, suppose that k
[d,l] is odd. The dimension of the subspace T2 ◦ T(d,l)

(
F2d

)

is equal to dim
(
T(d,l)

(
F2d

)) − dim
(
ker T2 ∩ T(d,l)

(
F2d

)) = dim
(
T(d,l)

(
F2d

)) −
dim

(
F2 ∩ T(d,l)

(
F2d

))
. By Remark 1, dim(T(d,l)

(
F2d

)
) = dim(F2d ) − dim

(
T2(F2(d,l) )

) =
d − ((d, l) − 1) = d − (d, l) + 1. On the other hand, T(d,l)

(
F2d

)
contains F2, yielding the

result.

Example 1 When k = 2l, we can recover from Remark 2 the well-known result
dim

(
ker(T 2l

l ) ∩ F2n

) = (n, l). Indeed, one has

dim
(
ker(T 2l

l ) ∩ F2n

)
=

{
(n, 2l) − ((n, 2l), l) = (n, 2l) − (n, l) if 2l

[(n,2l),l] is odd,
(n, 2l) if 2l

[(n,2l),l] is even.

Now, [(n, 2l), l] = (n,2l)l
((n,2l),l) = (n,2l)l

(n,l)
. Thus, if (n, 2l) = (n, l), then 2l

[(n,2l),l] = 2 (i.e. even)

and otherwise (i.e. (n, 2l) = 2(n, l)) 2l
[(n,2l),l] = 1.

Example 2 When k = n, that is, d = n, (d, l) = l and k
[d,l] = 1, Remark 2 states that

dim(ker(T n
l ) ∩ F2n ) = n − l.

A direct consequence of Proposition 3 is:

Corollary 1 T k
l is a permutation of F2n if and only if d|l and k

l
is odd. Hence, when k

l
is

odd, T k
l (x) is an exceptional polynomial over F2.

We can deduce the number of F2n -solutions of (1) from Remark 2.
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Theorem 1 The number of the F2n -solutions to (1) is 2d if k
[d,l] is even and 2d−(d,l) if k

[d,l]
is odd.

3.2 Solutions in the algebraic closure

In Section 3.1, we presented an explicit representation of the kernel of the linear map T k
l on

F2. Therefore, in order to describe all the solutions of (1) in F2, it suffices to find an explicit
representation of a particular solution to (1). We begin with the case where l = 1 which
contains the main idea.

Lemma 2 Let ζ ∈ μ2L+1 \ {1}. Set x0 = T L
k ◦ T2

(
a

ζ+1

)
. Then Tk(x0) = a.

Proof By Item 2 of Proposition 1 and Item 2 of Lemma 1, one has

Tk(x0) = Tk

(

T L
k

(

T2

(
a

ζ + 1

)))

= TL

(

T2

(
a

ζ + 1

))

= a

ζ + 1
+

(
a

ζ + 1

)2L

= a

ζ + 1
+ a

1/ζ + 1
= a.

In the last line, we have used the fact that ζ 2L = 1/ζ .

If x1 are x2 are two solutions of (1), then x1 + x2 is a zero of T k
l . Hence, we deduce from

Lemma 2 and Proposition 2 the following representation of the solutions to (1) when l = 1.

Theorem 2 Let ζ ∈ μ2L+1 \ {1}. Then, for any a ∈ F2n ,

{x ∈ F2 | Tk(x) = a} = T L
k ◦ T2

(
a

ζ + 1

)

+ T2(F2k ).

Using the fact Tk = Tl◦T k
l , the preceding result can be easily extended to find a particular

solution to the equation T k
l (x) = a.

Lemma 3 Let ζ ∈ μ2L+1 \ {1}. Set x1 = Tl ◦ T L
k ◦ T2

(
a

ζ+1

)
. Then T k

l (x1) = a.

Proof By Lemma 2, x0 = T L
k ◦ T2

(
a

ζ+1

)
is a particular solution to Tk(x) = a. Then x1 =

Tl(x0) is a particular solution of T k
l (x) = a since T k

l (x1) = T k
l (Tl(x0)) = Tl(T

k
l (x0)) =

Tk(x0) = a.

We then deduce from Proposition 2 that

Theorem 3 Let ζ ∈ μ2L+1 \ {1}. Then, for any a ∈ F2n ,

{x ∈ F2 | T k
l (x) = a} = Tl ◦ T L

k ◦ T2

(
a

ζ + 1

)

+ Tl ◦ T2(F2k ).
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3.3 Solutions in a finite field

In this section, we study the solutions of (1) lying in F2n . As in Section 3.2, we begin with
the case l = 1 because it contains some ingredients of the general case and is more simple
to study in the first stage. To this end, we have firstly to characterize the a’s for which (1)
has solutions in F2n .

Theorem 4 The equation Tk(x) = a has a solution in F2n if and only if T2 ◦ T n
d (a) = 0

when k
d
is odd and if and only if T n

d (a) = 0 when k
d
is even.

Proof Let a ∈ Tk(F2n), that is, there exists x ∈ F2n such that a = Tk(x). Then,

T n
d (a) = T n

d (Tk(x)) = Tk(T
n
d (x)) = Td(T k

d (T n
d (x)))

=
{

Td(T n
d (x)) = Tn(x) if k

d
is odd,

0 if k
d
is even

by Lemma 1 and Proposition 1. Now, T2(Tn(x)) = Tn(T2(x)) = 0 for any x ∈ F2n accord-
ing to Proposition 1 and Item 2 of Lemma 1. This proves that Tk(F2n) ⊂ ker(T2 ◦T n

d )∩F2n

if k
d
is odd and Tk(F2n) ⊂ ker(T n

d ) if k
d
is even.

Suppose that k
d
is odd. Then Tk is a linear map from F2n to itself whose kernel is of

dimension d − 1 according to Remark 2. Therefore, Tk(F2n) is of dimension n − (d − 1) =
n − d + 1 over F2. On the other hand,

dim
(
ker(T2 ◦ T n

d ) ∩ F2n

) = n − dim(T2 ◦ T n
d (F2n))

= n − dim
(
T n

d (F2n)
) + dim

(
ker(T2) ∩ T n

d (F2n)
)

= dim
(
ker(T n

d ) ∩ F2n

) + 1

= (n − d) + 1.

The third line follows from the fact that F2 ⊂ T n
d (F2n) = F2d and the last line follows from

Remark 2. We therefore conclude that Tk(F2n) = ker(T2 ◦ T n
d ) ∩ F2n if k

d
is odd (because

they have the same dimension).
Suppose that k

d
is even. Then Tk is a linear map from F2n to itself whose kernel is of

dimension d according to Remark 2. Therefore, Tk(F2n) is of dimension n − d which is
exactly the dimension of the kernel of the restriction of T n

d to F2n . By the same arguments
as in the odd case, we conclude that Tk(F2n) = ker(T n

d ).

We are now in position to state an explicit representation of the solutions to (1) in F2n

when l = 1.

Theorem 5 Let ζ ∈ μ2n+1 \ {1}.
1. Let k

d
be odd. Suppose that T2 ◦ T n

d (a) = 0. Then,

{x ∈ F2n | Tk(x) = a} = T2 ◦ T
[n,k]
k

(
a

ζ + 1

)

+ T2
(
F2d

)
. (5)

2. Let k
d
be even. Suppose that T n

d (a) = 0. Then,

{x ∈ F2n | Tk(x) = a} = T2 ◦ T
[n,n−k]
n−k

(
a2

n−k

ζ + 1

)

+ F2d . (6)
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Proof Firstly, suppose that k
d

= [n,k]
n

is odd. Then, according to Lemma 2, x0 = T2 ◦
T

[n,k]
k

(
a

ζ+1

)
is a solution to Tk(x) = a since μ2n+1 ⊂ μ2[n,k]+1. Let us now show that x0

lies in F2n :

x0 + x2n

0 = Tn ◦ T2

(

T2 ◦ T
[n,k]
k

(
a

ζ + 1

))

= T2 ◦ T
[n,k]
k

(

Tn ◦ T2

(
a

ζ + 1

))

= T2 ◦ T
[n,k]
k

(
a

ζ + 1
+

(
a

ζ + 1

)2n
)

= T2 ◦ T
[n,k]
k

(
a

ζ + 1
+ a

1/ζ + 1

)

= T2 ◦ T
[n,k]
k (a) = T2 ◦ T n

d (a) = 0.

Since k
d
is odd, (5) follows then from Proposition 3 (because the set of solutions to Tk(x) =

a is the affine subspace x0 + ker(Tk) ∩ F2n ).
Suppose that k

d
is even. Observe that in this case n−k

d
= n

d
− k

d
is odd since ( n

d
, k

d
) = 1.

Furthermore, the equation x2n−k + x = a2
n−k

has the same F2n -solutions as the equation

x2k + x = a. Therefore, it can be shown that y0 = T
[n,n−k]
n−k

(
a2

n−k

ζ+1

)

is a particular F2n -

solution to T 2k
k (x) = a. Thus, x0 = T2(y0) = T2 ◦ T

[n,n−k]
n−k

(
a2

n−k

ζ+1

)

is a particular F2n -

solution to Tk(x) = a since Tk(x0) = Tk ◦ T2(y0) = T 2k
k (y0) = a. Equation (6) follows

then from Proposition 3.

Now, we will consider the general case. Following the case when l = 1, we begin with
characterizing all the a’s for which (1) has solutions in F2n .

Theorem 6 The equation T k
l (x) = a has a solution in F2n if and only if T(d,l)◦T2◦T n

d (a) =
0 when k

[d,l] is odd and if and only if T
n
d (a) = 0 when k

[d,l] is even.

Proof For any x ∈ F2n ,

T n
d ◦ T k

l (x) = T k
l ◦ T n

d (x)

= T
[d,l]
l

(
T k

[d,l]
(
T n

d (x)
))

=
{

T
[d,l]
l

(
T n

d (x)
) = T d

(d,l)(T
n
d (x)) = T n

(d,l)(x) if k
[d,l] is odd,

0 if k
[d,l] is even

and T(d,l)◦T2◦T n
(d,l)(x)) = T2◦Tn(x) = 0. Therefore, it follows that T k

l (F2n) ⊂ ker(T(d,l)◦
T2 ◦T n

d )∩F2n when k
[d,l] is odd and that T

k
l (F2n) ⊂ ker(T n

d )∩F2n when k
[d,l] is even. Now,

we will show that the dimensions of the subspaces involved in these inclusion relations are
equal.

According to Remark 2, T k
l (F2n) is of dimension n − d + (d, l) if k

[d,l] is odd and of

dimension n − d if k
[d,l] is even.
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Suppose k
[d,l] odd. One has

dim
(
ker(T(d,l) ◦ T2 ◦ T n

d ) ∩ F2n

) = n − dim
(
T(d,l) ◦ T2 ◦ T n

d (F2n)
)
.

First, T(d,l) ◦ T2 ◦ T n
d (F2n) = T(d,l) ◦ T2(F2d ) = T

2(d,l)
(d,l) (F2d ). Furthermore, Example 1 let

us know

dim
(
T
2(d,l)
(d,l) (F2d )

)
= d − (d, l).

We therefore conclude that

dim
(
ker(T(d,l) ◦ T2 ◦ T n

d ) ∩ F2n

) = n − d + (d, l),

proving that T k
l (F2n) = ker(T(d,l) ◦ T2 ◦ T n

d ) ∩ F2n .
The case when k

[d,l] is even follows directly from Remark 2 which states dim(ker(T n
d ) ∩

F2n) = n − d in this case (see Example 2).

We now states the main result of this paper.

Theorem 7 Let a ∈ F2n and d = (n, k).

1. Let k
[d,l] and

k
d
be odd. Suppose that T(d,l) ◦ T2 ◦ T n

d (a) = 0. Then, one has

{x ∈ F2n | T k
l (x) = a} = Tl ◦ T2 ◦ T

[n,k]
k

(
a

ζ + 1

)

+ T(d,l) ◦ T2
(
F2d

)
, (7)

where ζ is any element of μ2n+1 \ {1}.
2. Let k

[d,l] be odd and
k
d
be even. Suppose that T(d,l) ◦ T2 ◦ T n

d (a) = 0. Then, one has

{x ∈ F2n |T k
l (x)=a}=Tl◦T2◦T

[n,n−k]
n−k

(
a2

n−k

ζ + 1

)

+T(d,l)◦T2

(
T n

d (a)

ζ + 1

)

+T(d,l)◦T2
(
F2d

)
,

(8)
where ζ is any element of μ2d+1 \ {1}.

3. Let k
[d,l] be even. Suppose that T

n
d (a) = 0. Then, one has

{x ∈ F2n | T k
l (x) = a} = Tl ◦ T2 ◦ T

[n,n−k]
n−k

(
a2

n−k

ζ + 1

)

+ F2d , (9)

where ζ is any element of μ2d+1 \ {1}.

Proof When k
[d,l] be odd and k

d
is even, the solution formula can be checked as follows:

Consider T n
d (a) ∈ F2d . Let y0 = Tl ◦ T2 ◦ T

[n,n−k]
n−k

(
a2

n−k

ζ+1

)

and z0 = T(d,l) ◦ T2

(
T n

d (a)

ζ+1

)
.

First, the facts that y0 ∈ F2n and that z0 ∈ F2d can be checked by using Theorem 5 and
the condition T(d,l) ◦ T2 ◦ T n

d (a) = 0. Then, it can be easily checked that T k
l (z0) = T n

d (a)

i.e. T [d,l]
l (z0) = T n

d (a) i.e. T d
(d,l)(z0) = T n

d (a). It is also an easy exercise to check by direct

calculation T k
l (y0) = T n

d (a) + a. So x0 = y0 + z0 is a F2n -solution to T k
l (x) = a and

Proposition 3 completes the proof.
In remaining cases, the solution formulas are deduced from Theorem 5 and Proposition 3,

regarding the fact that Tl(x0) is a solution in F2n to T k
l (x) = a if x0 ∈ F2n is a solution to

Tk(x) = a.
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4 Conclusion

In this paper, we discussed the sets of preimages of linearized polynomials

T k
l (x) :=

k
l
−1∑

i=0

x2li

over F2 and over the finite field F2n for any n ≥ 1 and provided an explicit representation
for such preimages. It would be interesting to consider such a problem in odd characteristic.
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