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Abstract

Kloosterman sums are vital in the study of bent functions, including regular p-ary bent
functions. In this paper, a congruence property for Kloosterman sums is presented first and
is used to prove the nonexistence of a class of p-ary bent functions. Further, this paper

2y
considers p-ary functions of the form f(x) = Tr} (@ x"1@=Dy 4 Tr (clx” @=D+e= ) 4

2, 2,
T} (ax™@~D) +Tr) cox2@=D+ =) 4 px 5= We use Kloosterman sums in the char-

acterization of this class of p-ary bent functions. Finally, an open problem of Jia et al. IEEE
Trans Inf. Theory 58(9): 6054-6063, 2012) is solved and we prove the nonexistence for a
class of regular p-ary bent functions.

Keywords Regular bent functions - Walsh transformation - Kloosterman sums -
p-ary functions - Congruence

Mathematics Subject Classification (2010) 06E75 - 94A60 - 11T23

1 Introduction

Introduced by Rothaus [17], Boolean bent functions from F7 or Fon to > have important
applications in cryptography, coding theory, and sequences. As a class of Boolean functions
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with maximal Hamming distance to the set of all affine functions, bent functions can be
used to construct highly nonlinear cryptographic functions and attract much attention. Many
research papers present characterization and construction of monomial bent functions, bino-
mial bent functions and quadratic bent functions [1-5, 12, 15, 16, 19, 20]. Boolean bent
functions were generalized to the notation of functions over an arbitrary finite field in [11]. It
is elusive to completely classify bent functions. The characterization of bent functions over
finite fields of odd characteristic is more complicate than that of Boolean bent functions.
Several work can be found in [7, 8].

Let p be an odd prime and m be an integer. Let n = 2m and ¢ = p™. Let Tr{ (-) be the
trace function from F > to I ,. Helleseth and Kholosha [6] studied monomial functions with
Dillon type of the form f, (x) = Tr} (ax™@=V), where a € qu and ged(r,qg + 1) = 1.
They proved that f; ,(x) is bent if and only if the Kloosterman sum K,, @tH onF pm
is zero.

Jia et al. [9] considered binomial functions of the form f,  (x) = Tr}(ax" @=Dy 4
2_
bx o ,wherea € F2,b € Fp, and ged(r, g+1) = 1. By Kloosterman sums, they presented
the characterization of bentness for f, 5 . For p = 3 or ¢ = 3 (mod 4), they proved that
fa.b.r 1s bent if and only if K,,(a) = 1 — sec % Zheng et al. [21] generalized Jia et al.’s
27b
b
Further, when ¢ = 7 (mod 8), r is even and gcd(%, g + 1) = 1, Zheng et al. proved that

result to the case ¢ = 1 (mod 4), i.e., f4 p,r is bent if and only if K, (a) = 1 — sec

2
Sapr(x) =T} (ax™@=Dy 4 bx% (a € ]qu, b € ) is not bent. This paper generalizes
Zheng et al.’s results, presents the characterization of more regular p-ary bent functions and
proves the nonexistence of a class of bent functions. Further, this paper also solves an open
problem in the case ¢ = 3 (mod 8) presented by Jia et al. [9] and proves that f, p - is not
bent.
Li et al. [13] considered trinomial functions of the form f, ¢ ,(x) = Tr| (ax" @=Dy 4

2o 2
T (exr @D+ 5 ) 4 bx "7 where a, ¢ € Fa,b € Fp, and ged(r, g + 1) = 1. They

presented the relation between the bentness of f, . and Kloosterman sums K, ((a +
AT, Ky ((a — c)?th).

With similar methods in [9, 13, 21], this paper generalizes their results and considers
functions with five terms of the form

2y
fx) = Tef(ax"4™D) + T (clx"l(q—l)-‘qu)

¢*-1

2.
+Tr} (ax"4™ D) + T} (czx”(q_”MT) +bx 7,

where aj,az,c1,c) € Iqu and b € F,. With the help of Kloosterman sums, we charac-
terize the bentness of this class of p-ary functions. A congruence property of Kloosterman
sums is deduced first, which is used to prove the nonexistence of some Dillon type bent
functions.

This paper is organized as follows: Section 2 introduces some notations and results on
character sums. Section 3 presents a congruence property and proves that some Dillon type
functions are not bent. Section 4 presents the characterization of bentness for functions
with five terms and solves an open problem proposed by Jia et al. [9]. Section 5 makes a
conclusion for this paper.
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2 Preliminaries
2.1 Regular bent functions

Throughout this paper, let p be an odd prime and m, n be positive integers. Let ¢ = p™, Fy
be a finite field with g elements and [y the multiplicative group composed of all nonzero
elements in . Let k|m and Tr}' (x) = Z:”:/ g =1 xP"" be the trace function from F pm 0 F i
For any x € IF:;Z, there exists a unique factorization x = y % &', where y € F*,0 <i < ¢,
and £ is a primitive element of Iqu. Let U = {g0,gla=D gla=Da} yy = U? =
(u?> 1 u € U}, and Uy = U \ Up. Sets of squares and nonsquares in IFZZ are defined as
Co={x2:x¢€ IF‘;‘Z}, Ci = {&x? 1 x € FZZ} respectively. Then F:z = CoUCy, and

T+1

CoNC1 = @. Define Cff = {x € Co : TeP(x" 7 ) # 0}
A p-ary function is a map from [ ,» to IF,. The Walsh transform of a p-ary function f (x)
over IF» is defined by Wy (X)) = ) w/ =T where w = e2V=1/P and A € Fpn.
A p-ary function f(x) is called a p-ary bent function if |W ¢ W2 = p" forany A € Fn.
A p-ary bent function f(x) is regular if there exists some p-ary function f*() satisfying
WrA) = p>w/"® for any A € Fpn. The function f*(1) is called the dual of f(x). And
the dual of a regular p-ary bent function is also bent. Let n = 2m for the rest of the paper.

xE]Fpn

2.2 Exponential sums

For a € IFp,n, the Kloosterman sum K,(a) [14] of a is defined by K,(a)
ZXEFI,n wT @+1) where % = 0 for x = 0. Since K, (a) = Z%Fpn w- T @+ —
K, (a), then K, (a) is a real number.

Some notations are defined below.

3m m
; CED2P2 p=3 (mod 4);
%, otherwise.
1 1
Q(a) = 2Tx} aT> ,aeCl;
1—-K pr+1
R(a) = %,a € ]qu.

Obviously, when ¢ = 1 (mod 4), [ is a real number.
The following result on exponential sums is useful [9].

Proposition 1 Let a € F*,, then
q

Z W@ _ { R(a) + I (w9@ —w=2@) g4 e(Cf,

R(a), otherwise,
uely

and
Z W — { R(a) — I(w2@ — = Q@) 4 ¢ C(T,

R(a), otherwise.
uel
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3 A congruence property of Kloosterman sums and its application

Lemmal Leta,x € IF(’;, andy € IF,.

(1) If y? — 4a is not a quadratic residue in Fy, then ax + x~1 =y has no solution.
(2) Ify? —4a =0, then ax + x~' =y has only a solution.
(3) Ify? — 4a is a quadratic residue in Fy, then ax + x~1 = y has two solutions.

Proof The equation ax + x~! = y can be transformed into ax> — yx + 1 = 0. And
A= y2 — 4aq is the discriminant for ax? — yx + 1 = 0. Hence, Results (1), (2), and (3) are
obviously obtained. O

Proposition 2 Ler w be a primitive p-th root of unity and Q(w) be the p-th cyclotomic field
over rational field Q. Let R be a prime ideal lying above 2 in Q(w) and a € Fy, then

(1) Kp(a) = 1 (mod fR) if and only if a is a nonsquare or a is a square satisfying
T (Ja) = 0.

2) Kp@ =1+w +w™ (mod R)(1 <t < p—1)ifand only if a is a square and
T (24/a) = +t.

Proof We first prove that when 1 <t < p— 1,1+ w' + w™ # 1 (mod ), and when
l<n<n<Z 14w +w™ # 14w+ w™ (mod R). Note that w # 1
(mod fR), i,e, w (mod fR) is also a primitive p-th root of unity. If 1 + w’ + w™" =1
(mod fR), then w' + w™" = 0 (mod R), i,e, w* = 1 (mod R). Then r = 0 (mod p),
which makes a contradiction with the supposition of 7. Hence, 1 +w’ +w™" # 1 (mod ).
IfFl+wl+w™ =1+w2+w™2 (mod R), then (w2 +1)(w""24+1) =0 (mod R).
From the supposition of #1, t, w1 ™2 % 1 (mod R), w2 # 1 (mod R). Then it makes
a contradiction. Hence, 1 + w’ +w™ # 14+ w” + w™"? (mod R).
From the definition of Kloosterman sums, we have

Kn(a) = 14 Y wi@+D

xelF;
=1+ Z w™ O#x € ]F; cax 4+ x7 =y
yelF,

From Lemma 1,
Kp(@) =1+ Z wTr'ln(y)#{x S ]F; Tax +x_l =y}
yeFy,
1+ > w™Y (mod R).

yeF, ,y2—4a=0

If a is a nonsquare, then K, (@) = 1 (mod *R).
If a is a square and Tr’l’z(ﬁ) =0, then K,,(a) =1 (mod R).
If a is a square, and Tr}' 2y/a) = t, then K, (a) = 1 + w' + w™" (mod R).
Hence, this proposition follows. O

Rerlnark 1 From Proposition 2, K,,(a) (mod R) € {I + w' + w™" (modR) : 0 <t <
P;}
1
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Proposition 2 can be used to discuss the nonexistence of some regular p-ary bent
functions. The following theorem demonstrates that some regular p-ary bent functions in
Theorem 10 in [13] do not exist.

Theorem 1 Let p be a prime bigger than 7, and 2 be a primitive root modulo p. Let a €
F,2, and r, s be two integers satisfying gcd(s —r,q + 1) = 1. Then the function f(x) =

Z?:_ol T} (ax T +9@=D) is not bent.

Proof From Theorem 10 in [13], f(x) is regular bent if and only if Tr}(a) = f(0) and
Kn(@?™ =2 — wf© — »=fO Denote f(0) = i. From Proposition 2, we just need to
prove that ' _
2—w' —wl£1+w +w" (mod N),
where R is a prime ideal lying above 2 in Q(w) and 0 <t < prl Hence, we just prove that
w+wP T w +wP T 1 £0 (mod R).

Suppose that w’ + wP~ '~ + w! + wP~1=1 4 1 =0 (mod R). Then w' + w?~ 1~ + w +
wP~1=1 £ 1 (mod fR) is an annihilating polynomial with no more than 5 terms of no more
than p — 1 degree over IF,. Since 2 is a primitive root modulo p, there is only an annihilating
polynomial w?~! 4+ wP~2 4 ... + w41 (mod R) of no more than p — 1 degree over Fy.
Since p > 7, wP~ 4 wP~24 ... 4 w+1 (mod MR) has more than 5 terms, which makes
a contradiction. Hence, w' + w? ™'~ + w! + w?~ 171 41 £ 0 (mod 9R), and this theorem
follows. O

Remark 2 The prime required in the above theorem is just an Artin prime for 2. Let S(2)
be the set of primes p such that 2 is a primitive root modulo p. Then S(2) has a positive
asymptotic density inside the set of primes. Let P; and AP; be the numbers of primes
and primes in S(2) between 3 and 10?. Artin conjecture claims that S(2) has the density
Curin ~ 0.3739558136. ... Table 1 lists some values for API_J" . And all the primes in S(2)
less than 100 are 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83. '

4 Regular bent functions with five terms
In this section, we consider functions of the form

21
£ = T @x"9) 4 o] (clx"“’*”*"T) + T (a7207D)

g>-1

2, _
+Tr} (czx’Z("_l)Jqu) +bx 7, (1)

where ay, ¢y, az, cr € ]Fq2, andb € F,. If b = 0,and ay, c1,a2,¢2 € IF’[;Z, f(x) has four
terms.

Table 1 The density of Artin P " o P o e
primes for 2 @) FER) FER) FER) FH(R) FER)

40.1198  38.2736  37.5665  37.3785  37.3908 37.3991
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In convenience, we denote the function over U induced by f(x)

g+1

fw) = Te @u™) + T} (quw%l) + Tr} (au™) + Tt} (62u’2+%) +bu 7.

Define an exponential sum

Sp=> w/®. 2)
uel
Then the following lemma determines regular bent function f (x).

Lemma 2 Let f(x) be a p-ary function defined in (1) and Sy be the exponential sum in

(2). Then f(x) is bent if and only if Sy = 1. Further, if f(x) is bent, then f(x) is regular
bent.

Proof Suppose f(x) is bent. For A € ]FZZ’

Wiy = 3 w/ TG

xe]qu
q . .
-1+ wa(é’) Z w T &)
i=0 yelFy
q . . .
=14 wa(s') Z w- T (GE +21 ) )y)
i=0 yelFy
q _ q _ A _
—1— Z wlE) 4 Z wlE) Z w- T (GE 296 y)
i=0 i=0 yeFy
q ) )
—1— Z wl€) 1 g Z wf €
i=0 0<i<q,A§'+19(51)7=0
=1-Y wl @ 4 g/ €,
uelU

where i, is the unique number such that 0 < i < g, )u;?"* + A4 (éi*)q = 0. From the
definition of S,
Wr0) =1-S; +qul €. 3)

Since f(x) is bent, from Property 8 in [11], there exists 0 < j < p — 1 satisfying Wy (A1) =
+qw/. From (3), we have Sy — 1 —qw/¢™) £ gw/ = 0. Suppose that §7 — 1 —gw/E™) —
qw’ = 0. Then we have

p—l )

> Newt =1 - quw ) —quwl =0 @)

k=0
where N; = #{u € U : f(u) = i}. Obviously, Ng + Ny + --- + Np_; = g + 1. Since
f(x)isbent, then 1 < N; < g. Since the minimal polynomial of w is wP 4wl 24 4
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w + 1 = 0, (4) does not hold. Hence, Sy — 1 — quwf€™ 4+ quwi = 0,ie., j = f(E™). We
have Sy = 1.
On the other hand,

W (0) = Z wl @

xelF
q2

1+i Z wf(yé’)

i=0 ye]FZ

q )
1+ZZ wf(-‘;:l)

i=0 yeF:
i i
I+ -1 w/®

i=0

I+ -1 wi®,

uel

From the definition of f (u) and Sy, we have
W) =14 (g — DS 5)

If Sy = 1, from (3) and (5), f(x) is bent.
If f(x) is bent, from (3) and (5), f(x) is regular bent.
Hence, this lemma follows. O

The following lemma gives a simpler expression for Sy.

Lemma 3 Let f(x) be a p-ary function defined in (1) and Sy be the exponential sum in
(2). Then

Sp= w? Z Wi (@ +eDu H+Tr] (@ate)u'?) o) =b Z w Tt (@ —enuH+Tr (a2 —c)u"2)

uelyp uel;

Proof We have

Sp = wa(u)

uelU
> wl@ 4 3 wl
uely uel;

_ Z w T (@r+en)u)+Tr ((ax+c2)u'2)+b + Z w T (@ —cuV)+Tr} ((ap—c2)u'2)—b
uely uel;

— wb Z Wi (@ +eDu DT} (@a+e)u'?) ) —=b Z w Tt (@ —eDu DT (@2 —c)u’2)

uely uel;

which completes the proof. O
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For general f(x), Sy is difficult to compute. We consider a subclass of functions in (1)
defined by

21
fx) =Tr| (alx”@*l)) + T} (alx”(““*"T> + Trf (a2x4 D)

2_1

) ( _1)+‘12;] ¢ =1
=Tt} | apx™ T ) +bx T, (©6)
where ay, ap € IF‘qz and b € F).
Lemma 4 Let f(x) be a p-ary function defined in (6) and Sy be the exponential sum in

(2). Then Sf =w’ Zuer wTﬂ;(zalurl) + w™b ZueUl wTr'l’(Zaqu).

Proof From Lemma 3, this lemma can be obviously obtained. O

Theorem 2 Let f(x) be a p-ary function defined in (6). Let gcd (rl, %) =
ged (rg, q+1> = 1 and ry be odd. Then f(x) is regular bent if and only if

M(A —B)+C —2, 2a;1,2a € C;

+ +.

b g+1 b q+1)_ MA +C -2, 2a1 € Cy ,2a; ¢Cy

wI(m<4a1 >+w Km<4a2 =1 -MB+C—2. 2a1¢C0+,2azec+;
C -2, 2a1,2a, ¢ Cf .

whereM:4I\/—l,A:wbsin%, B=w"s w and C = 2 cos 2’;1’

Proof Since gcd (rl, ﬂ) = gcd (rz, 1) = 1 and r; is odd, the map u —— u’! is a

permutation from Up to Up and u —— u'? is a permutation from U to U;. From Lemma
4,8r = w? ZMEUO Wt Qa4 gy =b ZueU; wTi @a2t) From Proposition 1 and Lemma 2,
this theorem follows. O

Corollary 1 Let f(x) be a p-ary function defined in (6). Let gcd (rl, %) =
ged (rz, ) =1, rp be odd and b = 0. Then f(x) is regular bent if and only if

41/—1 |[sin ZHQ;Z“‘) — sin 2”Qp(2“2)] , 2ay,2a € CF;

"1 in 21 0Q2ay) + +.
<4af+l)+K (4aq+1) _ ) 4IJ/—TIsin 72[, . , 2a1 € Cy ,2a2 £ Cy
—41«/—lsinw, 2a; ¢Cg‘,2a2€C+;

0, 2ay,2ay € Car.

In particular, if ¢ = 1 (mod 4), then f(x) is regular bent if and only if K, (4a[1+1) +
Knad™) =o0.

Proof From Theorem 2 , the first part of this corollary can be obviously obtained. Note that
K, (461?“) and K, (4a£’+l) are real. Since ¢ = 1 (mod 4), I is real. Hence, the rest part
of this corollary also holds. O
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2m/—1

1 (mod 4),and w = e 7 . Let
+5w?4+4w+3=0.Then £ is a

Example: Let p = 7,m = 2, n = 2m, q = p™
F,2 =Fp(§), where the minimal polynomial of § is w

~

primitive element ofIF 2. Take ry, rp satisfying ged (”1, ‘H‘l) = ged (,,2’ q+1) — 1 and ry
isodd. Let b = 0, a; = £2%°, and ap = £%!. Then K,, (4aq+1) — 6w’ — 4wt — 4uw3 —
6w?—1and K, <4aq+l> = 6w’ +4w* +4w? +6w’+1. And K, (4aq+1)+Km(4anrl) =

0. From Corollary 1, the function defined in (6) is a regular bent function with four terms.

Corollary 2 Let f(x) be a p-ary function defined in (6). Let gcd (rl, ‘1“) =
gcd (,,2’ q"']) =1, beodd, b # 0and2ay,2a, ¢ Car. Then f(x) is regular bent if and
only if K, <4aq+l) Ko (4ag+l) =1—sec ng

Proof From Theorem 2, if 2ay,2a> ¢ Cr, f(x) is regular bent if and only if
w?K,, (4aq+1) +wtK, <4aq+l) = 2cos 2’;1’ 2. Take the complex conjugate of both

sides. And we have w™2K,, (4a"+l> + wbK,, (45ngr ) = 2 cos 2ZL p —2.Since b # 0, we
have K, <4a(11+]) =K, (4a‘21+1> =1-—sec %. Hence, this corollary follows. O

Remark 3 From Corollary 2 and Theorem 3.9 in [18], if p = 11, gcd (”1, 4+1) _

gcd (rz, a1 ) = 1 and r; is odd, then for any 2ay, 2a, ¢ CJr and b # 0, the function f(x)
defined in (6) is not bent.

2r/—1

Example.Let p =5, m =4, n =2m,q = p" =1 (mod4),and w = e » .Let
F,» = F,(€), where the minimal polynomial of £ is £* + &% + 352 + 4€ + 2 = 0. Then
& is a primitive element of Iqu. Take ry, ro satisfying ged <r1, ﬂ) = gcd (rz, at! ) 1
and rp is odd. Take b = 1, a1 = 564401 and ap = £33 Then 2a1,2ar ¢ C(; and

Knm (4aq+l) =K, (4ag H) =1—secZ = = —+/5. From Corollary 2, the function defined
in (6) is a regular bent function with five terms.

. . +1
Corollary 3 Let f(x) be a p-ary function defined in (6). Let gcd (rl,qT) =

gcd (rz, qTH) =1, rmbeodd b =0, and ay = a = a. Then f(x) is regular bent if and
only if Ky (4a971) = 0.

Proof From Corollary 1, this corollary can be obviously obtained. O

Remark 4 Kononen et al. [10] proved that if p > 5, for any a € Fy, K;,(a) # 0. Hence, if
p > 5, a p-ary function in Corollary 3 is not bent.

2/=1
Example.Let p =3, m =4, n =2m,q = p" =1 (mod4),and w = e » .Let
F,» = F,(£), where the minimal polynomial of & is 58 +28% +£4 4262426 +2 = 0. Then
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& is a primitive element of qu. Take ry, rp satisfying ged (rl, q—“) = gcd (rz, q+1) =1

and rp isodd. Take b = 0,a; = ap = a = 5434. Then K, (4a?t!) = 0. From Corollary 3,
the function defined in (6) is a regular bent function with four terms.
Corollary 4 Let f(x) be a p-ary function defined in (6). Let gcd <r1, ’H'l) =

gcd (rz, T) =1, beodd ay = ay = aand b # 0. Then f(x) is regular bent if and
only if

—4] sin 228 gjp 2ZQCD g0 27”’ 1 —sec &2 2”b ,2aeCr;
Kin(4a®h) = 24b b " ‘ 90—
1 — sec = 2a ¢Cy .
In particular, if ¢ = 3 (mod 4), f(x) is regular bent if and only if K,, (4aq+]) =
1 —sec %

Proof Note that if ¢ = 3 (mod 4), then I is not real. From Theorem 2, this corollary can
be obviously obtained. O

Theorem 3 Let f(x) be a p-ary function defined in (6). Let gcd (rl, "H) =
gcd (rz, ) = 1 and rp be even. Then f(x) is bent if and only if

M(A+ B)+C =2, 2ay,2a, € C;

+ +

q+1> b g+, | MA+C -2, 2a1 € Cy ,2az ¢Cy

w' K (4af ") + w7 K da ) = MB+C—2, 2a) ¢ Cf . 2ay € Gy
C -2, 2a1,2a2¢05r.

whereM:4I\/—1,A:wbsin%, B=w"bs M and C = 2cos 2’;"

Proof Since ged (rl, 2+l ) = gcd (rz, 1) = 1 and r, is even, then the map u —— u'! is

a permutation from Up to Up and u —— u'? is a bijection between U and Upy. From Lemma
4 .o,

4,8p = wb > et wTr Gar) 4 qy=b > uels w1 a2 From Proposition 1 and Lemma 2,

this theorem follows. O

Example. Let p = 3, m = 6 and n = 2m. Let qu = F, (&), where the minimal
polynomial of & is 12 + £% 4+ &5 4+ £* 4+ £2 4 2 = 0. Then & is a primitive element of
IF 2. Take ry, ro satisfying ged (rl, qurl) = gcd (rz, "J2“1> = 1l and r; is even. Take b = 1,

a1 = €570 and ay = £¥31%. Then 2a1, 2a ¢ C and Ko (4a{™") = Ko (4ad™") =

1 —sec (2; ) = 3. From Theorem 3, the function defined in (6) is a regular bent function
with five terms.

Theorem 4 Let f(x) be a p-ary function defined in (1). If gcd (rl, r, %) > 1, then
f(x) is not bent.

@ Springer
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Proof Letd = ged (r1 R %) From Lemma 3,

Sf _ dwb Z wTIJll((al+cl)ur1/(1)+Trll1((a2+cz)ur2/d)+dw7b Z wTr’f((alf(,‘l)url/61)+Trrll((a2762)u"2/d),

veH, veH,
where Hy = Uod and H| = U{’. Hence, Sy =0 (mod d). Sinced > 1, then Sy # 1. From
Lemma 2, f(x) is not bent. O

2_
Corollary 5 Let g = 3 (mod 4). Let f(x) = Trl(ax"?"~V) + b’ where a e F,,
b e F), riseven, and gcd(%, q + 1) = 1. Then f(x) is not bent.

Proof In Theorem 4, take a; = a,c1 = 0, a0 = ¢ = 0, r1 = r, and r, = 0. Then
2| ged (r, 0, %) From Theorem 4, f (x) is not bent. O

Remark 5 Corollary 5 is a generalization of Theorem 3 in [21]. [21] just discussed the case
g =7 (mod 8) and did not solve the case ¢ =3 (mod 8).

5 Conclusion
This paper first presents a congruence property for Kloosterman sums and with it prove
the nonexistence of some regular p-ary bent functions. Further, we study p-ary func-

2
tions of the form f(x) = Tt} (a;x"1@~V) + Tr} (alx”(‘l—‘”%) + T} (apx™@D) —

2. -1
Try (azx”(q_]”q Z + bx"™7 and characterize the bentness of these functions with

Kloosterman sums. Finally, we solve an open problem in [9] and prove the nonexistence of
some regular bent functions. A natural problem is to study general regular p-ary bent func-

21
tions of the form f(x) = Tt} (ajx" @~ D) + Tr} (clx"(q’l)+q7) + Tt} (apx2@=D) 4

2, 2,
Tr) (czx”(q _])+qT) + bx 7, which is our further work.
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