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Abstract
Kloosterman sums are vital in the study of bent functions, including regular p-ary bent
functions. In this paper, a congruence property for Kloosterman sums is presented first and
is used to prove the nonexistence of a class of p-ary bent functions. Further, this paper

considers p-ary functions of the form f (x) = Trn1(a1x
r1(q−1)) + Trn1

(
c1x

r1(q−1)+ q2−1
2

)
+

Trn1
(
a2x

r2(q−1)
)+Trn1

(
c2x

r2(q−1)+ q2−1
2

)
+bx

q2−1
2 . We use Kloosterman sums in the char-

acterization of this class of p-ary bent functions. Finally, an open problem of Jia et al. (IEEE
Trans Inf. Theory 58(9): 6054–6063, 2012) is solved and we prove the nonexistence for a
class of regular p-ary bent functions.

Keywords Regular bent functions · Walsh transformation · Kloosterman sums ·
p-ary functions · Congruence

Mathematics Subject Classification (2010) 06E75 · 94A60 · 11T23

1 Introduction

Introduced by Rothaus [17], Boolean bent functions from F
n
2 or F2n to F2 have important

applications in cryptography, coding theory, and sequences. As a class of Boolean functions
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with maximal Hamming distance to the set of all affine functions, bent functions can be
used to construct highly nonlinear cryptographic functions and attract much attention. Many
research papers present characterization and construction of monomial bent functions, bino-
mial bent functions and quadratic bent functions [1–5, 12, 15, 16, 19, 20]. Boolean bent
functions were generalized to the notation of functions over an arbitrary finite field in [11]. It
is elusive to completely classify bent functions. The characterization of bent functions over
finite fields of odd characteristic is more complicate than that of Boolean bent functions.
Several work can be found in [7, 8].

Let p be an odd prime and m be an integer. Let n = 2m and q = pm. Let Trn1(·) be the
trace function from Fq2 to Fp . Helleseth and Kholosha [6] studied monomial functions with

Dillon type of the form fa,r (x) = Trn1(axr(q−1)), where a ∈ Fq2 and gcd(r, q + 1) = 1.
They proved that fa,r (x) is bent if and only if the Kloosterman sum Km(aq+1) on Fpm

is zero.
Jia et al. [9] considered binomial functions of the form fa,b,r (x) = Trn1(axr(q−1)) +

bx
q2−1
2 , where a ∈ Fq2 , b ∈ Fp and gcd(r, q+1) = 1. By Kloosterman sums, they presented

the characterization of bentness for fa,b,r . For p = 3 or q ≡ 3 (mod 4), they proved that
fa,b,r is bent if and only if Km(a) = 1 − sec 2πb

p
. Zheng et al. [21] generalized Jia et al.’s

result to the case q ≡ 1 (mod 4), i.e., fa,b,r is bent if and only if Km(a) = 1 − sec 2πb
p

.
Further, when q ≡ 7 (mod 8), r is even and gcd( r

2 , q + 1) = 1, Zheng et al. proved that

fa,b,r (x) = Trn1(axr(q−1)) + bx
q2−1
2 (a ∈ Fq2 , b ∈ Fp) is not bent. This paper generalizes

Zheng et al.’s results, presents the characterization of more regular p-ary bent functions and
proves the nonexistence of a class of bent functions. Further, this paper also solves an open
problem in the case q ≡ 3 (mod 8) presented by Jia et al. [9] and proves that fa,b,r is not
bent.

Li et al. [13] considered trinomial functions of the form fa,c,b,r (x) = Trn1(axr(q−1)) +
Trn1

(
cxr(q−1)+ q2−1

2

)
+ bx

q2−1
2 , where a, c ∈ Fq2 , b ∈ Fp , and gcd(r, q + 1) = 1. They

presented the relation between the bentness of fa,c,b,r and Kloosterman sums Km((a +
c)q+1),Km((a − c)q+1).

With similar methods in [9, 13, 21], this paper generalizes their results and considers
functions with five terms of the form

f (x) = Trn1(a1x
r1(q−1)) + Trn1

(
c1x

r1(q−1)+ q2−1
2

)

+Trn1(a2x
r2(q−1)) + Trn1

(
c2x

r2(q−1)+ q2−1
2

)
+ bx

q2−1
2 ,

where a1, a2, c1, c2 ∈ Fq2 and b ∈ Fp. With the help of Kloosterman sums, we charac-
terize the bentness of this class of p-ary functions. A congruence property of Kloosterman
sums is deduced first, which is used to prove the nonexistence of some Dillon type bent
functions.

This paper is organized as follows: Section 2 introduces some notations and results on
character sums. Section 3 presents a congruence property and proves that some Dillon type
functions are not bent. Section 4 presents the characterization of bentness for functions
with five terms and solves an open problem proposed by Jia et al. [9]. Section 5 makes a
conclusion for this paper.
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2 Preliminaries

2.1 Regular bent functions

Throughout this paper, let p be an odd prime and m, n be positive integers. Let q = pm, Fq

be a finite field with q elements and F
∗
q the multiplicative group composed of all nonzero

elements in Fq . Let k|m and Trmk (x) = ∑m/k−1
i=0 xpki

be the trace function from Fpm to Fpk .
For any x ∈ F

∗
q2
, there exists a unique factorization x = y ∗ ξ i , where y ∈ F

∗
q, 0 ≤ i ≤ q,

and ξ is a primitive element of Fq2 . Let U = {ξ0, ξ (q−1), . . . , ξ (q−1)q}, U0 = U2 =
{u2 : u ∈ U}, and U1 = U \ U0. Sets of squares and nonsquares in F

∗
q2

are defined as

C0 = {x2 : x ∈ F
∗
q2

}, C1 = {ξx2 : x ∈ F
∗
q2

} respectively. Then F
∗
q2

= C0
⋃ C1, and

C0
⋂ C1 = ∅. Define C+

0 = {x ∈ C0 : Trm1 (x
pm+1

2 ) �= 0}.
A p-ary function is a map from Fpn to Fp . The Walsh transform of a p-ary function f (x)

over Fpn is defined by Wf (λ) = ∑
x∈Fpn

wf (x)−Trn1(λx),where w = e2π
√−1/p and λ ∈ Fpn .

A p-ary function f (x) is called a p-ary bent function if |Wf (λ)|2 = pn for any λ ∈ Fpn .
A p-ary bent function f (x) is regular if there exists some p-ary function f ∗(λ) satisfying
Wf (λ) = p

n
2 wf ∗(λ) for any λ ∈ Fpn . The function f ∗(λ) is called the dual of f (x). And

the dual of a regular p-ary bent function is also bent. Let n = 2m for the rest of the paper.

2.2 Exponential sums

For a ∈ Fpn , the Kloosterman sum Kn(a) [14] of a is defined by Kn(a) =∑
x∈Fpn

wTrn1(ax+ 1
x
), where 1

0 = 0 for x = 0. Since Kn(a) = ∑
x∈Fpn

w−Trn1(ax+ 1
x
) =

Kn(a), then Kn(a) is a real number.
Some notations are defined below.

I =
⎧⎨
⎩

(−1)
3m
2 p

m
2

2 , p ≡ 3 (mod 4);
(−1)mp

m
2

2 , otherwise.

Q(a) = 2Trm1

(
a

pm+1
2

)
, a ∈ C+

0 ;

R(a) = 1 − Km(apm+1)

2
, a ∈ Fq2 .

Obviously, when q ≡ 1 (mod 4), I is a real number.
The following result on exponential sums is useful [9].

Proposition 1 Let a ∈ F
∗
q2
, then

∑
u∈U0

wTrn1(au) =
{

R(a) + I (wQ(a) − w−Q(a)), a ∈ C+
0 ,

R(a), otherwise,

and ∑
u∈U1

wTrn1(au) =
{

R(a) − I (wQ(a) − w−Q(a)), a ∈ C+
0 ,

R(a), otherwise.
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3 A congruence property of Kloosterman sums and its application

Lemma 1 Let a, x ∈ F
∗
q , and y ∈ Fq .

(1) If y2 − 4a is not a quadratic residue in Fq , then ax + x−1 = y has no solution.
(2) If y2 − 4a = 0, then ax + x−1 = y has only a solution.
(3) If y2 − 4a is a quadratic residue in Fq , then ax + x−1 = y has two solutions.

Proof The equation ax + x−1 = y can be transformed into ax2 − yx + 1 = 0. And
� = y2 − 4a is the discriminant for ax2 − yx + 1 = 0. Hence, Results (1), (2), and (3) are
obviously obtained.

Proposition 2 Let w be a primitive p-th root of unity and Q(w) be the p-th cyclotomic field
over rational field Q. Let R be a prime ideal lying above 2 in Q(w) and a ∈ F

∗
q , then

(1) Km(a) ≡ 1 (mod R) if and only if a is a nonsquare or a is a square satisfying
Trm1 (

√
a) = 0.

(2) Km(a) ≡ 1 + wt + w−t (mod R)(1 ≤ t ≤ p − 1) if and only if a is a square and
Trm1 (2

√
a) = ±t .

Proof We first prove that when 1 ≤ t ≤ p − 1, 1 + wt + w−t �≡ 1 (mod R), and when
1 ≤ t2 < t1 ≤ p−1

2 , 1 + wt1 + w−t1 �≡ 1 + wt2 + w−t2 (mod R). Note that w �≡ 1
(mod R), i,e, w (mod R) is also a primitive p-th root of unity. If 1 + wt + w−t ≡ 1
(mod R), then wt + w−t ≡ 0 (mod R), i,e, w2t ≡ 1 (mod R). Then t ≡ 0 (mod p),
which makes a contradiction with the supposition of t . Hence, 1+wt +w−t �≡ 1 (mod R).
If 1+wt1 +w−t1 ≡ 1+wt2 +w−t2 (mod R), then (wt1+t2 +1)(wt1−t2 +1) ≡ 0 (mod R).
From the supposition of t1, t2, wt1+t2 �≡ 1 (mod R), wt1−t2 �≡ 1 (mod R). Then it makes
a contradiction. Hence, 1 + wt1 + w−t1 �≡ 1 + wt2 + w−t2 (mod R).

From the definition of Kloosterman sums, we have

Km(a) = 1 +
∑
x∈F∗

q

wTrm1 (ax+x−1)

= 1 +
∑
y∈Fq

wTrm1 (y)#{x ∈ F
∗
q : ax + x−1 = y}.

From Lemma 1,

Km(a) = 1 +
∑
y∈Fq

wTrm1 (y)#{x ∈ F
∗
q : ax + x−1 = y}

≡ 1 +
∑

y∈Fq ,y2−4a=0

wTrm1 (y) (mod R).

If a is a nonsquare, then Km(a) ≡ 1 (mod R).
If a is a square and Trm1 (

√
a) = 0, then Km(a) ≡ 1 (mod R).

If a is a square, and Trm1 (2
√

a) = t , then Km(a) ≡ 1 + wt + w−t (mod R).
Hence, this proposition follows.

Remark 1 From Proposition 2, Km(a) (mod R) ∈ {1 + wt + w−t (mod R) : 0 ≤ t ≤
p−1
2 }.
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Proposition 2 can be used to discuss the nonexistence of some regular p-ary bent
functions. The following theorem demonstrates that some regular p-ary bent functions in
Theorem 10 in [13] do not exist.

Theorem 1 Let p be a prime bigger than 7, and 2 be a primitive root modulo p. Let a ∈
Fq2 , and r, s be two integers satisfying gcd(s − r, q + 1) = 1. Then the function f (x) =∑q−1

i=0 Trn1(ax(ri+s)(q−1)) is not bent.

Proof From Theorem 10 in [13], f (x) is regular bent if and only if Trn1(a) = f (0) and
Km(aq+1) = 2 − wf (0) − w−f (0). Denote f (0) = i. From Proposition 2, we just need to
prove that

2 − wi − w−i �≡ 1 + wt + w−t (mod R),

whereR is a prime ideal lying above 2 in Q(w) and 0 ≤ t ≤ p−1
2 . Hence, we just prove that

wt + wp−1−t + wi + wp−1−i + 1 �≡ 0 (mod R).

Suppose that wt + wp−1−t + wi + wp−1−i + 1 ≡ 0 (mod R). Then wt + wp−1−t + wi +
wp−1−i + 1 (mod R) is an annihilating polynomial with no more than 5 terms of no more
than p−1 degree over F2. Since 2 is a primitive root modulo p, there is only an annihilating
polynomial wp−1 + wp−2 + · · · + w + 1 (mod R) of no more than p − 1 degree over F2.
Since p ≥ 7, wp−1 + wp−2 + · · · + w + 1 (mod R) has more than 5 terms, which makes
a contradiction. Hence, wt + wp−1−t + wi + wp−1−i + 1 �≡ 0 (mod R), and this theorem
follows.

Remark 2 The prime required in the above theorem is just an Artin prime for 2. Let S(2)
be the set of primes p such that 2 is a primitive root modulo p. Then S(2) has a positive
asymptotic density inside the set of primes. Let Pi and APi be the numbers of primes
and primes in S(2) between 3 and 10i . Artin conjecture claims that S(2) has the density
Cartin ≈ 0.3739558136 . . .. Table 1 lists some values for APi

Pi
. And all the primes in S(2)

less than 100 are 3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83.

4 Regular bent functions with five terms

In this section, we consider functions of the form

f (x) = Trn1(a1x
r1(q−1)) + Trn1

(
c1x

r1(q−1)+ q2−1
2

)
+ Trn1

(
a2x

r2(q−1)
)

+Trn1

(
c2x

r2(q−1)+ q2−1
2

)
+ bx

q2−1
2 , (1)

where a1, c1, a2, c2 ∈ Fq2 , and b ∈ Fp. If b = 0, and a1, c1, a2, c2 ∈ F
∗
q2
, f (x) has four

terms.

Table 1 The density of Artin
primes for 2

AP3
P3

(%) AP4
P4

(%)
AP5
P5

(%)
AP6
P6

(%) AP7
P7

(%)
AP8
P8

(%)

40.1198 38.2736 37.5665 37.3785 37.3908 37.3991
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In convenience, we denote the function over U induced by f (x)

f̃ (u) = Trn1(a1u
r1) + Trn1

(
c1u

r1+ q+1
2

)
+ Trn1(a2u

r2) + Trn1

(
c2u

r2+ q+1
2

)
+ bu

q+1
2 .

Define an exponential sum

Sf =
∑
u∈U

wf̃ (u). (2)

Then the following lemma determines regular bent function f (x).

Lemma 2 Let f (x) be a p-ary function defined in (1) and Sf be the exponential sum in
(2). Then f (x) is bent if and only if Sf = 1. Further, if f (x) is bent, then f (x) is regular
bent.

Proof Suppose f (x) is bent. For λ ∈ F
∗
q2
,

Wf (λ) =
∑

x∈F
q2

wf (x)−Trn1(λx)

= 1 +
q∑

i=0

wf (ξi )
∑
y∈F∗

q

w−Trn1(λξ iy)

= 1 +
q∑

i=0

wf (ξi )
∑
y∈F∗

q

w−Trm1 ((λξ i+λq(ξ i )q )y)

= 1 −
q∑

i=0

wf (ξi ) +
q∑

i=0

wf (ξi )
∑
y∈Fq

w−Trm1 ((λξ i+λq(ξ i )q )y)

= 1 −
q∑

i=0

wf (ξi ) + q
∑

0≤i≤q,λξ i+λq(ξ i )q=0

wf (ξi )

= 1 −
∑
u∈U

wf̃ (u) + qwf (ξ iλ ),

where iλ is the unique number such that 0 ≤ iλ ≤ q, λξ iλ + λq(ξ iλ)q = 0. From the
definition of Sf ,

Wf (λ) = 1 − Sf + qwf (ξ iλ ). (3)

Since f (x) is bent, from Property 8 in [11], there exists 0 ≤ j ≤ p − 1 satisfying Wf (λ) =
±qwj . From (3), we have Sf −1−qwf (ξ iλ ) ±qwj = 0. Suppose that Sf −1−qwf (ξ iλ ) −
qwj = 0. Then we have

p−1∑
k=0

Nkw
k − 1 − qwf (ξ iλ ) − qwj = 0 (4)

where Ni = #{u ∈ U : f̃ (u) = i}. Obviously, N0 + N1 + · · · + Np−1 = q + 1. Since
f (x) is bent, then 1 ≤ Ni ≤ q. Since the minimal polynomial of w is wp−1 +wp−2 +· · ·+



Cryptography and Communications (2019) 11:1133–1144 1139

w + 1 = 0, (4) does not hold. Hence, Sf − 1 − qwf (ξ iλ ) + qwj = 0, i.e., j = f (ξ iλ). We
have Sf = 1.

On the other hand,

Wf (0) =
∑

x∈F
q2

wf (x)

= 1 +
q∑

i=0

∑
y∈F∗

q

wf (yξ i )

= 1 +
q∑

i=0

∑
y∈F∗

q

wf (ξ i )

= 1 + (q − 1)
q∑

i=0

wf (ξi )

= 1 + (q − 1)
∑
u∈U

wf̃ (u).

From the definition of f̃ (u) and Sf , we have

Wf (0) = 1 + (q − 1)Sf . (5)

If Sf = 1, from (3) and (5), f (x) is bent.
If f (x) is bent, from (3) and (5), f (x) is regular bent.
Hence, this lemma follows.

The following lemma gives a simpler expression for Sf .

Lemma 3 Let f (x) be a p-ary function defined in (1) and Sf be the exponential sum in
(2). Then

Sf = wb
∑
u∈U0

wTrn1((a1+c1)u
r1 )+Trn1((a2+c2)u

r2 ) + w−b
∑
u∈U1

wTrn1((a1−c1)u
r1 )+Trn1((a2−c2)u

r2 ).

Proof We have

Sf =
∑
u∈U

wf̃ (u)

=
∑
u∈U0

wf̃ (u) +
∑
u∈U1

wf̃ (u)

=
∑
u∈U0

wTrn1((a1+c1)u
r1 )+Trn1((a2+c2)u

r2 )+b +
∑
u∈U1

wTrn1((a1−c1)u
r1 )+Trn1((a2−c2)u

r2 )−b

= wb
∑
u∈U0

wTrn1((a1+c1)u
r1 )+Trn1((a2+c2)u

r2 ) + w−b
∑
u∈U1

wTrn1((a1−c1)u
r1 )+Trn1((a2−c2)u

r2 ),

which completes the proof.
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For general f (x), Sf is difficult to compute. We consider a subclass of functions in (1)
defined by

f (x) = Trn1

(
a1x

r1(q−1)
)

+ Trn1

(
a1x

r1(q−1)+ q2−1
2

)
+ Trn1(a2x

r2(q−1))

−Trn1

(
a2x

r2(q−1)+ q2−1
2

)
+ bx

q2−1
2 , (6)

where a1, a2 ∈ Fq2 and b ∈ Fp .

Lemma 4 Let f (x) be a p-ary function defined in (6) and Sf be the exponential sum in
(2). Then Sf = wb

∑
u∈U0

wTrn1(2a1u
r1 ) + w−b

∑
u∈U1

wTrn1(2a2u
r2 ).

Proof From Lemma 3, this lemma can be obviously obtained.

Theorem 2 Let f (x) be a p-ary function defined in (6). Let gcd
(
r1,

q+1
2

)
=

gcd
(
r2,

q+1
2

)
= 1 and r2 be odd. Then f (x) is regular bent if and only if

wbKm

(
4aq+1

1

)
+ w−bKm

(
4aq+1

2

)
=

⎧⎪⎪⎨
⎪⎪⎩

M(A − B) + C − 2, 2a1, 2a2 ∈ C+
0 ;

MA + C − 2, 2a1 ∈ C+
0 , 2a2 �∈ C+

0 ;
−MB + C − 2, 2a1 �∈ C+

0 , 2a2 ∈ C+
0 ;

C − 2, 2a1, 2a2 �∈ C+
0 .

where M = 4I
√−1, A = wb sin 2πQ(2a1)

p
, B = w−b sin 2πQ(2a2)

p
, and C = 2 cos 2πb

p
.

Proof Since gcd
(
r1,

q+1
2

)
= gcd

(
r2,

q+1
2

)
= 1 and r2 is odd, the map u �−→ ur1 is a

permutation from U0 to U0 and u �−→ ur2 is a permutation from U1 to U1. From Lemma
4, Sf = wb

∑
u∈U0

wTrn1(2a1u) + w−b
∑

u∈U1
wTrn1(2a2u). From Proposition 1 and Lemma 2,

this theorem follows.

Corollary 1 Let f (x) be a p-ary function defined in (6). Let gcd
(
r1,

q+1
2

)
=

gcd
(
r2,

q+1
2

)
= 1, r2 be odd and b = 0. Then f (x) is regular bent if and only if

Km

(
4aq+1

1

)
+Km

(
4aq+1

2

)
=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

4I
√−1

[
sin 2πQ(2a1)

p
− sin 2πQ(2a2)

p

]
, 2a1, 2a2 ∈ C+

0 ;
4I

√−1 sin 2πQ(2a1)
p

, 2a1 ∈ C+
0 , 2a2 �∈ C+

0 ;
−4I

√−1 sin 2πQ(2a2)
p

, 2a1 �∈ C+
0 , 2a2 ∈ C+

0 ;
0, 2a1, 2a2 �∈ C+

0 .

In particular, if q ≡ 1 (mod 4), then f (x) is regular bent if and only if Km(4aq+1
1 ) +

Km(4aq+1
2 ) = 0.

Proof From Theorem 2 , the first part of this corollary can be obviously obtained. Note that

Km

(
4aq+1

1

)
and Km

(
4aq+1

2

)
are real. Since q ≡ 1 (mod 4), I is real. Hence, the rest part

of this corollary also holds.



Cryptography and Communications (2019) 11:1133–1144 1141

Example: Let p = 7, m = 2, n = 2m, q = pm ≡ 1 (mod 4), and w = e
2π

√−1
p . Let

Fq2 = Fp(ξ), where the minimal polynomial of ξ is w4 + 5w2 + 4w + 3 = 0. Then ξ is a

primitive element of Fq2 . Take r1, r2 satisfying gcd
(
r1,

q+1
2

)
= gcd

(
r2,

q+1
2

)
= 1 and r2

is odd. Let b = 0, a1 = ξ289, and a2 = ξ841. Then Km

(
4aq+1

1

)
= −6w5 − 4w4 − 4w3 −

6w2−1 andKm

(
4aq+1

2

)
= 6w5+4w4+4w3+6w2+1. AndKm

(
4aq+1

1

)
+Km(4aq+1

2 ) =
0. From Corollary 1, the function defined in (6) is a regular bent function with four terms.

Corollary 2 Let f (x) be a p-ary function defined in (6). Let gcd
(
r1,

q+1
2

)
=

gcd
(
r2,

q+1
2

)
= 1, r2 be odd, b �= 0 and 2a1, 2a2 �∈ C+

0 . Then f (x) is regular bent if and

only if Km

(
4aq+1

1

)
= Km

(
4aq+1

2

)
= 1 − sec 2πb

p
.

Proof From Theorem 2, if 2a1, 2a2 �∈ C+
0 , f (x) is regular bent if and only if

wbKm

(
4aq+1

1

)
+ w−bKm

(
4aq+1

2

)
= 2 cos 2πb

p
− 2. Take the complex conjugate of both

sides. And we have w−bKm

(
4aq+1

1

)
+ wbKm

(
4aq+1

2

)
= 2 cos 2πb

p
− 2. Since b �= 0, we

have Km

(
4aq+1

1

)
= Km

(
4aq+1

2

)
= 1 − sec 2πb

p
. Hence, this corollary follows.

Remark 3 From Corollary 2 and Theorem 3.9 in [18], if p = 11, gcd
(
r1,

q+1
2

)
=

gcd
(
r2,

q+1
2

)
= 1 and r2 is odd, then for any 2a1, 2a2 �∈ C+

0 and b �= 0, the function f (x)

defined in (6) is not bent.

Example. Let p = 5, m = 4, n = 2m, q = pm ≡ 1 (mod 4), and w = e
2π

√−1
p . Let

Fq2 = Fp(ξ), where the minimal polynomial of ξ is ξ8 + ξ4 + 3ξ2 + 4ξ + 2 = 0. Then

ξ is a primitive element of Fq2 . Take r1, r2 satisfying gcd
(
r1,

q+1
2

)
= gcd

(
r2,

q+1
2

)
= 1

and r2 is odd. Take b = 1, a1 = ξ64401, and a2 = ξ374925. Then 2a1, 2a2 �∈ C+
0 and

Km(4aq+1
1 ) = Km

(
4aq+1

2

)
= 1 − sec 2π

p
= −√

5. From Corollary 2, the function defined

in (6) is a regular bent function with five terms.

Corollary 3 Let f (x) be a p-ary function defined in (6). Let gcd
(
r1,

q+1
2

)
=

gcd
(
r2,

q+1
2

)
= 1, r2 be odd, b = 0, and a1 = a2 = a. Then f (x) is regular bent if and

only if Km

(
4aq+1

) = 0.

Proof From Corollary 1, this corollary can be obviously obtained.

Remark 4 Kononen et al. [10] proved that if p ≥ 5, for any a ∈ Fq , Km(a) �= 0. Hence, if
p ≥ 5, a p-ary function in Corollary 3 is not bent.

Example. Let p = 3, m = 4, n = 2m, q = pm ≡ 1 (mod 4), and w = e
2π

√−1
p . Let

Fq2 = Fp(ξ), where the minimal polynomial of ξ is ξ8+2ξ5+ξ4+2ξ2+2ξ +2 = 0. Then
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ξ is a primitive element of Fq2 . Take r1, r2 satisfying gcd
(
r1,

q+1
2

)
= gcd

(
r2,

q+1
2

)
= 1

and r2 is odd. Take b = 0, a1 = a2 = a = ξ434. Then Km(4aq+1) = 0. From Corollary 3,
the function defined in (6) is a regular bent function with four terms.

Corollary 4 Let f (x) be a p-ary function defined in (6). Let gcd
(
r1,

q+1
2

)
=

gcd
(
r2,

q+1
2

)
= 1, r2 be odd, a1 = a2 = a and b �= 0. Then f (x) is regular bent if and

only if

Km(4aq+1) =
{

−4I sin 2πb
p

sin 2πQ(2a)
p

sec 2πb
p

+ 1 − sec 2πb
p

, 2a ∈ C+
0 ;

1 − sec 2πb
p

, 2a �∈ C+
0 .

In particular, if q ≡ 3 (mod 4), f (x) is regular bent if and only if Km

(
4aq+1

) =
1 − sec 2πb

p
.

Proof Note that if q ≡ 3 (mod 4), then I is not real. From Theorem 2, this corollary can
be obviously obtained.

Theorem 3 Let f (x) be a p-ary function defined in (6). Let gcd
(
r1,

q+1
2

)
=

gcd
(
r2,

q+1
2

)
= 1 and r2 be even. Then f (x) is bent if and only if

wbKm

(
4aq+1

1

)
+ w−bKm(4aq+1

2 ) =

⎧⎪⎪⎨
⎪⎪⎩

M(A + B) + C − 2, 2a1, 2a2 ∈ C+
0 ;

MA + C − 2, 2a1 ∈ C+
0 , 2a2 �∈ C+

0 ;
MB + C − 2, 2a1 �∈ C+

0 , 2a2 ∈ C+
0 ;

C − 2, 2a1, 2a2 �∈ C+
0 .

where M = 4I
√−1, A = wb sin 2πQ(2a1)

p
, B = w−b sin 2πQ(2a2)

p
, and C = 2 cos 2πb

p
.

Proof Since gcd
(
r1,

q+1
2

)
= gcd

(
r2,

q+1
2

)
= 1 and r2 is even, then the map u �−→ ur1 is

a permutation from U0 to U0 and u �−→ ur2 is a bijection between U1 and U0. From Lemma
4, Sf = wb

∑
u∈U0

wTrn1(2a1u) + w−b
∑

u∈U0
wTrn1(2a2u). From Proposition 1 and Lemma 2,

this theorem follows.

Example. Let p = 3, m = 6 and n = 2m. Let Fq2 = Fp(ξ), where the minimal

polynomial of ξ is ξ12 + ξ6 + ξ5 + ξ4 + ξ2 + 2 = 0. Then ξ is a primitive element of

Fq2 . Take r1, r2 satisfying gcd
(
r1,

q+1
2

)
= gcd

(
r2,

q+1
2

)
= 1 and r2 is even. Take b = 1,

a1 = ξ88976 and a2 = ξ325189. Then 2a1, 2a2 �∈ C+
0 and Km

(
4aq+1

1

)
= Km

(
4aq+1

2

)
=

1 − sec
(
2π
p

)
= 3. From Theorem 3, the function defined in (6) is a regular bent function

with five terms.

Theorem 4 Let f (x) be a p-ary function defined in (1). If gcd
(
r1, r2,

q+1
2

)
> 1, then

f (x) is not bent.
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Proof Let d = gcd
(
r1, r2,

q+1
2

)
. From Lemma 3,

Sf = dwb
∑

v∈H0

wTrn1((a1+c1)u
r1/d )+Trn1((a2+c2)u

r2/d )+dw−b
∑

v∈H1

wTrn1((a1−c1)u
r1/d )+Trn1((a2−c2)u

r2/d ),

whereH0 = Ud
0 andH1 = Ud

1 . Hence, Sf ≡ 0 (mod d). Since d > 1, then Sf �= 1. From
Lemma 2, f (x) is not bent.

Corollary 5 Let q ≡ 3 (mod 4). Let f (x) = Trn1(axr(pm−1)) + bx
q2−1
2 , where a ∈ Fq ,

b ∈ Fp, r is even, and gcd( r
2 , q + 1) = 1. Then f (x) is not bent.

Proof In Theorem 4, take a1 = a, c1 = 0, a2 = c2 = 0, r1 = r , and r2 = 0. Then

2| gcd
(
r, 0, q+1

2

)
. From Theorem 4, f (x) is not bent.

Remark 5 Corollary 5 is a generalization of Theorem 3 in [21]. [21] just discussed the case
q ≡ 7 (mod 8) and did not solve the case q ≡ 3 (mod 8).

5 Conclusion

This paper first presents a congruence property for Kloosterman sums and with it prove
the nonexistence of some regular p-ary bent functions. Further, we study p-ary func-

tions of the form f (x) = Trn1
(
a1x

r1(q−1)
) + Trn1

(
a1x

r1(q−1)+ q2−1
2

)
+ Trn1

(
a2x

r2(q−1)
) −

Trn1

(
a2x

r2(q−1)+ q2−1
2

)
+ bx

q2−1
2 and characterize the bentness of these functions with

Kloosterman sums. Finally, we solve an open problem in [9] and prove the nonexistence of
some regular bent functions. A natural problem is to study general regular p-ary bent func-

tions of the form f (x) = Trn1
(
a1x

r1(q−1)
) + Trn1

(
c1x

r1(q−1)+ q2−1
2

)
+ Trn1

(
a2x

r2(q−1)
) +

Trn1

(
c2x

r2(q−1)+ q2−1
2

)
+ bx

q2−1
2 , which is our further work.
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