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Abstract

Let R = Z4[v]/(v? + 2v). Then R is a local non-principal ideal ring of 16 elements. First,
we give the structure of every cyclic code of odd length n over R and obtain a complete
classification for these codes. Then we determine the cardinality, the type and its dual code
for each of these cyclic codes. Moreover, we determine all self-dual cyclic codes of odd
length n over R and provide a clear formula to count the number of these self-dual cyclic
codes. Finally, we list some optimal 2-quasi-cyclic self-dual linear codes of length 30 over
Z4 and obtain 4-quasi-cyclic and formally self-dual binary linear [60, 30, 12] codes derived
from cyclic codes of length 15 over Zy[v]/(v? + 2v).
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1 Introduction

The catalyst for the study of codes over rings was the discovery of the connection between
linear codes over Z4 and the Kerdock and Preparata codes, which are non-linear binary
codes [2, 3]. Soon after this discovery, codes over many different rings were studied. This
led to many new discoveries and concreted the study of codes over rings as an important
part of the coding theory discipline. Since Z4 is a chain ring, it was natural to expand the
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theory to focus on alphabets that are finite commutative chain rings (see [1, 4-6, 11, 12, 16,
17, 19] and [20], for examples) and other type of rings [7, 18].

In 1999, Wood in [23] showed that for certain reasons finite Frobenius rings are the
most general class of rings that should be used for alphabets of codes. Then self-dual codes
over commutative Frobenius rings were investigated in Dougherty et al. [13]. Especially,
codes over an extension rings of Z4 were studied in Yildiz et al. [25] and [26] where many
good Zg4-codes were obtained as images. The ring in the mentioned works was described
as Zaul/(u?) = Z4 + uZ4 (u? = 0) which is a local non-principal ring. Shi et al. in [18]
studied (1+42u)-constacyclic codes of odd length n over the ring Za[u]/ Wr=1) = Za+uZa
(u* = 1) which is another extension ring of Z4. Properties of these codes and their Zy4
images were investigated.

Let A be an arbitrary finite commutative ring with identity 1 % 0, and A* be the mul-
tiplicative group of invertible elements (units) in A. For any a € A, we denote by (a) 4, or
(a) for simplicity, the ideal of A generated by a, i.e. (a)4 = aA. For any ideal [ of A, we
will identify the element a + I of the residue class ring A/ with a (mod 7) in this paper.

ForanypositiveintegerN,letAN ={(ag,ay,...,an—1) |ai € A,i=0,1,..., N—1}
which is an A-module with componentwise addition and scalar multiplication by elements
of A. Then an A-submodule C of AV is called a linear code of length N over A. For any
vectors a = (dg, ai, ..., an—1),b = (bo, b1, ..., by_1) € AN. The usual Euclidian inner
product of a and b is defined by [a, b] = ij;ol ajb; € A. Then [—, —] is a symmetric
and non-degenerate bilinear form on the A-module A" . Let C be a linear code of length N
over A. The dual code of C is defined by Cr={ae AV |[a,b] =0, Vb € C},and C
is said to be self-dual if C = C*. A linear code C of length N over A is said to be cyclic
if (an—1, a0, ai, ...,an—2) € C forall (ag, ay, ...,an—1) € C. Let A be a local ring with
residue class field F. Then cyclic codes of length N over R are called simple root cyclic
codes if gcd(N, char(F)) = 1.

In this paper, every vector ¢ = (cg, €1, ...,CN—1) € AN is viewed as the polynomial
c(x) = ij;ol c jxj . Then every cyclic code C is viewed as an ideal in the polynomial
residue ring A[x]/(xN —1).

In this paper, we adopt the following notation:

& Zo = {0, 1} in which the arithmetic is done modulo 2. Then Z, is a binary finite field.
o Z4 = {0, 1, 2, 3} in which the arithmetic is done modulo 4. Then Zy4 is a finite chain
ring with the maximal ideal 2Z4 = {0, 2}.

o R = Zyu[vl/(v? +2v) = {a+bv | a,b € Zy} = Zy4 + vZ4 (v* = 2v) in which the
operations are defined by:

a+B=(@+c)+vb+d)and af = ac + (ad + bc + 2bd)v,

foranyo = a +bv,f = c+dv € Zs + vZ4q with a, b, c,d € Z4. Then R is a local
Frobenius non-chain ring of 16 elements.

In 2015, linear codes over Z4 + vZ4 (v2 = 2v) were studied in [15]. In the paper, a
duality preserving Gray map was given and used to present MacWilliams identities and
self-dual codes. Some extremal Type II Z4-codes were provided as images of codes over
this ring. Recently, we gave a complete classification for negacyclic codes of length 2n over
Z4 + vZ4, where n is odd, and obtained some good and new self-dual Z4-codes which are
are Gray images of self-dual negacyclic codes over Z4 + vZa ([8]).

Now, we follow this line to continue studying cyclic codes of length n over R = Z4 +
vZ4, where n is a positive odd integer and n > 3.
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The rest of the paper is organized as follows. In Section 2, we give an explicit repre-
sentation for every cyclic code of length n over R by determining their generator sets as
ideals in the ring R[x]/{x" — 1). In Section 3, we determine the dual code for each code,
present explicitly all distinct self-dual cyclic codes of length n over R and give a clear for-
mula to count the number of all these self-dual cyclic codes. In Section 4, we present all
583443 cyclic codes of length 15 over R and list all 315 self-dual codes among them. As
applications, we obtain 162 good self-dual quasi-cyclic codes of index 2 and length 30 with
minimum Lee weight 10 and 12 over Z4. From these Z4-codes, we derive 70 quasi-cyclic
type II binary formal self-dual [60, 30, 12] codes of index 4.

2 Cyclic codes over Z4 + vZ4 of odd length

In this section, we consider cyclic codes of odd length n over the ring R = Zy[v]/(v? +
20) = Z4 + vZ4 (v* = 2v), i.e., ideals of the ring

n—1
R[x]/<x"—1)={2r,-x" |ri €R, i=0,1,...,n—1}

i=0
in which the arithmetic is done modulo x” — 1. From now on, we denote

o A=Zyxl/x" — 1) = [ " axi |ap € Zy, i =0,1,....n— 1]
in which the arithmetic is done modulo x" — 1.
Then A is a finite commutative ring containing Zg4 as its subring.
o A+vA=AW])/ (W2 +2v) ={a+pv|a B e A (¥ =2v)

and the operations are defined by: for any a1, a3, B1, B2 € A, we have

(a1 + B1v) + (a2 + Bov) = (a1 + a2) + v(B1 + B2);
(a1 + B1v) (o + Bov) = ajaz + v(ag B2 + Braz + 2B182).

Then A + v.A is a finite commutative local ring containing A as its subring.

Let o, B € A. Then « and B can be uniquely expressed as o = :7:_01 a;x" and g =

Z;lz_ol bix' respectively, where a;, b; € Z4 foralli = 0,1,...,n — 1. Now, define a map
®:A+vA— R[x]/{(x" —1) by

n—1

O+ pv) =) &x', where& =a; +bveR, i=01,....n—1.
i=0

Then one can easily verify the following conclusion.

Lemma 1 The map © defined above is an isomorphism of rings from A + v A onto
R[x]/{x" — 1).

In the following, we will identify A+v.4 with R[x]/{x" —1) under the ring isomorphism
©®. Therefore, in order to determine all cyclic codes of length n over R, we only need to deter-
mine all ideals of the ring .4+ v.A. To do this, we investigate the structure of the ring A first.

In this paper, we will regard Z; as a subset of the ring Z4 although Z; is not a subring of
Z4. Then every element a of Z4 has a unique 2-adic expansion: a = ao + 2a1, ag, a) € Zo.
Define @ = ap = a (mod 2) for all a € Z4. This map ~ is a surjective homomorphism
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of rings from Z4 onto Z,, which can be extended into a surjective homomorphism of rings
from Z4[x] onto Z;[x] in the natural way:

Fe =F@ =) fix*, Vi) =) fox* € Zalx] where ax € Zs.
k k

Let g(x) be a monic polynomial in Z4[x] of positive integer. Then g(x) is said to be basic
irreducible if g(x) is an irreducible polynomial in Z;[x].

As n is odd, by [22, Theorem 13.8] there are pairwise coprime monic basic irreducible
polynomials fo(x) =x — 1, f1(x), ..., fr(x) € Za[x] such that

xt=1= fox)fitx)... fr(x), )]

where 7j(x) is irreducible in Zp[x] and deg(f;(x)) = m; for all j = 0,1,...,r.
Especially, fo(x) = x — 1 with degree mg = 1.
x"—1

For each integer j, 0 < j < r, denote F;(x) = T € Zy4|x]. Since
JJ

ged(Fj(x), f;(x)) = 1, we see that Fj(x) and f;(x) are coprime in Zy[x] (cf. [22, Lemma
13.5]). Hence there are polynomials c;(x), d;(x) € Z4[x] such that

ci()Fj(x)+d;j(x)fi(x)=1. 2)
In this paper, we adopt the following notation:
e Lete;(x) € Asatisfying
ej(x)=cj(x)Fj(x) =1—djx)fj(x) (mod x" — 1). 3)
o Denote K; = Zalxl/(f;(0) = | X2y x| @ € Za, i =0, 1,...om; — 1
in which the arithmetic is done modulo f;(x). Then K; is a Galois ring of
characteristic 4 and cardinality 4™/ (cf. [22, Theorem 14.1]).

o LetK; +vK; =K;l/(v? +2v) = {a+ v | a, B € K;} (v* =2v)
and the operations are defined by: for any oy, a3z, 81, B2 € K j» we have

(a1 + B1v) + (o2 + pov) = (1 + a2) +v(B1 + B2);
(a1 + Brv)(az + 2v) = ajaz + (a1 f2 + fraz + 281 52).
Then K; + vK; is a finite commutative local ring containing /C; as its subring.

By [21, Theorem 2.7] and [7, Lemma 3.2], one can easily deduce the following
conclusions.

Lemma 2 Using the notation above, we have the following conclusions:

() ex)+e1(x)+...4+ex)=1, ej()c)2 =ej(x) and ej(x)e;(x) = 0 in the ring A
forallO< j#I1<r.

(i) For each integer j, 0 < j < r, Aej(x) is a subring of A with ej(x) as its
multiplicative identity. Define

@jla(x)) = ax)e;(x) (mod x" — 1), Ya(x) € K;.
Then ¢ is a ring isomorphism from KC; onto Ae j(x) with inverse <pj_] :

wj_](C(X)) = c(x) (mod fj(x)), Ye(x) € Aej(x).
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(iii) Foranyaj(x) € Kjand j =0,1,...,r, define

plag(x), ar(x), ..., a,(x) = Y j(aj(x)) =Y _ej(x)aj(x) (mod x" —1).

j=0 j=0

Then ¢ is a ring isomorphism from Ko x K1 x ... x IC, onto A.
Now, we give structural properties for cyclic codes of length n over R.

Lemma 3 Let C € A+ vA. Then C is a cyclic code of length n over R if and only if for
each integer j, 0 < j <, there is a unique ideal C of the ring KC; + vK; (v? = 2v) such
that

C=ey(x)Co®e1(x)C1 ®...He (x)Cr (mod x" — 1)

where
ej(x)Cj ={ej(x)a+vej(x)Bla+pveCj, a,eKj} S A+vA
forall j =0,1,...,r. Then the number of codewords in C equals ]_[5-20 [Cjl.

Proof Forany §; = a; + Bjv € K; +vK; withea;, 8; € K forall j =0,1,...,r, we
define

DE) =Y ejE; =Y ei(x) (o +Bj) = Y eja; +v Y ej(x)B
Jj=0 Jj=0 j=0 j=0
:‘/)(0507011,---aar)‘l‘v(/)(ﬁOa,Bls~-~a,3r)~

Then @ is an isomorphism of rings from the direct product ring (fCo+v/Co) x (1 +v/Cp) x
. X (K + vK,) onto A + v.A. This conclusion can be proved by Lemma 2 similarly as
that for [8, Theorem 4.2(i)]. Here, we omit it.
From the properties of ring isomorphisms and direct product rings, we conclude that C is
a cyclic code of length n over R, i.e. C is an ideal of A + v.A, if and only if for each integer
J»0 < j <r, there is a unique ideal C; of the ring KC; 4+ v/C; such that

C=@(CoxCix...xC)={P&0,&1,....6) 1§ €Cj, j=0,1,....r}

Y ejEj 16 €Ch j=0.1...rt =Y ej(0){E | £ € Cj).

j=0 j=0

Hence C = EB;:O ej(x)Cj (mod x" —1)and |C| = |Cox C1 x...x Cy| = ]_[;:0 IC;l. O

By Lemma 3, it is sufficient to determine the ideals of the ring K; + vKC; for all j, in
order to determine cyclic codes of length n over R.

As K; is a subring of K; 4+ vk}, we can regard KC; + vK; as a Kj-module. Precisely,
K; +v; is a free K j-module with basis {1, v}. Let IC? ={(a,B) | o, B € K;}. Then IC?
is a free KCj-module of rank 2 with the componentwise addition and scalar multiplication.
Now, define

o :IC? — Kj +vK; via (o, B) = o + v (Va, B € K)).
Then it is obvious that o is an isomorphism of X ;-modules from IC? onto KC; + viC;.

Moreover, we have the following key conclusion.
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Lemma 4 (cf. [10, Lemma 3.4]) Let 0 < j < r. Then C; is an ideal of the ring K; + vK;
if and only if there is a unique K j-submodule S ofIC2 vansfymg the following condmon

0,a+2B)eS;, Y(a,B) €S; @

such that o (S;) = C;

Therefore, in order to determine all ideals of IC i+ vikC j (0 < j < r),itis sufficient
to determine all X ;-submodule of IC? satisfying Condition (4). To do this, we sketch some
basic theory of linear codes over Galois rings.

In the rest of the paper, for each integer j, 0 < j < r, we denote

. Tj={Z'J7-1:_01ajxj|aj€Zz}C/Cj;
o Fj = Iolx]/{f;(x)) = 205 "“Jajx] | a; € Z»)} in which the arithmetic is done
modulo f ;j(x) in the polynomial ring Z[x].

Then F; is an extension field of the binary field Z; of 2™/ elements, and 7 is a subset of
KC; since we regard Z; as a subset of Zg.

To reduce the number of symbols, in this paper we will identify T; with F;. Whether T}
is a subset of the Galois ring K; or a finite field itself, the reader can easily determine what
it means according to the context. In this sense, each element « of C; has a unique 2-adic
expansion:

a = fo(x) + 21 (x), where f(x), t1(x) € T;.

Then o € /CX if and only if #9(x) # 0. Hence |ICX| = (2™ — 1)2™Mi,

Let0 < j < rand L > 2 be a positive 1nteger Assume S is a linear code of length L
over the Galois ring ;. By [16, Definition 3.1], a matrix G is called a generator matrix for
S if the rows of G span S and none of them can be written as an K ;-linear combination of
the other rows of G. Moreover, a generator matrix G is said to be in standard form if there
is a suitable permutation matrix U of size L x L such that

o Iy Mo,y Moy
¢= < 0 2I 2M1,2> v

where the columns are grouped into blocks of column sizes kg, ki, k with k; > 0, k =

— (ko + k1), Mo,2 is a matrix over K;, Mo 1 and M > are matrices over T;. Of course,
1f ki = 0, the matrices 2 Iy, and 2iM i+ (i = 0,1) are suppressed in G. In th1s case, the
following map

&) & G = (§Uxy, Mo,1, Mo2) + 1(0, 21k, , 2M1 2)) U

(for any & = (o, ..., ) € ICI;U and n = (by,...,by) € Ff‘) is an isomorphism of
groups from (ICI;.O X Ff' ,+) onto (S, +). Hence S is an abelian group of type 4kom jpkim
and contain 2@k0+tk0m; codewords.

All distinct nontrivial linear codes of length 2 over finite chain rings had been determined
(by [9, Example 2.5], for example). Moreover, we have

Lemma 5 All distinct linear code S; of length 2 over the Galois ring K; = Z4[x1/{fj(x))

satisfying Condition (4) in Lemma 4 are given by the following table, where G is a generator
matrix of Sj:

@ Springer



Cryptography and Communications (2020) 12:301-319 307

Case G type of S [S;]
(i) I 42m ;20 24m
2D 4022m; 22m;j
0 4020 1
(ii) QQwj(x), 1), where wj(x) € T; arbitrary 4m;20 2%m;
(iii) (,2) 40m; 2m;
(iv) ( g (1) ) 4mjom; 23mj

Then the number of all codes listed above is equal to 2™i + 5.

Proof By 2% = 0 and [9, Example 2.5] we know that the number of linear codes over the
Galois ring /C; of length 2 is equal to Y 7_o(2i + D|T;> = Y7 (2 + )2@~Dmi =
4™j +3.2™i 4 5. Precisely, every nontrivial linear code S over KC; of length 2 has one and
only one of the following matrices G as its generator matrix:

1. G=(1,ax)),Valx) e K;. 2.G =(2,2b(x)), Vb(x) € T;.
3. G=QRQuwk), ), YVwkx)eT;. 4.G=(0,2). 5.G =2D.

1 01
6. G:(O"(z")>,Vc(x)eTj. 7.G:<20>.

Then by ordinary careful calculations (cf. [10, Appendix]), we obtain the conclusions. [J

As the end of this section, for any integer j, 0 < j < r, we determine the ideals of
KCj +vK; and their annihilating ideals. For any ideal C of K; + v}, its annihilating ideal
is defined by Ann(C) = { € K; +vK; | ap =0, Yo € C}.

Theorem 1 Let O < j < r. Then all distinct ideals C; and their annihilating ideals of the
ring K; + vk (v? = 2v) are given by the following table.

N C; Type of C; |Cjl Ann(Cj)

1 (1 42m; 20 24m; (0)

1 (2) 4022m; 2%m,j (2)

1 (0) 4020 1 (1)

2m; Qwj(x) + v) 4mjn0 2%m;j 201+ w;(x)) + v)
1 (2v) 40pm; 2mj 2, v)

] (2, v) 4mjomj 23m;j (2v)

where wj(x) € T; arbitrary and N is the number of ideals in the same row.
Therefore, the number of ideals in KC; + vIC; is 2™ + 5.

Proof 1t follows from Lemma 4, Lemma 5 and the definition for the IC j-module isomor-
phism o from IC? onto KC; + v, immediately. Here, we omit these details. O

As stated above, by Lemma 3 and Theorem 1 we conclude that the number of cyclic
codes over R of odd length n is equal to ]_[;-:0 (2™ 4 5). Precisely, all these cyclic codes
can be listed easily by Lemma 3 and Theorem 1.

Using the notation of Lemma 3, C = @;:0 e;j(x)C;j is called the canonical form
decomposition of the cyclic code C with length n over R.
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3 Self-dual cyclic codes over Z4 + vZ4 of odd length

In this section, we consider how to determine all distinct self-dual cyclic codes over R =
Za + vZ4 of odd length n precisely. To do this, we need to give the dual code for each cyclic
code over R of length n first.
As x" = 1 in the ring A = Z4[x]/{x" — 1), we have x~1 = x"1. For any a(x) =
;’:_01 a;x' € R[x]/(x"—1), where o; = a;+vb; € R witha;, b; € Zyforall0 <i <n—1,
we have that «(x) = a(x) + vb(x) where a(x), b(x) € A given by a(x) = Z::ol a;x* and
b(x) = 27:_01 b;x'. Now, we define
n—1
t@@) =) =ap+ ) e =alTh) + b,
i=1
where a(x 1) = ap + ZZ’;I] aix" b(x~") = by + 27;11 bix"! € A. Tt can be verified
easily that the map 7 is a ring automorphism of R[x]/(x" — 1). Moreover, the following
conclusion is well known.

Lemma 6 For any cyclic code C of length n over R, its dual code is given by C+ =
1(Ann(C)) = {a(x~Y) | a(x) € Ann(C}, where

Ann(C) = {n € R[x]/(x" = 1) | §n =0, V& € C}
is the annihilating ideal of C in R[x]/{x" — 1).

Since R[x]/(x" — 1) = A+ v.A (v2> = 2v) by Lemma 1, we see that the restriction of
on its subring A is a ring automorphism of .4. We still denote this ring automorphism by .
Then 7(a(x)) = a(x™') foralla(x) € A.

For any polynomial f(x) = > /" a;x' € Za[x] of degree m > 0. The reciprocal
polynomial of f(x) is defined by f(x) = x" f (%), and f(x) is said to be self-reciprocal
if f(x) = §f(x) for some § € Zj = {1, —1}. By (1) in Section 2, we have x" — 1 =
Jox) fi(x) ... fr(x). This implies

A =1 =D AE). frx).
Since fo(x) = x — 1, fi(x),..., fr(x) are pairwise coprime monic basic irreducible
polynomials in Z4[x], fo(x), f1(x), ..., fr(x) are pairwise coprime basic irreducible poly-
nomials in Z4[x] as well. Hence for any integer j, 0 < j < r, there is a unique integer j’,
0 < j’ <r, such that _

fi(x) =8; fj(x) for some §; € Zj .
Especially, we have 0’ = 0 since fo(x) =1—x = (—1) fo(x). Then by

X" =1and x™ fj(x™1) = fj(x) in A,
from the definition for e (x) (see (2) and (3)), we deduce that ¢; xH=e (X)),
We still use t to denote the map j — j’. Then we have
Fi ) =8 fe(jy () and T(ej () = ej(x 1) = er () (). )

Whether t denotes the ring automorphism of A or this map is determined by the context.
The next lemma shows the compatibility of the two uses of t.

Lemma 7 Using the notation above, we have the following conclusions.

(i) 7 is a permutation on the set {0, 1, ..., r} satisfying ™' = 1.
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(i) After a rearrangement of f1(x), ..., fr(x), there exists a unique pair (A, p) of
nonnegative integers such that

e A+20=r;
t(j)=j, forall0 < j <A;
e tA+D)=r+l+pandt(A+1+p)=r+1 foralll <l <p.

(iii) For any integer j, 0 < j < r, the map t; defined by
7j(a(x) +vh(x)) = a(x™") + vb(x™") (mod fr(j)(x)), Va(x), b(x) € K,

is an isomorphism of rings from K; + vKC; onto Ke(jy + vKq(j), where x =1 = x"~!
(mod fr(j)(x)).

Proof (i) It follows from the definition of the map 7 and that fr;(;)(x) =
Sen Fen@) = 80,85 i) = 85,87 f1(x) = f(x) by (5).
(i1) It follows from (i) and the properties of permutations on a finite set.
(iii) The map 7; is well-defined and makes the following diagram commutative:
-
Ki+uk; -+ Ky + vKe(j)

il X7
TlA+vA)ej )

A+vAe;x) — ' (A+vAer(x)

’

where T|(44v.A)e;(x) i the restriction of the ring automorphism 7 to the subring
(A+vAe;(x) of A+ vA. From this and by Lemma 2(ii), we deduce that 7; is an
isomorphism of rings from KC; 4+ v/C; onto K7 () + v/Cq(j). O

Now, using the notation of Lemma 3 and Theorem 1, we give the dual code for any cyclic
code of length n over R.

Theorem 2 Let C be a cyclic code of length n over R with the canonical form decomposi-
tion

C= P ejx)cy,
0<j=r
where C is an ideal of K + vK; listed by Theorem 1 for all j. Then
CJ' = @ er(j)(x)Dr(j) (modx" — 1),

O0<j=r

where Dr(jy = 1;(Ann(C})), 0 < j < r, is an ideal of K+(jy + vy () determined by the
following table:

N Cj (mod fj(x)) D (jy (mod fr(j)(x))
3 2Ky (k=0,1,2) (227K

2mi Quw;x) +v) (wjx)eT;) A +w;xh) +v)
I (2v) (2,v)

1 (2, v) (2v)

where N is the number of the pair (Cj, D (jy) of ideals in the same row.
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Proof Leta, B € R[x]/{(x" — 1) = A+ vA. By Lemma 3 and its proof, we have that

o= Zej(x);,-, B = Ze.,-(x)nj, where Ej.nj € K:j + vICj.
j=0 j=0

Since e; (x)? = ej(x)and ej(x)e;(x) = 0forall 0 < j # [ < r by Lemma 2(i), it follows
that o = Z;’zo ej(x)(§;7n;). This implies that

af =0in R[x]/(x" — 1) < &n; =0inK; +vK;, Vj=0,1,...,r.
From this we deduce Ann(C) = @;:0 ej(x)Ann(C;) (mod x" — 1), where Ann(C}) is the

annihilating ideal of C; in }C; + v/C; for any 0 < j < r. As t is a ring isomorphism, we

have
-

Ct=1(Ann(C)) = ) _ t(ej(x)Ann(C))).
j=0

For any integer j, 0 < j < r, by (5) and the definition of T we have t(e;(x)) = ¢; xH =
eq(j)(x) and

T(ej(x)cj () = ej(x e (™) = er(j) (1) (c; (X)),
where 7j(cj(x)) = cj >~ = e(x" 1) (mod fr(j)(x)) by Lemma 7(iii), for any c;(x) €
Ann(C}). From these, we deduce that

-
Ct =P e (Amn(C))).
j=0
Denote D;(jy = t;(Ann(C;)) where 0 < j < r. Since t; is a ring isomorphism from
K; 4+ vK; onto K¢ (jy + vKc(j) by Lemma 7(iii), we see that D.(;y is an ideal of the ring
Ky + vy

Let C; = ((2w;(x) + v)) where wj(x) € T;. By Theorem 1 we have Ann(C;) =
(2(1 + w;(x)) + v). Then by the definition of 7}, it follows that

Dy(jy = 5 (Ann(C;)) = (1; 2(1 + w;j(x)) +v)) = 2(1 + w;(x 1)) + v)

(mod fz(j)(x)). The expressions for D ;) in other cases can be calculated easily. We omit
these here. O

For any integer j, 1 < j < A, as f(x) is self-reciprocal in Z4[x] by Lemma 7(ii) and
(5), we see that f;(x) is self-reciprocal in Z>[x] and hence its degree m ; must be even.
Then it is well known that

i _
x~'=x%" inthe field F; = Z[x]/(f ; (x)). (6)

In the rest of this paper, we adopt the following notation:

i e
e H;= {S €F; | &2 ° =“§}.Then7—lj is a subfield of F; with 27 elements.

e Let Tr; be the trace function from F; onto its subfield #; defined by:

mj
Trj(§) =§+§ 7, VE € F).
Then by [22, Corollary 7.17], we have that |Tr]71 D= 2m7[ where

T () ={ € Fj I Trj@) =} ={E e Fj | E+£7 =1} )
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Now is the time to list all self-dual cyclic codes over R of length n.

Theorem 3 Using the notation above, all distinct self-dual cyclic codes of length n over
R = Z4 + vZ4 (v = 2v) are given by:

C= P e@C;modx" —1),

0<j<A+2p

where C; is an ideal of K; + vK; listed as follows.

(i) When j =0, there is 1 ideal: Cy = (2).
(i) When 1 < j <A, there are 1 + 27 ideals:

C; =(2), and C; = 2w;(x) + v) where w;(x) € Tr;l(l) arbitrary.

(iii) When A+ 1< j < A+ p, there are 2™ + 5 pairs (C;, Cjy,) of ideals listed by the

following table:
N C; (mod fj(x)) IC|| Cjtp (mod fiyp(x))
3 (26, 0<k<2 2(4=20m; 22Ky
om; (2wj(x)—|—v), wj(x) IS Tj 22m; (2(1+wj(x_1))+v)
1 (2v) 2Mmj (2, v)
1 (2, U) 23mj <2U)

where N is the number of pairs in the same row.
Therefore, the number of self-dual cyclic codes of length n over R is

L= [l a+2%) ] @i+s)

1<j<i AH1<j<htp

Proof By Lemma 7(ii) and Theorem 2, we have

A Atp A+2p
1 _ . . . . . .
C= @e.,(x)DQ, ® @ ejtpDjtp | © @ ej—pDj—p |,
j=0 j=r+1 j=Atp+1

where Djy, = 7;(C;) forall j = A +1,..., 1 + p. Hence the cyclic code C is self-dual,
i.e., C = C*, if and only if the following two conditions are satisfied:

() C; = Dj =t;(Ann(C})), forall 0 < j < A;
(¥) C; is an arbitrary ideal of K; + vKj and Cj4, = Dy, = 7j4+,(Ann(C})), for all
J=A+1,... h+p.

Therefore, the class of self-dual cyclic codes over R of length n is the same as the class of
cyclic codes over R of length n: C = Eijiép e;j(x)C;, where C; is an ideal of K; 4+ v/C;
satisfying Conditions (F) and () for all j.

Every pair (Cj, Cjy,) of ideals can be determined by the table in Theorem 2, for all
j=A+1,..., 2+ p. Then in order to determine codes in the latter class, we only need to

consider ideals of KC; 4+ vKC; satisfying Conditions (1) forall j =0, 1,..., A.
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Now, let 0 < j < A and C; is an ideal of K; + vKC; listed by Theorem 2. Then C;
satisfies condition () if and only if C; is given by one of the following two cases:

(-1 C; = (2).
(1-2) Cj = Qw;(x) + v),
where w;(x) € T; satisfying w;(x) = 1 + w; (x~1) (mod fj(x), mod 2).

Since w; (x) is a polynomial in Zz[x], the condition is equivalent to w (x) + w; xH=1
(mod fj(x)), ie.,

w;(x) +w;(x~ 1) = 1in Fj = Zo[x]/(f ; (x)). (8)
Now, we have the following two subcases:

(3-2-i) When j = 0, we have f(x) = x — 1 and Fy = Z,. In this case, there is no
element w; € Z, satisfying Condition (8).
($-2-ii)) Let 1 < j < A.By (6) and a? = a for all a € Z,, we obtain

m

wi(xh = wj(szj) = (w;(x))? ? Yw;(x) € Fj.

Hence Condition (8) is equivalent to w; (x) € Tro1 (1) by (7).

By Lemma 7(ii) and Theorem 2, we conclude that the class of cyclic codes over R of
length n: C = @%zgp ej(x)C;, where C; is an ideal of IC; + v/C; satisfying Conditions ()
and (%) for all j, 1s exactly the same as the class of cyclic codes over R of length n listed by
the three cases (i)—(iii) of this theorem.

As stated above, we proved the theorem. O

As the end of this section, we list the number L, of self-dual cyclic codes of length n
over Z4 4+ vZ4 (v? = 2v), where n is odd and 3 < n < 49, by the following table.

n Ln Mn n Ln Mn

3 3 2;9) 27 13851 2,6, 18; %)

5 5 4; 9) 29 16385 (28; )

7 13 (@, 3) 31 50653 (9,5,5,5)

9 27 (2,6;0) 33 107811 (2,10, 10, 10; @)
11 33 (10; @) 35 266565 4;3,12)

13 65 12; @) 37 262145 (36; 9)

15 315 2,4;4) 39 799695 (2,12;12)

17 289 (8,8;0) 41 1050625 (20, 20; 9)

19 513 (18; 9) 43 2146689 (14, 14, 14, 9)
21 2691 (2;3,6) 45 11626335 2,4,6;4,12)
23 2053 (@, 11) 47 8388613 (9, 23)

25 5125 (4, 20; 9) 49 27263041 (@, 3,21)

where M,, = (my, ..., my; my41, ..., Myyp) corresponding to the degrees of monic basic

irreducible divisors f1(x), ..., f.(x); fix1(x), ..., fazp(x) of x* — 1 in Z4[x] (see (1) in
Section 1). It is obvious that

L+my+...+my +20mup1 + ... +muqp) =n.
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4 Quasi-cyclic code over Z4 derived from cyclic codes over Z4 + vZ4

In this section, we consider self-dual 2-quasi-cyclic codes of length 2n over Z4 derived from
self-dual cyclic codes of length n over the ring R = Z4 + vZ4. As in [15, Section 3], we
define o : R — Zﬁ by

ol@) =(a+b,b), Ve =a+bv e Rwherea,b € Z4

and let & : R" — ZZ" be such that 0(«aq,...,a,) = (o(a1),...,0(x,)), for all
o, ...,a, € R. Let wy denote the Lee weight on Z4 defined by:

wr(0) =0, wr (1) =wz3) =1and wy(2) =2.
We extend wy, in a natural way: for a + bv € R with a, b € Z4, define
wr(a + bv) = wr(a+b) + wg (b).

With this distance and Gray map definition, the following conclusions have been verified
by Martinez-Moro et al. [15].

Proposition 1 ([15, Theorem 3.1]) Let C be a linear code of length n and minimum Lee
distance d over R. Then 6(C) is a linear code of length 2n over Z4, |0(C)| = |C| and is of
minimum Lee distance d.

Proposition 2 ([15, Proposition 3.3]) Let C be a linear code of length n over R. Then
0(C*) = 6(C)*. In particular, if C is self-dual, then 0(C) is a self-dual code of length 2n
over Z4 and has the same Lee weight distribution.

Moreover, we have the following properties for cyclic codes over R.

Proposition 3 Let C be a cyclic codes of length n over R. Then 0(C) is a 2-quasi-cyclic
code of length 2n over Z.4.

Proof Let o = (g, @y, ...,a,_1) € C, where a; = a; + b;jv with a;, b; € Z4 forall i =
0,1,...,n—1.ThenO(a) = (ap+bg, by, a1 +bi1, b1, ...,an_1+b,_1,b,_1) € 0(C). Since
C is cyclic, we have (ay—1, a9, @1, ..., ay—2) € C. This implies (a,—1 + by—1, by—1, ap +
bg, by, a1 + by, by, ...,a,—2+ by_3,by—2) € 6(C). Hence 8(C) is a 2-quasi-cyclic code of
length 2n over Zy. O

As an application, we consider cyclic codes of length 15 over R. In this case, x!> — 1 =
Jo() f1(x) f2(x) f3(x) fa(x) where fo(x) = x — 1, fi(x) = x*+x+ 1, fa(x) = x* + x> +
X2+ x+1, falx) = x*+2x24+3x+ 1 and fa(x) = f3(x) are monic basic irreducible
polynomials in Z4[x]. Hence m| = 2 and my = m3 = m4 = 4. Hence the number of cyclic
codes of length 15 over Z4 + vZ4 is

Q' +5)- (22 +5)- (2" +5)3 = 583443,

_ x5

First, for each integer j, 0 < j < 4, we denote F(x) T

<>]Cj = Zalx]/{f; (X)) = [Z:nzjo a;x' | ag, ay, sy lmi—1 € Z4}.
o Ty = { S5 bixi L bo.bi, o by € T} C K.
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Then we find polynomials ¢ (x), d;(x) € Z4[x] satisfying ¢ (x) F; (x)+d;(x) fj(x) =1
and set e (x) € Z4[x]/{x"> — 1) such that ej(x) = cj(x)Fj(x) (mod x5 — 1). Precisely,
we have
eo(x) = 3x 43P +3x2 43 43410 4357 4348 4347 4340 4+3x° +3x%

+3x3 +3x24+3x 43,
e1(x) = A a B 22 T 10 2% B T 2 Pt 23t + 2,
) = x x2S T a3+ 2 4,
e3(x) = 2200 x4 3a8 020 43 X3 4+ 342 +3x,
es(x) = 3x 3B 2 43 4 2x10 4 X% 4347 +x0 42070 + 43

(I) By Lemma 3 and Theorem 1, all distinct 583443 cyclic codes of length 15 over R are

given by: C = @j:o e;j(x)C; (mod x15 — 1), where

e () is one of the following 7 ideals of Z4 + vZ4:

Co = (2%) with |Co| = 2% 2, where 0 < k < 2;
= (2a 4 v) with |Cy| = 4, where a € Z, = {0, 1} arbitrary;
Co = (2v) with |Co| = 2;
= (2, v) with |Co| = 8.

e () is one of the following 9 ideals of 1| + vK;:

= (2%) with |C;| = 4* %, where 0 < k < 2;

= (2(ap + a1x) + v) with |C1| = 16, where ag, a; € Z; arbitrary;
= (2v) with |C| = 4;

= (2, v) with |C| = 64.

® (; is one of the following 21 ideals of le + vICj forall j =2,3,4:

Cj = (2%) with |C;| = 16%72k, where 0 < k < 2;

Cj = (2(ap + arx + ax? + a3x?®) + v) with |C| = 162,
where ag, a1, az, a3 € Z arbitrary;

C; = (2v) with |C;| = 16;

Cj = (2,v) with [C;| = 16°.

(II)Wehaver:4,A=2andp:l.Forj:1,2,set

o Fj = Zolx]/(f;(x)) = >y " | ag,ai, ..., am;—1 € Za}
in which the arithmetic is done modulo f j (x);
<>Tr]f1(1) ={a(x) € Fj | a(x) + a(x™") = 1 (mod f;(x))}.

Then by x~' = x'¥ (mod f;(x)) for j = 1, 2, we have the following

Tr;' (1) = {a + bx € Zolxl/(F1(0) | (@ + bx) + (@ + bx™) = 1 (mod T, (x))} =
{a+bx|a+bx+a+b(1+x)+l—0 a,b e’} = {x, 1+x}

Try (1) ={a+bx+cx?2+dx’ e Zo[x]/( fz(x) | (a+bx+cx +dx%)+(a+bxl4+
cxB 4+dx'?) =1 (mod f,(x))} = {a + bx + cx®> +dx> | bx + cx? +dx3 +b(1 +x +
4N +exP+dx2+1=0,a,b,c,de€ly)={a+x+cx + (1 +c)x3|a,ceZs).

By Theorem 3, all 315 self-dual cyclic codes of length 15 over R are given by: C =
EBA}:O ej(x)C; (mod x> — 1), where

(] CO = (2) = 2(Z4 + UZ4).
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e (C;=(2),C = 2wi(x)+ v) where wi(x) € Trfl(l).
e () =1(2),Cy=(2wy(x)+ v) where wr(x) € Tr;l(l).
® (Cz, Cy) is given by the following table:

N C3 (mod f3(x)) |C3] C4 (mod f4(x))
) 0<k<?2 24(4—=2k) 22— k)
16 2w3(x) + v) 28 2(1 + wi(x~ 1)) + v)

(2 (

( (

(2v) 2! (2,v)
1 (2,v) 212 (2v)

in which N is the number of pairs (C3, C4) in the same row, and

w3(x) = a + bx + cx? + dx3;

w3(x Y =a+d+ (d+)x + (c+b)x*+ bx3 = w3(x'*) (mod f4(x), 2),

fora, b, c,d € 7, arbitrary.

By Proposition 3, we obtain 315 2-quasi-cyclic self-dual codes 6(C) of
length 30 over Zi4. Among these codes, there are 70 codes with minimum
Lee weight 12. These 70 2-quasi-cyclic self-dual codes over Zj are given by
the following table, with C;, C», C3, C4 and the type of each Zj-code 6(C).

Ci C2 C3 (mod f3(x)) Cy (mod fa(x)) Type
(v + 2x) (2x3 4+ 2x + v) (2) 2) 218496
(v+2x +2) (2x3 4 2x +v) (2) (2) 21846
(v +2x) (2x% 4+ 2x + v) (2) (2) 21846
(v+2x +2) (2x2 4+ 2x + v) (2) (2) 218496
(v +2x) 2x34+2x +v+2) (2) (2) 21846
(v42x +2) (2x3 +2x +v+2) (2) (2) 21846
(v +2x) 2x2+2x +v+2) (2) (2) 21846
(v+2x +2) (2x242x +v+2) (2) (2) 21846
(v +2x) (2) (2v) (2, v) 21846
(v+2x +2) (2) (2v) (2, v) 21846
(v +2x) (2) (2, v) (2v) 21846
(v42x +2) (2) (2, v) (2v) 21846
(v +2x) (2x3 +2x +v) (2, v) (2v) 210410
(v +2x) (2x2 4 2x +v) (2v) (2, v) 210410
(v + 2x) (2x3 +2x +v+2) (2, v) (2v) 210410
(v +2x) (2x% 4+ 2x +v+2) (2v) (2, v) 210410
(v 4+ 2x) (2) (2x3 +2x2 +v) (2x2 4+ v) 210410
(v + 2x) (2) (2x3 4+ 2x +v) 2x3 +2x2 +2x +v) 210410
(v +2x) (2) (2x3 4 2x% + 2x 4+ v) (2x3 4+ v) 210410
(v +2x) (2) 2x3+v+2) (v+2x +2) 210410
(v +2x) (2) (1) (0) 210410
(v+2x +2) (2) (1) (0) 210410
(v + 2x) (2) (0) (1) 210410
(v42x +2) (2) (0) (1) 210410
(2) (2x3 +2x + v) 2x3+v+2) (v+2x +2) 26412
2) (2x3 + 2x + v) 3422 20 +v+2) 23 4+v+2) 20412
(2) (2x3 4+ 2x + v) (1) (0) 20412
(2) (2x% 4 2x + v) (2x3 4+ 2x +v) (2x3 4 2x% + 2x 4+ v) 20412
2) (2x% 4+ 2x + v) 2x3 +2x2 +v+2) (2x2 4+ v+2) 20412
2) (2x2 4+ 2x + v) (1) (0) 20412
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2)
2
2

S}
- = =

N
- =

(

(

(

(

(

2
2)

(2)
(v+2x +2)
(v + 2x)
(v+2x +2)
(v + 2x)
(v+2x +2)
(v + 2x)

(v + 2x)
(v+2x +2)
(v + 2x)

(v + 2x)
(v+2x +2)
(v + 2x)
(v+2x +2)
(v + 2x)
(v+2x +2)
(v+2x +2)
(v+2x +2)
(v + 2x)
(v+2x +2)
(v + 2x)
(v+2x +2)
(v + 2x)

(v + 2x)
(v+2x +2)
(v +2x)

(v + 2x)

(v +2x)
(v+2x +2)
(v+2x +2)
(v + 2x)
(v+2x +2)
(v +2x)

(

(2x +2x+v+2)
2x3+2x +v+2)
2x3+2x +v+2)
(2x2 +2x +v+2)
(2x*+2x +v+2)
(2x% +2x +v+2)
(2x24+2x +v+2)
(2x3 4 2x +v)
(2x3 4+ 2x + v)
(2x3 4+ 2x + v)
(2x3 + 2x + v)
(2x3 +2x + v)
(2x +2x 4+ v)
(2x3 4+ 2x + v)
(2x3 +2x + v)
(2x2 4 2x + v)
(2x% +2x +v)
(2x% 4+ 2x + v)
(2x% 4 2x +v)
(2x2 4 2x +v)
(2x2 4+ 2x + v)
(2x% +2x + v)
(2x% 4+ 2x + v)
2x3 +2x +v+2)
(2x +2x+v+2)
2x3+2x +v+2)
2x3 +2x +v+2)
(2x3 +2x +v+2)
2x3 +2x +v+2)
(2x3 +2x +v+2)
2x3+2x +v+2)
2x242x +v+2)
2x24+2x +v+2)
(2x*+2x +v+2)
(2x2 +2x +v+2)
(2x* +2x +v+2)
(2x +2x+v+2)
(2x24+2x +v+2)
(2x*+2x +v+2)

(2x3 +2x2 +2x 4 v)
(v+2)

(v+2x +2)
(v+2x+2)

(1)

(1)

(v + 2x)

(2x3 4+ v)

(0)

(2x2 4+ v)
@2x34+2x2 +2x +v+2)
(0)

(1)

(v+2)

(2x2 4+ v)

(2x% +v)

(v)

(2x% 4+ 2x + v)
2x3+v+2)

(0)

(0)

(v+2)

2x3 4+ 2x2 +v +2)
2x3 +2x2 +v+2)
(2x3 + 2x%2 4 2x 4 v)
(v)

(v+2x +2)

(v+2x +2)

(0)

(v+2)

(v + 2x)
2x24+2x+v+2)
(2x3 +2x2 42 + v)
(2x3 4 2x2 + 2x + v)
(v)

(0)

(0)

(v+2)

(2x2 4+ v)

(2x3 +v)

(2x3 +v)

(v)

(2x3 +2x% + v)

2x3 +2x2 + v)

(0)

264]2
26412
26412
2()412
26412
264]2
26412
26412
22414
22414
22414
22414
224]4
22414
22414
22414
22414
224]4
22414
22414
22414
22414
22414
22414
22414
22414
22414
22414
22414
224]4
22414
22414
22414
22414
22414
22414
224]4
22414
22414
22414

There are 92 2-quasi-cyclic self-dual codes 6(C) of length 30 with minimum Lee weight 10
over Zy4 derived from the 315 self-dual codes C of length 15 over Z4 + vZy4. These 92 codes
are given by the following table, with Cy, Cy, C3, C4 and the type of each Z4-code 6(C).

C C C3 (mod f3(x)) Cy (mod f4(x)) Type
(2) (2x3 4 2x +v) (2v) (2, v) 21443
2) (2x3 +2x +v) (2, v) (2v) 21443
(2) (2x2 4+ 2x + v) (2v) (2, v) 214438
(2) (2x2 4 2x +v) (2, v) (2v) 21443
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(2) 2x342x+v+2)  (2v)

(2) R +2x+v+2)  (2,v)

(2) x> 4+2x+v+2) ()

(2) 2x*4+2x+v4+2)  (2,v)

(v + 2x) (2x3 4+ 2x +v) (2v)

(v+2x+2) (2x3 +2x +v) (2v)

(v+2x +2) (2x3 4+ 2x + v) (2, v)

W+2x+2)  (2x242x+v) (2v)

(v + 2x) (2x2 4 2x +v) (2, v)

(v+2x +2) (2x2 4 2x + v) (2, v)

(v + 2x) 2x34+2x +v+2) (2v)

(v+2x +2) (2x3 +2x +v+2) (2v)

(W4+2x+2) @23 +2x+v4+2)  (2,v)

(v+2x +2) (2x +2x+v+2) (2v)

(v + 2x) 2x2+2x+v+2)  (2,v)

(W4+2x+2) 2x2+2x+v+2)  (2,v)

(v + 2x) (2) (2x2 4+ v)
(v+2x+2) (2) (2x% +v)

(v +2x) (2) (v +2x)
(v+2x+2) (2 (v + 2x)

(v +2x) (2) (2x2+v+2)
(v+2x+2) (2 2x2 +v+2)

(v + 2x) (2) (v+2x +2)
(v+2x+2) (2 (v+2x+2)

(2) (2x3 +2x +v) (v)

2) (2x3 + 2x + v) (2x3 +2x% +v)

(2) (2x3 + 2x + v) (2x3 +2x +v)

(2) (2x3 +2x +v) (v+2)

2) (2x3 4+ 2x + v) 2x3+2x2 +v+2)
(2) (2x3 4 2x +v) 2x3+2x +v+2)
(2) (2x3 +2x + v) (0)

(2) (2x% 4+ 2x + v) (v)

(2) (2x2 4 2x +v) (2x3 4+ v)

2) (2x2 4+ 2x + v) (2x3 4+ 2x2 + 2x + v)
(2) (2x% 4+ 2x +v) (v+2)

(2) (2x% + 2x + v) 2x* 4+ v+2)

(2) (2x% 4 2x + v) 2x3 22 2 +v+2)
(2) 23 +2x+v+2)  (v)

(2) 3 +2x +v+2)  2x3+2x2 +v)

(2) Cx34+2x+v+2) 23 +2x+v)

(2) 3 +2x+v+2) (v+2)

(2) 342 +v+2) 23 +2x24+0v+2)
(2) 23 42x+v+2) 23 4+2x4+v+2)
2) 3 4+2x+v42)  (0)

(2) 2x242x +v+2) (v)

(2) 2x242x+v+2)  2x34v)

(2) 2x24+2x+v+2) 23 +2x2+2x+v)
(2) x> 4+2x+v+2)  (v+2)

(2) 2x24+2x+v+2) 23 +v+2)

(2) 2x*+2x+v+2) 23 4+2x2+2x+v+2)
(v + 2x) (2x3 + 2x + v) (v)

224+ 2x +v+2)
2x2 +2x +v+2)

21448
21448
21448
21448
210410
210410
210410
210410
210410
210410
210410
210410
210410
210410
210410
210410
210410
210410
210410
210410
210410
210410
210410
210410
264]2
26412
26412
26412
26412
264]2
26412
264]2
26412
26412
26412
26412
264]2
26412
26412
26412
26412
264]2
26412
26412
26412
26412
26412
26412
264]2
26412
22414
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(v +2x) (2x3 4+ 2x +v) (2x3 4 2x +v) (2x3 4+ 2x2 +2x +v) 22414
(v+2x+2) (2x3 4+ 2x + v) (2x3 +2x +v) (2x3 22 4 2x vy 2%
(v42x +2) (2x3 4+ 2x + v) (v+2) (v) 22414
(v + 2x) (2x3 4 2x +v) 2x24+v+2) (2x2 4 2x +v) 22414
(v + 2x) (2x3 4+ 2x + v) (v+2x +2) 2x3 4+ 2x2 +v) 22414
(v4+2x +2) (2x3 4 2x +v) (v+2x +2) (2x3 4+ 2x% +v) 22414
(v 4+ 2x) (2x3 4+ 2x + v) (0) (1) 22414
(v+2x +2) (2x3 + 2x + v) (0) (1) 22414
(v42x +2) (2x% 4+ 2x + v) (v) (v+2) 22414
(v + 2x) (2x2 4 2x + v) (2x3 4 2x2 + 2x + v) (2x3 4+ v) 22414
(v42x +2) (2x% 4 2x + v) (2x3 4 2x% + 2x + v) (2x3 4+ v) 22414
(v +2x) (2x% + 2x + v) (v+2) (v) 22414
(v + 2x) (2x% 4 2x + v) 2x24+v+2) (2x2 4 2x + v) 22414
(v+2x+2) (2x% 4+ 2x + v) 2xr4+v+2) (2x2 +2x + v) 22414
(v + 2x) (2x2 4+ 2x + v) 23+ 2x2 +2x +v+2) 2x3+v+2) 22414
(v +2x) (2x2 4 2x +v) (1) (0) 22414
(v + 2x) (2x2 4 2x + v) (0) (1) 22414
(v4+2x +2) (2x% 4 2x + v) (0) (1) 22414
(v +2x) 2x3 +2x +v+2) (v) (v+2) 22414
(v +2x) 23 +2x +v+2) (2x% +v) 2x2+2x +v+2) 22414
(v +2x) 2x3 +2x +v+2) (2x3 +2x2 + v) (2x% 4+ v) 22414
(v42x +2) 2x3+2x +v+2) (2x3 +2x2 +v) (2x2 4+ v) 22414
(v +2x) 2x3 +2x +v+2) (v +2x) 2x3 +2x2 +v+2) 22414
(v+2x+2) (2x3 +2x +v+2) (v + 2x) 2x3 +2x2 +v42) 22414
(v4+2x +2) 2x34+2x +v+2) (v+2) (v) 22414
(v +2x) 2x3 +2x +v+2) (0) (1) 22414
(v42x +2) 2x3+2x +v+2) (0) (1) 22414
(v4+2x +2) 2x242x +v+2) (v) (v+2) 22414
(v + 2x) (2x24+2x +v+2) (2x3 4+ v) (v + 2x) 22414
(v + 2x) (x> +2x +v+2) (2x2 4+ v) 2x24+2x +v+2) 22414
(v+2x+2) (2x% +2x +v+2) (2x% +v) 2x2+2x+v+2) 22414
(v +2x) 2x24+2x +v+2) (v+2) (v) 22414
(v +2x) (2x*+2x +v+2) 2x3+v+2) (v+2x +2) 22414
(v42x +2) (2x24+2x +v+2) 2x3+v+2) (v+2x +2) 22414
(v4+2x +2) (2x24+2x +v+2) (1) (0) 22414
(v 4+ 2x) (2x% +2x +v+2) (0) (1) 22414
(v+2x +2) (2x% 4+ 2x +v+2) (0) (1) 22414

Let ¢ be the Gray map from Zio onto IF(Z’O extended by 0 - 00,1 — 01,2 — 11,3 —
10 in the natural way. Then ¢ is a distance and orthogonality preserving bijection from
(Zio, Lee distance) onto (F$°, Hamming distance). From the 70 2-quasi-cyclic self-dual
codes with minimal Lee weight 12 and 92 2-quasi-cyclic self-dual codes with minimum Lee
weight 10 over Z4 above and by the Gray map ¢, we derive 70 4-quasi-cyclic type II binary
formally self-dual [60, 30, 12] codes and 92 4-quasi-cyclic type II binary formally self-dual
[60, 30, 10] codes. It is well known that binary self-dual [60, 30, 12] codes are extremal (cf.
[14] and [24]).
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