
https://doi.org/10.1007/s12095-019-00377-3

Upper bounds on the multiplicative complexity
of symmetric Boolean functions

Luı́s T. A. N. Brandão1 · Çağdaş Çalık1 ·Meltem Sönmez Turan1 ·
René Peralta1

Received: 20 September 2018 / Accepted: 27 May 2019 /
© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may

apply 2019

Abstract
A special metric of interest about Boolean functions is multiplicative complexity (MC): the
minimum number of AND gates sufficient to implement a function with a Boolean circuit
over the basis {XOR, AND, NOT}. In this paper we study the MC of symmetric Boolean
functions, whose output is invariant upon reordering of the input variables. Based on the
Hamming weight method from Muller and Preparata (J. ACM 22(2), 195–201, 1975), we
introduce new techniques that yield circuits with fewer AND gates than upper bounded by
Boyar et al. (Theor. Comput. Sci. 235(1), 43–57, 2000) and by Boyar and Peralta (Theor.
Comput. Sci. 396(1–3), 223–246, 2008). We generate circuits for all such functions with
up to 25 variables. As a special focus, we report concrete upper bounds for the MC of
elementary symmetric functions �n

k and counting functions En
k with up to n = 25 input

variables. In particular, this allows us to answer two questions posed in 2008: both the
elementary symmetric �8

4 and the counting E8
4 functions have MC 6. Furthermore, we show

upper bounds for the maximum MC in the class of n-variable symmetric Boolean functions,
for each n up to 132.

Keywords Symmetric Boolean functions · Multiplicative complexity · Upper bounds ·
Logic minimization

Mathematics Subject Classification (2010) 94A60 · 06E30

This article is part of the Topical Collection on Special Issue on Boolean Functions and Their Applications

� Luı́s T. A. N. Brandão
luis.brandao@nist.gov

Çağdaş Çalık
cagdas.calik@nist.gov

Meltem Sönmez Turan
meltem.turan@nist.gov

René Peralta
rene.peralta@nist.gov

1 Cryptographic Technology Group, National Institute of Standards and Technology, 100 Bureau
Drive, Gaithersburg, MD 20899, USA

Cryptography and Communications (2019) 11:1339–1362

Published online: 17 August 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-019-00377-3&domain=pdf
https://orcid.org/0000-0002-4501-089X
https://orcid.org/0000-0003-1895-7719
https://orcid.org/0000-0002-1950-7130
https://orcid.org/0000-0002-2318-7563
mailto: luis.brandao@nist.gov
mailto: cagdas.calik@nist.gov
mailto: meltem.turan@nist.gov
mailto: rene.peralta@nist.gov

1 Introduction

Multiplicative complexity (MC) is an important characterizing property of Boolean func-
tions. The MC of a Boolean function is the minimum number of fan-in 2 multiplications
(AND gates) sufficient to implement the function by a Boolean circuit over the basis (AND,
XOR, NOT). The cost of various secure cryptographic implementations is often proportional
to the number of AND gates in Boolean circuits implementing the underlying functions.
This happens, for example, with the communication complexity of zero-knowledge proofs
and secure computation protocols, as well as with the amount of randomness required to
implement certain protections against side-channel attacks. Despite the importance of MC,
it is often computationally infeasible to measure it for arbitrary Boolean functions with a
number of variables as small as seven.

In this paper we focus on symmetric Boolean functions, whose output is determined only
by the Hamming weight of the input. Symmetric functions include several fundamental
subclasses [1]. They are relevant in diverse areas, such as cryptography [2], logic circuit
design [3, 4] and sorting networks [5]. In particular, better efficiency can stem from the use
of symmetric Boolean functions, since they can be described more succinctly than arbitrary
Boolean functions. We devise new techniques that enable us to obtain new upper bounds on
MC, often tight, for symmetric Boolean functions with a large number of variables. This is
a step towards a more comprehensive characterization of the MC of Boolean functions.

1.1 Previous work

Functions having symmetries among their input variables have more efficient implemen-
tations than those without symmetries [3]. In 1975, Muller and Preparata [5] proposed the
Hamming weight method to implement symmetric functions using a circuit in two phases:
the first phase computes the binary representation of the weight of the input; the second
phase finalizes the computation with a function of the concise encoding of the weight. They
also showed that it is possible to implement symmetric functions with circuits of fan-in 2
gates having linear size and logarithmic depth.

Implementations with fewer AND gates are preferable in many applications, such as
secure multi-party computation (e.g., [6]), fully homomorphic encryption (e.g., [7]), and
zero-knowledge proofs (e.g., [8]), where processing AND gates is more expensive than pro-
cessing XOR gates. Also, the cost of some of the countermeasures against side-channel
attacks is related to the number of AND gates in the implementation. For example, the
complexity of higher-order masking schemes for S-boxes mainly depends on the masking
complexity, which is defined as the minimum number of nonlinear field multiplications
required to evaluate a polynomial representation of an (n, m)-bit S-box over F2n [9].

The multiplicative complexity of Boolean functions is asymptotically exponential in the
number of input variables [10] and it is computationally difficult to calculate even for a small
number of variables [11]. Find et al. characterized the Boolean functions with multiplica-
tive complexity 1 and 2 [12]. The classification of functions with respect to multiplicative
complexity is known up to 6-variables [13, 14].

Using the Hamming weight method, and upper bounds for the MC of Boolean functions,
Boyar et al. showed in 2000 that n-variable symmetric Boolean functions do not require
more than n + 3

√
n AND gates. They also showed that all n-variable symmetric functions

can be simultaneously computed using at most 2n − log2 n AND gates.
In 2008, Boyar and Peralta [15] showed that the multiplicative complexity of computing

the binary representation of the Hamming weight of n bits is exactly n−hw(n), where hw(n)

Cryptography and Communications (2019) 11:1339–13621340

is the Hamming weight of the binary representation of n. Their paper also showed that any
symmetric function on seven variables has multiplicative complexity at most eight. Boyar
and Peralta presented the multiplicative complexity of some of the important classes of
symmetric functions, such as elementary symmetric (denoted �n

k) and (exactly-k) counting
functions (denoted En

k) for up to eight variables, in which the multiplicative complexities of
two specific functions �8

4 and E8
4 were left as open problems [15]. A related question that

remained unanswered was whether the multiplicative complexity of �n
k is monotonic in k.

1.2 Our results

This paper improves the Hamming-weight method for constructing efficient circuits for
symmetric Boolean functions. This includes alternative methods of encoding the Hamming
weight, based on the arity and the degree of functions. It also includes new techniques and
insights on how to optimize the second phase of the computation. Some results are further
improved based on the computational ability to find MC-optimal circuits for some functions
with MC up to 6. Based on these techniques, we provide new upper bounds, often tight, for
the MC of a large number of symmetric functions. As concrete contributions, we present
upper bounds for:

– the MC of each elementary symmetric and counting function with up to 25 variables;
in particular, we answer two open questions, by showing that the exact MC of �8

4 and
E8

4 is 6 (and providing concrete circuits), and that the MC of �n
k is not monotonic in k.

– the maximum MC among the set of n-variable symmetric Boolean functions (Sn), for
each n up to 132; (e.g., any f ∈ Sn has MC smaller than n, for any n up to 21);

We also calculated upper bounds on the MC of all symmetric Boolean functions with up
to 25 variables, and as a summary present a table with the number of n-variable functions
found for each upper bound.

1.3 Organization

The remainder of the paper is organized as follows. Section 2 gives preliminary definitions
and results about Boolean functions, symmetric functions and MC. Section 3 describes
the Hamming weight method for constructing circuits for symmetric Boolean functions.
Section 4 explains the new techniques to improve the MC upper bounds and obtain concrete
circuits with low number of AND gates. Section 5 includes results of the application of the
techniques. Section 6 concludes with final remarks. Appendix A shows upper bounds for the
MC of concrete elementary-symmetric and exactly-counting functions. Appendix B shows
upper bounds for the maximum MC within classes of fixed-arity symmetric functions.

2 Preliminaries

2.1 Boolean functions

Let F2 be the finite field with two elements. An n-variable Boolean function f is a mapping
from F

n
2 to F2. The arity of f is the number n of input variables. Bn is the set of n-variable

Boolean functions. There are #(Bn) = 22n
such functions.

Cryptography and Communications (2019) 11:1339–1362 1341

The algebraic normal form (ANF) of a Boolean function f ∈ Bn is the multivariate
polynomial representation defined by

f (x1, . . . , xn) =
⊕

�u∈Fn
2

a�ux �u, (1)

where a�u ∈ F2 and x �u = x
u1
1 ∧ x

u2
2 ∧ · · · ∧ x

un
n is composed of the Boolean variables xi for

which ui = 1.
The degree of a monomial x �u is the number of variables appearing in that monomial.

The degree deg(f) of a Boolean function f is the highest degree among the monomials
that appear in the ANF.

The truth table Tf of a Boolean function f is the list, lexicographically ordered by the
input vectors −→vi ∈ F

n
2, of the output values of f :

Tf = (
f (−→v0), f (−→v1), . . . , f (−−−→v2n−1)

)
. (2)

2.2 Symmetric Boolean functions

A symmetric n-variable Boolean function f has its output invariant under any permutation
of its input bits xi , i.e.,

f (x1, x2, . . . , xn) = f (xπ(1), xπ(2), . . . , xπ(n)), (3)

for all permutations π of {1, 2, . . . , n}. Sn denotes the set of n-variable symmetric Boolean
functions. There are #(Sn) = 2n+1 such functions.

The Hamming weight (HW), or simply weight, of a bit vector �x is the integer number
hw(�x) of bits with value 1.

Since the output of a symmetric function f depends only on the weight of the input, the
function can be represented using the (n + 1)-bit value vector w(f) = (w0, . . . , wn),such
that f (�x) = wi if hw(�x) = i.

The counting function En
k is the n-variable symmetric Boolean function that outputs 1 if

and only if the weight of the input is k. Any symmetric Boolean function f ∈ Sn can be
expressed as a sum of a unique subset of as a sum of counting functions:

f (�x) = w0E
n
0 (�x) ⊕ w1E

n
1 (�x) ⊕ w2E

n
2 (�x) ⊕ · · · ⊕ wnE

n
n(�x). (4)

The elementary symmetric function �n
k is the n-variable Boolean function composed of

all degree-k monomials, i.e.,

�n
k (�x) =

⊕

1≤i1<...<ik≤n

xi1 ∧ · · · ∧ xik . (5)

Any symmetric Boolean function f ∈ Sn can be expressed as a sum of a unique subset of
as a sum of elementary symmetric functions. The simplified ANF of f is the (n + 1)-bit
value vector v(f) = (v0, . . . , vn) satisfying

f (�x) = v0�
n
0 (�x) ⊕ v1�

n
1 (�x) ⊕ v2�

n
2 (�x) ⊕ · · · ⊕ vn�

n
n(�x). (6)

Cryptography and Communications (2019) 11:1339–13621342

The vectors v(f) and w(f), defining the coefficients used in the decomposition of a
symmetric Boolean function f , respectively as a sum of counting functions and as a sum of
elementary-symmetric functions, satisfy a linear relation:

wk =
k⊕

i=0

(
k

i

)
vi(mod 2), (7)

where
(
k
i

)
is the binomial coefficient k choose i.

The elementary symmetric function of degree k can be expressed as a product of
elementary symmetric functions as follows [15]:

�n
k = �n

2i0
∧ �n

2i1
∧ · · · ∧ �n

2ij
, (8)

where (i0, . . . , ij) is the binary representation of k.

2.3 Multiplicative complexity

With respect to multiplicative complexity (MC), the basis (AND, XOR, NOT) is equivalent
to (AND, XOR, 1), since evaluating a NOT gate is equivalent to computing an XOR with the
constant 1. MC is also the number of nonlinear gates needed to implement the function even
when the set of all fan-in 2 and fan-in 1 gates are available, since any nonlinear gate can be
implemented using one AND gate and other auxiliary linear gates.

Let C∧(f) denote the MC of the function f . The degree bound [16] states that the MC
of functions having algebraic degree d is at least d − 1. A bound is denoted tight when it is
simultaneously a lower bound and an upper bound.

Let MCmax(S) denote the maximum MC across all the functions in a set S. Sets of
interest include Bn and Sn. Table 1 shows upper bounds for the MC of Boolean functions
on n variables, for n between 2 and 16. For n up to 6, the bounds are tight and were obtained
from prior studies that characterized the MC of Boolean functions [13, 14]. For n larger
than 6, the known bounds are likely much looser. This significantly impacts the bounds
that we can obtain in this work. The upper bound for n = 7 is derived from the relation
MCmax(Bn) ≤ 1 + 2 · MCmax(Bn−1), obtained from the decomposition

f (x1, . . . , xn) = xn ∧ f ′(x1, . . . , xn−1)⊕f ′′(x1, . . . , xn−1). (9)

For n ≥ 8, Table 1 uses the MC upper bound expressed in (10), as can be obtained from
prior work [10, 14] (see Remark 1):

MCmax(Bn) ≤ (2 + b) · 2(n−b)/2 − (n + 4 + b)/2, (10)

where b = mod2(n) is the integer 0 or 1 corresponding to the parity of n.

Remark 1 The upper bound obtained in ref. [10, Theorem 6] for the MC of functions in Bn

resulted from a recursion that should stop at an optimal depth; a close examination reveals

Table 1 Upper bounds on the MC of Boolean functions

n 2 3 4 5 6 7 8 9a 10 11a 12 13a 14 15a 16

MC ≤ 1 2 3 4 6 13 26 41 57 88 120 183 247 374 502

aThe upper bounds for n ∈ {9, 11, 13, 15} use the improvement described in Remark 1

Cryptography and Communications (2019) 11:1339–1362 1343

that for odd n the optimal depth is d = (n − 1)/2 instead of d = (n + 1)/2 (used therein);
the former improves the upper bound by 1, as already reflected in (10).

3 Hamming weight method

This section describes the Hamming weight method to implement symmetric Boolean func-
tions. Since the output of a symmetric Boolean function f ∈ Sn depends only on hw(�x),
the method first computes the vectorial Boolean function HBR that outputs the binary rep-
resentation of the weight of the input; then it applies a final function g to calculate f . In
essence, the output f (�x) = g(HBR(�x)) is obtained as a composition g ◦H of two functions.

3.1 Phase I— computing the hamming weight

The function HBR maps the input vector (x1, . . . , xn) to the output vector (ys−1, . . . , y0) of
length s = ⌈

log2(n + 1)
⌉

, satisfying the integer sum

x1 + · · · + xn = 2s−1ys−1 + · · · + 2y1 + y0. (11)

Komamiya [17] showed that the ith least-significant bit of the binary representation of
the Hamming weight evaluates to the elementary symmetric function �n

2i−1 . Hence,

(ys−1, ys−2, . . . , y0) = (
�n

2s−1 , �
n
2s−2 , . . . , �

n
20

)
. (12)

The main building blocks to construct circuits for HBR include half adders and full
adders. Each adder computes the binary representation (a pair of bits, denoted carry and
sum) of the integer sum of the (respectively two or three) input bits, as follows:

– A half adder (HA) adds two binary inputs, x1 and x2, and generates a carry bit and a
sum bit, satisfying x1 + x2 = 2 · carry + sum, as in

HA(x1, x2) = (carry, sum) = (x1 ∧ x2, x1 ⊕ x2). (13)

– A full adder (FA) adds three binary inputs, x1, x2 and x3, and generates a carry bit and
a sum bit, satisfying x1 + x2 + x3 = 2 · carry + sum, as in

FA(x1, x2, x3) = (carry, sum) = (maj (x1, x2, x3), x1 ⊕ x2 ⊕ x3) (14)

where the majority function maj outputs 1 if at least two of its input bits are equal to 1
and outputs 0 otherwise. C∧(maj) = 1, and it can be implemented as

maj (x1, x2, x3) = ((x1 ⊕ x2) ∧ (x1 ⊕ x3)) ⊕ x1. (15)

Muller and Preparata [5] showed that, for any given n, it is possible to compute the binary
representation of the Hamming weight of n variables by using exactly n − ⌈

log2(n + 1)
⌉

FAs and
⌈

log2(n + 1)
⌉ − hw(n) (i.e., the number of 0’s in the binary representation of n)

HAs. Figure 1 provides an example circuit for n = 10, using 6 FAs and 2 HAs. Boyar and
Peralta [15] provided a proof that such number is in fact optimal in terms of MC.

Cryptography and Communications (2019) 11:1339–13621344

FA FA FA FA HA

FA FA

HA

x3x2 x5x4 x7x6 x9x8 x10

y0

y1

y2

x1

y3

Fig. 1 An example Hamming weight circuit for n = 10

3.2 Phase II— computing g

Once the binary representation �y = HBR(�x) of the weight of the input �x is computed, the
computation of a symmetric Boolean function f still requires the computation of a function
g satisfying g(�y) = f (�x) for any �x ∈ {0, 1}n.

In the method of Boyar et al. [8], the function f is first expressed as a sum of elemen-
tary symmetric functions �n

i , and then each elementary symmetric function is written as a
product (see (8)) of the output bits of HBR : ∑n

2s−1 ,
∑n

2s−2 , . . . ,
∑n

20 . The function g is then
defined constructively, by replacing the latter by the corresponding input variables of g.

Example 1 Let f = �10
9 ⊕�10

7 ⊕�10
3 . The binary representation of the Hamming weight

calculated with HBR outputs �10
1 , �10

2 , �10
4 and �10

8 . The function f can then be written as:

f = �10
9 ⊕�10

7 ⊕�10
3

= �10
8 ∧�10

1 ⊕�10
4 ∧�10

2 ∧�10
1 ⊕�10

2 ∧�10
1 . (16)

Letting yi = �10
2i , for i = 0, . . . , 3, it follows from (12) that

g(y0, y1, y2, y3) = g
(
�10

1 , �10
2 , �10

4 , �10
8

)

= y0 ∧ y1 ⊕ y0 ∧ y1 ∧ y2 ⊕ y0 ∧ y3. (17)

3.3 Upper bounds on theMC of symmetric functions using the HWmethod

The number of AND gates used in a composition of two circuits is equal to the sum of AND
gates in those two circuits. Furthermore, the MC of the second part can be upper bounded
by MCmax(B|H |), where |H | is the number of output bits of the first part H . This yields the
following upper bound for the MC of symmetric Boolean functions:

(f = g ◦ H) =⇒ C∧(f) ≤ C∧(H) + MCmax(B|H |). (18)

The above expression can be refined for the case of the Hamming weight method.
There, the MC of H = HBR is exactly n − hw(n) [10] and the output length is exactly⌈

log2(n + 1)
⌉

. Thus, an upper bound for the MC of any n-variable symmetric function f

can be expressed as

C∧(f) ≤ MCmax(Sn) ≤ n − hw(n) + MCmax(Blog2(n+1)�). (19)

Cryptography and Communications (2019) 11:1339–1362 1345

Plugging (10) into (19) yields an upper bound for MCmax(Sn) that is upper bounded by a
function linear in n. The exact expression is somewhat complicated; a simpler upper bound
[10, Corollary 9] is

MCmax(Sn) ≤ n + 3
√

n. (20)

It is not known whether or not MCmax(Sn) is n + �(
√

n). It is conceivable that
MCmax(Sn) is n + �(polylog(n)).

4 Newmethods using fewer AND gates

The Hamming weight method does not always lead to MC-optimal circuits [10]. In this
section we show novel computation paths, which enable improved circuit constructions in
terms of the number of AND gates, often achieving MC optimality still within the paradigm
f = g ◦ H . In summary, the optimizations are categorized, based on the modifications to
the HW method, in three types:

1. Arity-based HW-encodings. Use alternative weight encodings H that depend only on
the number n of variables of f , but which can have MC smaller than C∧(HBR) and lead
to symmetries in the truth-table entries of the corresponding g. These alternatives allow
a tradeoff between the MC and the output length of H and possibly the MC of g.

2. Degree-based HW-encoding. Use alternative weight encodings H , depending on the
degree of f , that can eliminate unnecessary sub-computations of HBR that would only
be useful for other symmetric functions of higher degree.

3. Free truth-table entries. Depending on H , choose a g with minimal MC among a set
of alternatives that can evaluate the target f .

Besides the above, some concrete MC bounds devised in this paper also take advantage
of the computational ability to find the MC of functions with fewer than 7 variables [14].
For 7 and 8 variables it is also feasible to confirm whether or not a function has MC less
than or equal to 5.

4.1 Arity-based HW-encodings

The first phase of the Hamming weight method computes HBR, outputting the binary repre-
sentation of the Hamming weight of some n-variable input. This representation, containing
s = ⌈

log2(n + 1)
⌉

bits, is optimally concise and requires exactly C∧(HBR) = n − hw(n)

AND gates. However, for some arities n there are alternative HW encodings that achieve
optimal conciseness (s output bits) at the cost of fewer AND gates. Using any such encoding
necessarily leads to a better upper-bound for the MC of f , if estimated based on (18). In
that case, the MC for H is improved, whereas the estimated upper bound for the MC of g

remains the same (since it depends only on s).
More generally, improvements can often be obtained from reasonably concise encodings,

with t output bits (with s ≤ t), even if not of minimal length s. If t is small enough, then this
can sometimes be leveraged to construct a circuit for f using fewer AND gates than a circuit
based on HBR. This can happen when the difference (e.g., 1 or 2) in number of AND gates
due to the difference t −s in output length is small enough (e.g., 1 or 2, if t −s = 1 and t is 5
or 6, respectively) to compensate for a larger number of what would otherwise be unneeded
or non-optimal AND gates used by HBR. This section considers this avenue of improvements.

Cryptography and Communications (2019) 11:1339–13621346

4.1.1 Intuition

In the Hamming weight method, the first phase (computing HBR) reduces the number of
variables while retaining full information about the Hamming weight. At each step of the
process of going from n to s variables, each initial, intermediate or final variable assigns a
weight 2i to its bit. Thus, each such variable represents either a 0 or a positive integer 2i to
contribute to the overall Hamming weight. It is useful to look at full adders (FA) and half
adders (HA) in this perspective:

– an FA consumes three symmetric variables of weight 2i and outputs two variables, one
of weight 2i+1 and another of weight 2i ;

– an HA consumes two symmetric variables of weight 2i and also outputs two variables,
one of weight 2i+1 and another of weight 2i ;

The input for H is an (inefficient) encoding that uses n variables (the original input), each
of weight 1. The encoding process then consists of progressing over a sequence of states,
each of which is itself an encoding. Each state is characterized by the tally of variables cor-
responding to each weight. Each step — a state transition — is induced by the application
of an FA or an HA. An HA transition, associated with some weight 2i , retains the over-
all number of variables: one extra variable with weight 2i+1 and one fewer with weight 2i .
The corresponding FA transition reduces by one the overall number of variables: one extra
variable with weight 2i+1 and two fewer with weight 2i . The reduction in number of vari-
ables can be concisely expressed in “dot notation”, as exemplified in Fig. 2 for n = 10 and
for two different HW encodings: HBR is the encoding used in the HW method; HFA is one
using only full adders (further discussed in Section 4.1.2).

Dot notation The dot notation is a simple and short-hand notation useful for reflecting
on the result of an encoding. Each variable is represented by a dot, and each column of
dots represents all variables with the same weight. The weight associated with each column
doubles between each adjacent column, from right to left. For each state, the rightmost
column corresponds to weight 20 = 1. In the initial state there are n variables encoding
weight 1 (i.e., each variable encodes the actual input bit value). Thus, in the initial state there
is a single column, and it has n dots. The ith column to the left, when it exists, corresponds to
weight 2i . Each application of an HA or an FA in a column removes 1 or 2 dots, respectively,
in that column, and in both cases it adds one dot to the adjacent column to the left. Figure 2
shows, for the case of n = 10 input variables, several intermediate states for two different

521
1 1 1 1 2 1 1 5 1 10

(a) Reduction via HBR

41
1 2 2 4 2 10

(b) Reduction via HFA

Fig. 2 “Dots” of variable reduction states for n = 10 variables

Cryptography and Communications (2019) 11:1339–1362 1347

encodings (HBR and HFA). Figure 2a shows the HBR reduction, where progressively each
column is reduced to a single dot. Figure 2b shows a reduction (dubbed HFA) which only
uses FAs, therefore not proceeding in a column when there are fewer than 3 dots. The
number of AND gates used between states is shown over the arrows.

Calculating the dot configuration The final dot configuration upon applying HBR is
simply a row of s dots, where s = ⌈

log2(n + 1)
⌉

.
For the HFA encoding the dot configuration is slightly more complex. The resulting num-

ber of columns is
⌊

log2(n + 1)
⌋

, which means it can either be s or s − 1. If there are fewer
columns, then at least one column will have two dots, since the overall number t of dots can-
not be smaller than s. From each column with c dots, the reduction of that column produces
exactly �(c − 1)/2� dots in the adjacent column, and leaves exactly 2 − mod2(c) dots (one
or two) in the original column. Since one variable is reduced for each FA, the final number
of dots is equal to n − #FA(n). Applying this transformation iteratively, and summing the
dots in all the columns, yields the total number of dots (i.e., variables) when applying FA:

t = hw(n + 1) − 1 + ⌊
log2(n + 1)

⌋
. (21)

4.1.2 HW encodings using only full adders

The first alternative encoding we propose uses only full adders and is denoted by HFA. It
reduces one variable for each used AND gate, and it uses as many as possible while pre-
serving the information of the Hamming weight. When no more full-adder operations are
possible in these conditions, the output is given as input to phase 2 for a corresponding
function g, denoted gFA.

Interestingly, HFA often leads to encodings as concise as HBR. Particularly, this happens
exactly to all values of the form n = 2i + 2j − 1. Of these, the cases with i �= j require
fewer AND gates than required by HBR.

Even when HFA outputs a number t of variables slightly larger than the number s output
by HBR, the approach may still enable better upper-bounds. The underlying intuition is that
each AND gate in HFA reduces the number of variables by one, whereas HBR uses half
adders, which do not reduce the number of variables. If the number t of variables output
by HFA is small enough, e.g., up to 5 or 6, then the generic upper bound MCmax(Bt) (in
Table 1) may be good enough to compensate the differential t − s. (Section 5 will further
consider an optimized computation of gFA.)

Comparing HBR vs. HFA Table 2 compares, for all arities up to n = 22, the results of apply-
ing HW encodings HFA vs. HBR. The table compares side-by-side the MC, output length
and “dots” of the two HW encodings, as well as the generic upper bounds for the MCmax of
the corresponding g and Sn (obtained by applying (18)). There are five cases to analyze:

– n = 2i − 1. For n ∈ {1, 3, 7, 15}, the final dots form a single row, i.e., there are no
columns with two dots, meaning HFA outputs the same as HBR.

– s = t and n �= 2i − 1. For n ∈ {2, 4, 5, 8, 9, 11, 16, 17, 19}, the output length t of
HFA is optimal (= s) but the final dots do not form a single row. This means that HFA
avoided some inefficient operations that HBR would have performed. This allows a
better upper-bound for MCmax(Sn).

– s < t ≤ 5. For n ∈ {6, 10, 12, 13}, the encoding HFA does not reduce the number of
variables to the minimum, but the generic upper bound for the MCmax of g is still t −1,
therefore still leading to MCmax(Sn) = n − 1.

Cryptography and Communications (2019) 11:1339–13621348

Table 2 Comparison of HBR and HFA encodings and results

n Phase 1: H (HW encoding) Phase 2: g f = g ◦ H

MC Output Dots Upper bound on Upper bound on

length |H | MCmax(B|H |) MCmax(Sn)

BR FA BR FA BR FA BR FA BR FA

1 0 0 1 1 . . 0 0 0 0

2 1 0 2 2 .. : 1 1 2 1

3 1 1 2 2 1 1 2 2

4 3 1 3 3: 2 2 5 3

5 3 2 3 3 ... :. 2 2 5 4

6 4 2 3 4 ... :: 2 3 6 5

7 4 4 3 3 2 2 6 6

8 7 4 4 4: 3 3 10 7

9 7 5 4 4:. 3 3 10 8

10 8 5 4 5:: 3 4 11 9

11 8 7 4 4 :.. 3 3 11 10

12 10 7 4 5 :.: 3 4 13 11

13 10 8 4 5 ::. 3 4 13 12

14 11 8 4 6 ::: 3 6 14 14a

15 11 11 4 4 3 3 14 14

16 15 11 5 5: 4 4 19 15

17 15 12 5 5:. 4 4 19 16

18 16 12 5 6:: 4 6 20 18a

19 16 14 5 5:.. 4 4 20 18

20 18 14 5 6:.: 4 6 22 20a

21 18 15 5 6::. 4 6 22 21a

22 19 15 5 7::: 4 13 23 28a

aA better upper-bound is found for these values in Section 5

– t = 6. For n ∈ {14, 18, 20, 21}, HFA outputs an encoding with length t = 6, for which
the generic upper bound for MCmax(Bt) is also t , therefore leading to an upper bound
for MCmax(Sn) that is equal to n. In each of these cases, the techniques in this work
allow us to reduce the bound to the degree bound n − 1.

– t = 7. For n = 22, the MCmax(Sn) upper bound obtained with HFA is worst than the
one obtained with HBR. This happens because the increase by 9 AND gates, between
MCmax(Bt=7) and MCmax(Bs=5), in the second phase is larger than the decrease by 4
AND gates, between the MC 19 of HBR and the MC 15 of HFA, in the first phase.

Remark 2 The results mentioned in Table 2 concern the MCmax(Sn) upper bound obtained
using (18), where an upper bound for MCmax(Sn) is estimated generically (Table 1). These
results highlight immediate benefits from applying the HFA encoding. However, better
upper-bounds will be obtained in Section 5 when complementing the technique with a
more refined computation of the MCmax (and/or better upper-bound) for the set of needed
functions g.

Cryptography and Communications (2019) 11:1339–1362 1349

4.1.3 HW encodings using one or a few half adders

As mentioned for the cases n ∈ {14, 18, 20, 21, 22} in Table 2, using an encoding H (e.g.,
HFA) with an output length t ≥ 6 does not yield, for Sn, a MCmax upper bound equal to
the degree bound (n − 1). This happens because starting at t = 6 the generic upper bound
for MCmax(Bt) is larger than t − 1. For t = 6 the difference between MCmax(Bt) and
Mcmax(Bt−1) is only 1, but as t increases the difference increases exponentially. For example,
for t = 7 that difference is already 7, since the corresponding MCmax bound is 13 (see
Table 1). In such cases, a better upper-bound for MCmax(Sn), still based on (18), may be
obtained by using yet a different encoding, differing from HFA by using one or a few extra
HAs that enable subsequent use of more FAs and therefore a corresponding further reduction
in the number of variables. The tradeoff to consider is the cost of applying HAs vs. the
benefit of reducing the number of variables t to enable a better upper bound for MCmax(Bt).

For example, if the use of one HA enables a subsequent use of one extra FA, then at
the cost of two AND gates the number of variables is, compared with HFA, further reduced
by 1. This is certainly better than incurring an upper bound increase of 7, by relying on
MCmax(B7) = 13 instead of MCmax(B6) = 6. More generally, if j HAs enable the overall
use of i FAs, then this enables reducing i variables at the cost of k = i + j AND gates. This
begs the question: for each limit j on the number of HAs, what is the maximum number i

of FAs that can be used in a way to reduce the number of variables from n to n − i?

Notation The generalized encoding using j HAs is denoted by Hj ; the number of output
variables is denoted by tj ; the number of used AND gates is denoted by kj (and is equal to
n−tj+j). The symbol HHA is used to generically denote an encoding Hj for some implicit j .

The previously explored encoding HFA is the case with j = 0, i.e., HFA = H0 and t0 = t .
It is worth exploring the cases where j is also allowed to be a small positive integer, e.g., 1,
2 and 3. With respect to the MCmax(Sn) upper bound estimated using (18) (see Remark 2),
using Hj with some j ≥ 1 is only worth over HFA if t0 ≥ 7 and simultaneously kj − k0 <

MCmax(Btj) − MCmax(Bt0). For example, if t0 ≤ 6, the cost of two ANDs to reduce one
variable will never over-compensate the difference in MCmax(Bt). More concretely, using
j ≥ 1 is counterproductive if t0 ≤ 5; j ≥ 2 is also counterproductive if t0 = 6.

Comparing HBR vs. HHA (H0, H1, H2) Table 3 shows the results upon application of up to
a few half-adders, for n ∈ {22, ..., 36}. The table is similar to Table 2, except for replacing
HFA by Hj and for adding a new column for the parameter j (defining the number of HAs
used in Hj). There are several cases worth analyzing:

– The arity n = 22 is the first for which the new technique is helpful. Using one HA
directly enables for MCmax(Sn) an upper bound equal to 22, whereas HBR and HFA
would respectively lead to upper bounds 23 and 28.

– The arity n = 36 is the first for which it is useful to use two HAs. In fact, using
HFA = H0 or H1 leads to an upper bound of 42, which would be worse than the upper
bound 40 possible with HBR.

– The arity n = 28 is the first where the choice of the position of the first HA application
(not detailed in the table) does not happen at the first opportunity to apply it. Doing
HFA would lead to t0 = 7 dots with configuration “::.:”; then, when deciding to use
one HA, instead of starting at the least-significant column (the rightmost one) with
two dots, the HA starts at the second such column. The rationale for this is explained
further below.

Cryptography and Communications (2019) 11:1339–13621350

Table 3 Comparison of HBR and HHA encodings and results

n j Phase 1: H (HW encoding) Phase 2: g f = g ◦ H

MC Output Dots Upper bound on Upper bound on

length |H | MCmax(B|H |) MCmax(Sn)

BR HA BR HA BR HA BR HA BR HA

22 1 19 18 5 5 :... 4 4 23 22

23 0 19 18 5 5 :... 4 4 23 22

24 0 22 18 5 6 :..: 4 6 26 24

25 0 22 19 5 6 :.:. 4 6 26 25

26 1 23 21 5 6 ::.. 4 6 27 27

27 0 23 21 5 6 ::.. 4 6 27 27

28 1 25 23 5 6: 4 6 29 29

29 1 25 25 5 5 4 4 29 29

30 1 26 26 5 5 4 4 30 30

31 0 26 26 5 5 4 4 30 30

32 0 31 26 6 6: 6 6 37 32

33 0 31 27 6 6:. 6 6 37 33

34 1 32 29 6 6:.. 6 6 38 35

35 0 32 29 6 6:.. 6 6 38 35

36 2 34 32 6 6:... 6 6 40 38

– For n ∈ {29, 30, 31} the encoding Hj collapses to HBR, respectively using 1, 1 and 0
HAs, leading to a dot configuration composed of a single row of dots.

– For n ∈ {23, 31} the resulting upper bounds on MCmax(Sn) are equal to the respective
degree lower-bound (= n − 1), which means they are tight. It is open for which other
values n ≥ 22 a computation for finding the actual MCmax of the set of needed functions
gj may enable a better bound.

Where to apply HA As illustrated with the case n = 28, there may exist several alternatives
for where to apply an HA, and not all are optimal. Indeed, n = 28 is the first arity for
which this problem arises. For this n, applying HFA would induce a dot configuration “::.:”.
Since the rightmost column does not have any other adjacent column with two dots, the
use of a single HA therein would not immediately allow using another FA. However, this
is possible when applying a single HA in the least significant column of a set of adjacent
columns where all contain two dots. Particularly, both the two leftmost columns have two
dots and are adjacent. Thus, the use of one HA in the least significant of these two allows a
subsequent use of one FA, leading to a reduction to t1 = 6 dots (with configuration “....:”).

The larger the number of adjacent columns with two dots each, the better is the result
when applying a single HA to the least significant column of the set. However, when more
than one HA can be applied, the optimal choice becomes more complex. This observation
highlights that the use of HAs must be judicious not only about the allowed number of HAs
but also about the variable weights to which they are applied.

Cryptography and Communications (2019) 11:1339–1362 1351

4.2 Degree-based HW-encodings

At any stage in the process of Hamming weight computation, the generated intermediate
variables are functions of input variables. The degrees of these variables are related to the
columns in which they appear in the dot notation, which in turn depend on the preceding
processing through FAs and HAs. Specifically, the intermediate variables in the ith rightmost
column of the dot notation will have degrees 2i−1. It is reasonable to avoid the generation
of intermediate variables whose degree exceeds the degree of the symmetric function one
wants to implement. This imposes the condition that FAs will only be applied up to the
column corresponding to the degrees that are less than or equal to deg(f). The technique
leads to circuits with fewer AND gates because it eliminates unnecessary multiplications.
However, the function g might have a larger number of variables compared to the number
of variables remaining in the HFA encoding. However, it leads to circuits with fewer AND
gates because unnecessary multiplications are eliminated.

Bounded degree case Let 1 < 2s−1 ≤ n < 2s and let f be a symmetric Boolean function
on n inputs. Then f can be calculated from the values of �n

20 , . . . , �
n
2s−1 . Calculating the

s elementary symmetric functions above requires n − hw(n) AND gates. This yields the
following bound:

C∧(f) ≤ n − hw(n) + MCmax(Bs). (22)

For example, if n = 63 then 25 ≤ n < 26 and therefore C∧(f) ≤ 63 since hw(63) = 6 and
MCmax(B6) = 6.

When the degree of the function is less than n/2, we can get a new bound on the mul-
tiplicative complexity. If f is an n-variable symmetric Boolean function of degree k, and
1 < 2r−1 ≤ k < 2r then the upper bound is

C∧(f) ≤ C∧(�n
20 , . . . , �

n
2r−1) + MCmax(Br). (23)

Let γ = n mod 2r . Then, by Lemma 11 of [15],

C∧(�n
20 , . . . , �

n
2r−1) ≤

(
2r−1 − 1

2r−1

)
(n − γ) + γ − hw(γ). (24)

For example, let f be a symmetric function of 100 variables with degree k = 31. Then
24 ≤ k < 25, which yields r = 5 and γ = 100 mod 32 = 4. Since MCmax(B5) = 4 we get

the bound C∧(f) ≤
(

15
16

)
(100 − 4) + 4 − 1 + 4 = 97.

4.3 Free entries in the truth table of g

After phase 1 encodes the weight, phase 2 finalizes with the computation of g, which com-
bines the bits of the weight. As described in Section 3.2 (e.g., see Example 1), Peralta and
Boyar express f as a sum (6) of elementary symmetric functions, and in turn express each
term of the sum as a product (8) of elementary symmetric functions of degree equal to a
power of two �n

2s−1 , �
n
2s−2 , . . . , �

n
20 . That method provides a unique expression for g, based

on f and HBR.
We observe that when n is not of the form 2i − 1, then for any f ∈ Sn there are several

possibilities for g after applying H = HBR. This becomes evident when representing the
target symmetric function f as a sum of counting functions (see (4)).

Cryptography and Communications (2019) 11:1339–13621352

The simplified value vector (w0, . . . , wn) determines the first (n + 1) terms of the truth
table of g, as in (w0, w1, . . . , wn, ∗, . . . , ∗). The free entries, denoted as ∗, correspond to
output values of g that do not matter, since they correspond to weights that never appear as
input to g (after the Hamming weight encoding HBR).

The number of free entries in the truth table is equal to l = 2s − n − 1, where s is the
number of bits in the binary representation of n. When n is of the form 2s −1, the truth table
for g does not have any free entries, i.e., l = 0. For all other values n there are free entries
that allow choosing from among several possible functions g, possibly allowing to choose
one with the smallest multiplicative complexity.

Example 2 Let f = �10
9 ⊕ �10

7 ⊕ �10
3 , which is equal to f = E10

3 ⊕ E10
9 , in terms of

counting functions. When applying the basic Hamming weight method, where f = g◦HBR,
the truth table of any corresponding 4-variable function g must be of the form

(0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, ∗, ∗, ∗, ∗, ∗). (25)

This contains 5 free entries, which means there are 25 possible choices for g. In fact, for
any 10-variable symmetric Boolean function f , after applying the HBR encoding the miss-
ing function g can be any 4-variable function selected from within a set of 25 functions.
While there exist 4-variable functions with MC 3, we know that for any such f there is a
corresponding g with MC 2.

The Example 2 can be extended even for the case of a single free entry. It is known that
4-variable Boolean functions can be implemented using at most 3 AND gates, and, among
those, the functions with MC 3 have degree 4. By choosing the last truth-table entry such
that the parity of the truth table is even guarantees that the degree of the function is at most
3, and such functions can be implemented using at most 2 AND gates.

The concatenation method When the number l of free entries is large, checking the mul-
tiplicative complexity of all possible functions may be infeasible. In those cases, the truth
table of an m-variable function g ∈ Bm can be interpreted as the concatenation of the
truth tables of two functions g1 and g2, each having m − 1 variables. This representation
corresponds to a decomposition of g(z1, . . . , zm) as follows:

g1(z1, . . . , zm−1) ⊕ (zm ∧ (g1(z1, . . . , zm−1) ⊕ g2(z1, . . . , zm−1))). (26)

Based on this decomposition, we can get an upper bound for the MC of g:

C∧(g) ≤ C∧(g1) + C∧(g2) + 1 (27)

In this decomposition, function g1 has no free entries, but the last l bits of the truth table
of g2 can be selected freely. As a shorthand notation, we use Gi to denote a decomposition
where i = log2(2

m−1 − l)� is the minimum number of variables for which there is a i-
variable function g2 satisfying the defined entries. For large enough l, we can have i smaller
than m − 1.

An exceptional case (G0) When the number of free entries is equal to 2m−1 − 1 there is
a single defined entry g2(0, . . . , 0) = g(0, . . . , 0, 1) ≡ b. In this case, instead of defining
g2 as a constant function, it is advantageous to define g2 = g1 ⊕ b. Then, the component
g1(z1, . . . , zm−1) ⊕ g2(z1, . . . , zm−1) in (26) becomes a constant, allowing the removal of
the “+1” term in (27), meaning the use of G0 enables C∧(g) ≤ C∧(g1).

Cryptography and Communications (2019) 11:1339–1362 1353

5 Results

5.1 Symmetric functions with up to 25 variables

In order to compute the circuit of a given symmetric function f ∈ Sn, the algorithm first
computes the degree of f and determines the encoding based on the degree and the arity of
f , as described in Sections 4.1 and 4.2, determining up to which point to use full adders.
In the second phase, the algorithm constructs a circuit for a function g, satisfying f =
g ◦ H . When only full adders have been applied in the first phase, there is a single possible
function g to implement. Exceptionally for n = 22, we had to use half adders, since the
number of variables after applying the full adders (see Section 4.2) was otherwise too high
to enable the computation of the MC of g. The MC of g was computed using the techniques
from ref. [14].

We have applied the method to all symmetric functions with up to n = 25 variables.
The source code used to generate these results is publicly available online [18]. In Table 4,
each cell in a row n and column B contains the number of functions f ∈ Sn for which the
method provides a circuit with B AND gates. For each such function, B is thus an upper
bound on the MC, but some functions may have a smaller MC.

We make a few observations about the functions accounted in Table 4:

– For each n, there are four functions with MC 0; these are the symmetric linear functions
0, 1, �n

1 and �n
1 ⊕1.

– For each even n, there are twelve functions with MC equal to n/2; these are the func-
tions �n

2 , �n
3 and �n

3 ⊕�n
2 , and the corresponding functions obtained by adding any of

the four symmetric linear functions.
– For each odd n, there are four functions with MC equal to (n − 1)/2; these are the

functions obtained by adding �n
2 with any of the four symmetric linear functions.

– For each odd n ≥ 9, there are eight functions with MC equal to (n+ 1)/2; these are the
functions �n

3 , �n
3 ⊕ �n

2 and the corresponding functions obtained by adding any of the
four symmetric linear functions.

Table 4 also shows that, for any n ≤ 21 and for n = 23, all n-variable symmetric Boolean
functions can be implemented with at most n − 1 AND gates. Since n − 1 is also the degree
lower bound for functions of degree n, it follows that n − 1 is also the exact MCmax(Bn)

for n ≤ 21 and n = 23. The arity n = 22 is the first case for which we cannot yet settle
the exact MCmax, i.e., we can present the upper bound 22, but we are not yet able to decide
whether MCmax(S22) is 22 or 21.

Special classes of symmetric Boolean functions As a special case, in Appendix A we
show MC upper bounds for all �n

k (Table 5) and all En
k (Table 6), for n ≤ 25.

In 2008, Boyar and Peralta posed two concrete problems related to the MC of sym-
metric Boolean functions [15]: is the C∧

(
�8

4

)
equal to 5 or 6?; is the C∧

(
E8

4

)
equal to

6 or 7? The methods described in this paper provide the implementations for �8
4 and E8

4
(see Figs. 3 and 4) with 6 ANDs, which solves the case for E8

4 . The optimality of the cir-
cuit for �8

4 is verified using the methods from ref. [14], by ruling out the possibility of
implementing the function with 5 AND gates.

The results also answer another question from ref. [15] — C∧
(
�n

k

)
is not monotonic in

k. More concretely, in Table 5 we observe that for each n > 7 the computed upper bound is
not monotonic in k, but for each k the upper bound is non-decreasing in n.

Cryptography and Communications (2019) 11:1339–13621354

Ta
bl
e
4

N
um

be
r

of
fu

nc
tio

ns
in

S n
fo

r
ea

ch
ob

ta
in

ed
up

pe
r

bo
un

d
(B

)
fo

r
M

C

n

B
0
1

2
3

4
5

6
7

8
9

10
11

12
13

14
15

16
17

18
19

20
21

22
23

24
25

To
ta
l

1
4

22

2
4
4

23

3
4
4

8
24

4
4

12
16

25

5
4

4
24

32
26

6
4

12
48

64
27

7
4

4
16

10
4
12

8
28

8
4

12
16

22
4

25
6

29

9
4

4
8

48
44

8
51

2
21

0

10
4

12
0

96
71

2
12

24
21

1

11
4

4
8

8
16

8
18

56
20

48
21

2

12
4

12
0

16
32

0
29

12
49

28
21

3

13
4

4
8

0
48

48
0

60
48

97
92

21
4

14
4

12
0

0
96

48
0

92
40

22
93

6
21

5

15
4

4
8

0
8

12
0

11
36

31
48

8
32

76
8

21
6

16
4

12
0

0
16

25
6

13
44

41
44

0
88

00
0

21
7

17
4

4
8

0
0

48
25

6
29

44
82

88
0

17
6
00

0
21

8

18
4

12
0

0
0

96
22

4
28

80
91

90
4

42
9
16

8
21

9

19
4

4
8

0
0

8
10

4
32

0
92

80
33

7
92

0
70

0
92

8
22

0

20
4

12
0

0
0

16
22

4
25

6
86

08
28

0
49

6
1
80

7
53

6
22

1

21
4

4
8

0
0

0
48

19
2

57
6

14
96

0
71

7
45

6
3
46

1
05

6
22

2

22
4

12
0

0
0

0
4

52
80

11
88

57
06

8
4
03

9
60

0
4
29

0
60

0
22

3

23
4

4
8

0
0

0
8

10
4

14
4

12
64

72
70

4
5
41

1
32

8
11

29
1
64

8
22

4

24
4

12
0

0
0

0
16

22
4

32
16

64
67

55
2

3
27

7
05

6
30

20
7
68

0
19

2
22

5

25
4

4
8

0
0

0
0

48
19

2
64

35
84

10
0
48

0
6
88

6
97

6
60

11
6
99

2
51

2
22

6

Cryptography and Communications (2019) 11:1339–1362 1355

t0 (((
(
(

(

(
(

((
(

(

(
(

(

((

((

(
(
(

x6 x7 x6 x8
t1 x4 x5 x4 x6 x7 x8

(

8t2 x2 x3 x2 x4 x5 x6 x7 x

t3 t0 t1 t2 x1 x2 x4 x6 x2 x3 x4 x5 x6 x7 x8
t4 t0 t1 x1 x4 x6 t3 x2 x3 x4 x5 x6 x7 x8
t5 t0 t1 x4 x6 t0 t2 t3 x3 x4 x5 x7 x8
Σ8
4 t0 t4 t5 x6

(

Fig. 3 Implementation of the elementary symmetric function �8
4

5.2 MaximumMC for up to large arities

The following proposition expresses a useful observation — the MCmax is non-decreasing
as the number of variables increases. This allows framing the MCmax for any arity n in
between the MCmax of the preceding and succeeding arities.

Proposition 1 (Non-decreasing MCmax) Let MCmax(Sn) denote the maximum MC of
symmetric Boolean functions with n variables. Then, MCmax(Sn+1) ≥ MCmax(Sn).

Proof Consider any function f ∈ Sn. Let v(f) = (v0, ..., vn) be the simplified ANF of f ,
such that vi is 1 if and only if the elementary symmetric function �n

i appears in the ele-
mentary additive decomposition of f . Let f ′ be another symmetric function defined as the
result of replacing each �n

i (x1, ..., xn), in the simplified ANF of f , by �n+1
i (x1, ..., xn+1),

which contains xn+1 as a new variable. When in the latter we replace xn+1 by 0, we
eliminate all terms containing xn+1, leaving exactly all the terms of degree i that do not
contain xn+1. Thus, it follows that �n

i (x1, ..., xn) = �n+1
i (x1, ..., xn, 0). Consequently,

f ′(x1, ..., xn, 0) = f (x1, ..., xn). Let C′ be an MC-optimal circuit for f ′. Starting from
C′, for any wire carrying input xn+1 replace it by a constant 0, thereby getting a new cir-
cuit C. Circuit C computes f with the same number of AND gates as in C′. Therefore,
MCmax(Sn) ≤ MCmax(Sn+1), i.e., MCmax(Sn+1) ≥ MCmax(Sn).

The techniques devised in this paper enable calculation of upper bounds for MCmax(Sn)

for arities n larger than 25. Figure 5 shows, for n up to 132, a graphical comparison of the
degree lower bound, our new upper bounds, and the upper bounds obtained from (19) and
(20). Table 7 in Appendix B shows a table with the corresponding MCmax for n up to 132,
and a detailed indication of the used method.

t0 x6 x7 6 x8
x8t1 x4 x5 x4 x6 x7

t2 x2 x3 x2 x4 x5

x5

x6 x7 x

t3 t1 t2 x2 x4 t0 1 x1 x6

t4 t0 t1 x4 x6 t0 t3 1 x1 x6
E8
4 1 x1 x2 x3 x4 x6 x7 x8 1 t2 t3 t4 x2 x4

x

(
(
(
(
(
(

(
(
(

(
(

t(

((
((

8

(
(

(
(

(

(
(
(

Fig. 4 Implementation of the counting function E8
4

Cryptography and Communications (2019) 11:1339–13621356

0 16 32 48 64 80 96 112 128
0

16

32

48

64

80

96

112

128

144

160

n

gates

Simplified MC UB (n 3 n) from ref. [10]

MC UB based on 19 (from ref. [15]) but
improved with the results in Table 1

Our new upper bound upon improving H gand

Degree lower bound

Fig. 5 Comparison of MC bounds for n-variable symmetric functions

As n increases, more often the full-adder approach (HFA = H0) is not sufficient to achieve
a small enough t (number of variables left for phase 2). As n increases, more often more
HAs may have to be applied (i.e., the larger j has to be) to achieve a low enough number
tj of variables that allow us to obtain a good upper bound for f based on a possible upper
bound for gj . If the exact MCmax of the set G of functions needed for phase 2 could always
be computed, then a better bound could often be obtained. However, since with respect to
finding the MC of arbitrary functions our computational resources are currently limited to
cases with up to t = 6 variables, we can often not use the ideal j and respective MCmax.

6 Conclusion and future work

Finding efficient circuits in terms of the number of AND gates for Boolean functions when
n ≥ 7 is a hard problem. In this paper, we have focused on the class of symmetric functions.
The symmetries in these functions enable construction of efficient circuits with a small
number of AND gates. We have provided different weight encodings that aim to optimize
the number of AND gates.

Although symmetric functions constitute a small class within the set of Boolean func-
tions, the provided bounds also hold for Boolean functions that are affine equivalent to
symmetric functions. The techniques presented in this paper can potentially be applied to

Cryptography and Communications (2019) 11:1339–1362 1357

larger classes of functions, such as partially symmetric functions, and rotation symmetric
functions which also contain the set of symmetric functions.

A natural further direction is to understand when techniques provide optimal solutions
and when they can be improved. It would be interesting to determine what is the smallest
value of n such that MCmax(Sn) is greater than or equal to n.

Acknowledgments The authors thank the anonymous reviewers of the journal, and Morris Dworkin from
NIST, for their useful comments and suggestions.

Appendix A: MC upper-bounds for special classes of symmetric
Boolean functions

Tables 5 and 6 show MC upper bounds, respectively for all elementary-symmetric Boolean
functions �n

k and all exactly-counting Boolean functions En
k , with any number n of variables

up to 25, and with k up to n.

Table 5 Upper bounds on the MC of elementary symmetric functions �n
k

n
k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 0 0 −
2 0 0 1 −
3 0 0 1 2 −
4 0 0 2 2 3 −
5 0 0 2 3 3 4 −
6 0 0 3 3 4 4 5 − − − − − − − − − − − − − − − − − − −
7 0 0 3 4 4 5 5 6 − − − − − − − − − − − − − − − − − −
8 0 0 4 4 6 5 6 6 7 − − − − − − − − − − − − − − − − −
9 0 0 4 5 6 7 6 7 7 8 − − − − − − − − − − − − − − − −
10 0 0 5 5 7 7 8 7 8 8 9 − − − − − − − − − − − − − − −
11 0 0 5 6 7 8 8 9 8 9 9 10 − − − − − − − − − − − − − −
12 0 0 6 7 9 8 9 9 10 9 10 10 11 − − − − − − − − − − − − −
13 0 0 6 7 9 10 9 10 10 11 10 11 11 12 − − − − − − − − − − − −
14 0 0 7 8 10 10 11 10 11 11 12 11 12 12 13 − − − − − − − − − − −
15 0 0 7 8 10 11 11 12 11 12 12 13 12 13 13 14 − − − − − − − − − −
16 0 0 8 9 12 11 12 12 14 12 13 13 14 13 14 14 15 − − − − − − − − −
17 0 0 8 9 12 13 12 13 14 15 13 14 14 15 14 15 15 16 − − − − − − − −
18 0 0 9 10 13 13 14 13 15 15 16 14 15 15 16 15 16 16 17 − − − − − − −
19 0 0 9 10 13 14 14 15 15 16 16 17 15 16 16 17 16 17 17 18 − − − − − −
20 0 0 10 11 15 14 15 15 17 16 17 17 18 16 17 17 18 17 18 18 19 − − − − −
21 0 0 10 11 15 16 15 16 17 18 17 18 18 19 17 18 18 19 18 19 19 20 − − − −
22 0 0 11 12 16 16 17 16 18 18 19 18 19 19 20 18 19 20 20 19 20 20 21 − − −
23 0 0 11 12 16 17 17 18 18 19 19 20 19 20 20 21 19 20 20 21 20 21 21 22 − −
24 0 0 12 13 18 17 18 18 21 19 20 20 21 20 21 21 22 20 21 21 22 21 22 22 23 −
25 0 0 12 13 18 19 18 19 21 22 20 21 21 22 21 22 22 23 21 22 22 23 22 23 23 24

Cryptography and Communications (2019) 11:1339–13621358

Table 6 Upper bounds on the MC of (exactly-k) counting functions En
k

n
k

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

1 0 0 −
2 1 0 1 −
3 2 2 2 2 −
4 3 2 2 2 44 −
5 4 4 3 3 54 4 −
6 5 4 5 3 64 4 5 − − − − − − − − − − − − − − − − − − −
7 6 6 6 6 74 6 6 6 − − − − − − − − − − − − − − − − − −
8 7 6 6 6 6 6 6 6 7 − − − − − − − − − − − − − − − − −
9 8 8 7 7 7 7 7 7 8 8 − − − − − − − − − − − − − − − −
10 9 8 9 7 8 7 8 7 9 8 9 − − − − − − − − − − − − − − −
11 10 10 10 10 9 9 9 9 10 10 10 10 − − − − − − − − − − − − − −
12 11 10 10 10 11 9 9 9 11 10 10 10 11 − − − − − − − − − − − − −
13 12 12 11 11 12 12 10 10 12 12 11 11 12 12 − − − − − − − − − − − −
14 13 12 13 11 13 12 13 10 13 12 13 11 13 12 13 − − − − − − − − − − −
15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 − − − − − − − − − −
16 15 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 15 − − − − − − − − −
17 16 16 15 15 15 15 15 15 15 15 15 15 15 15 15 15 16 16 − − − − − − − −
18 17 16 17 15 16 15 16 15 16 15 16 15 16 15 16 15 17 16 17 − − − − − − −
19 18 18 18 18 17 17 17 17 17 17 17 17 17 17 17 17 18 18 18 18 − − − − − −
20 19 18 18 18 19 17 17 17 18 17 17 17 18 17 17 17 19 18 18 18 19 − − − − −
21 20 20 19 19 20 20 18 18 19 19 18 18 19 19 18 18 20 20 19 19 20 20 − − − −
22 21 20 21 19 21 20 21 18 20 19 20 18 20 19 20 18 21 20 21 19 21 20 21 − − −
23 22 22 22 22 22 22 22 22 21 21 21 21 21 21 21 21 22 22 22 22 22 22 22 22 − −
24 23 22 22 22 22 22 22 22 23 21 21 21 21 21 21 21 23 22 22 22 22 22 22 22 23 −
25 24 24 23 23 23 23 23 23 24 24 22 22 22 22 22 22 24 24 23 23 23 23 23 23 24 24

Appendix B: Description of MCmax upper bounds

Table 7 shows, for each n ≤ 132, the MCmax upper bound we found for the set Sn of n-
variable symmetric Boolean functions. For each n, the table identifies an encoding H of the
Hamming weight, and a method G for finding an MC upper bound of the corresponding g.
We checked five different practical combinations of H and G:

C1. H = HBR and G = gen, where “gen” uses for g the MC upper bound from Table 1.
This was used for n ∈ {1, 3, 7, 15, 29–31, 48–63, 99–127}.

C2. H = H0 (i.e., using only full adders) and G = exp, where “exp” is an exhaustive
computation “experimentally” determining the MC of each g corresponding to each
f ∈ Sn. This was used for n ∈ {14, 18, 20, 21}.

C3. H = Hj (possibly using some (j ≥ 0) half adders, but not computing the full HBR)
and G = gen. This was used for n ∈ {2, 4 − −6, 8 − −13, 16 − −17, 19, 22 −
−28, 32 − −47}.

Cryptography and Communications (2019) 11:1339–1362 1359

Table 7 Upper bounds (UB) obtained for MCmax(Sn)

n

,

,

,

UB D H G

1 0 0 H0 gen
2 1 1 H0
3 2 0 H0
4 3 2 H0
5 4 1
6 5 1
7 6 0 H0
8 7 3 H0
9 8 2
10 9 2
11 10 1
12 11 2
13 12 1
14 13 1 H0 exp
15 14 0 H0 gen
16 15 4 H0
17 16 3
18 17 3 H0 exp
19 18 2 H0 gen
20 19 1 H0 exp
21 20 2
22 22 1 H1 gen
23 22 1 H0
24 24 2
25 25 1
26 27 0 H1
27 27 0 H0
28 29 0 H1
29 29 0 H1
30 30 0
31 30 0 H0
32 32 5 H0
33 33 4
34 35 3 H1
35 35 3 H0
36 38 2 H2
37 38 2 H1
38 39 2
39 39 2 H0
40 43 1 H3
41 43 1 H2
42 44 1
43 44 1 H1
44 46 1 H2

n UB D H G

45 46 1 H1 gen
46 47 1
47 47 1 H0
48 52 0 H4
49 52 0 H3
50 53 0
51 53 0 H2
52 55 0 H3
53 55 0 H2
54 56 0
55 56 0 H1
56 59 0 H3
57 59 0 H2
58 60 0
59 60 0 H1
60 62 0 H2
61 62 0 H1
62 63 0
63 63 0 H0
64 69 7 H6 G0
65 70 6 H5 G1
66 71 6 H5 G2
67 72 5 H4 G2
68 74 5 H5 G3
69 74 5 H4
70 75 5
71 76 4 H3
72 79 4 H5 G4
73 79 4 H4
74 80 4
75 80 4 H3
76 82 4 H4
77 82 4 H3
78 83 4
79 84 3 H2
80 88 3 H5 G5 0
81 89 2 H4 G5
82 90 2
83 90 2 H3
84 92 2 H4
85 92 2 H3
86 93 2
87 93 2 H2
88 96 2 H4

n UB D H G

89 96 2 H3 G5
90 97 2
91 97 2 H2
92 99 2 H3
93 99 2 H2
94 100 2
95 100 2 H1
96 105 2 H5 G6 0
97 106 1 H4 G6 1
98 107 1 H4 G6 2
99 108 0 H3 gen
100 110 0 H4
101 110 0 H3
102 111 0
103 111 0 H2
104 114 0 H4
105 114 0 H3
106 115 0
107 115 0 H2
108 117 0 H3
109 117 0 H2
110 118 0
111 118 0 H1
112 122 0 H4
113 122 0 H3
114 123 0
115 123 0 H2
116 125 0 H3
117 125 0 H2
118 126 0
119 126 0 H1
120 129 0 H3
121 129 0 H2
122 130 0
123 130 0 H1
124 132 0 H2
125 132 0 H1
126 133 0
127 133 0 H0
128 140 13 H7 G0
129 141 12 H6 G1
130 142 12 H6 G2
131 143 11 H5
132 145 11 H6 G3

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

*

,

C4. H = HBR and G = Gi , where Gi applies the concatenation method to function g,
to obtain g2 with only i variables (if i ≥ 1), or to use g2 = g1 + g(0, . . . , 0, 1) (if
i = 0). This was used for n ∈ {64 − −79, 81 − −95, 128 − −132}.

Cryptography and Communications (2019) 11:1339–13621360

C5. H = HBR and G = Gi,j , where Gi,j applies Gi to g and then applies Gj to the
corresponding g2. This was used for n ∈ {80, 96 − −98}.

The best combination varies with n, but sometimes several combinations yield the same
best upper bound. Table 7 shows H and G only for the first best combination in the order
C1 < C2 < C3 < C4 < C5.

Column “H” shows the number of used half adders as a subscript j in Hj . When said
encoding is HBR, an asterisk is added as suffix (H ∗

j). Column “D” shows the difference to
the upper bound that would be obtained with the reference method C1. Column “UB” shows
the upper bound in bold when it is equal to the degree bound (n − 1).

Example 3 The case n = 72 (using combination C4) indicates an encoding H = H ∗
5 =

HBR with 5 half adders, and a method G4 for g. The encoding HBR produces an output of
seven variables (z1, . . . , z7), upon which the function g can be written as g1(z1, . . . , z6) ⊕
z7 ∧ (g1(z1, . . . , z6) ⊕ g2(z1, . . . , z4)). Since the MC for HBR(x1, ..., x72) is 70, the overall
upper bound is equal to 79 = 70 + 6 + 1 + 3, where 6 and 3 are the generic MC upper
bounds for g1 and g2 (functions of 6 and 4 variables, respectively), and the extra 1 is the
AND used to multiply z7 with (g1 ⊕ g2).

Example 4 The case n = 80 (using combination C5) indicates the use of H = H ∗
5 =

HBR and G5,0. The HBR encoding outputs 7 variables. Then, G5 decomposes g into
g1(z1, . . . , z6) ⊕ y6 ∧ (g1(z1, . . . , z6) ⊕ g2(z1, ..., z5)). Since for n = 80 there are 81 pos-
sible weights, the function g2 is a 5-variable function with 17 (= 81 − 64) defined entries
and 15 free entries. For the second decomposition, the number of defined entries of the
second component will be 1(= 17 − 16). Thus, G0 can be applied (recall the exceptional
case described in Section 4.3) to decompose g2 into g′

2(z1, . . . , z4) ⊕ (z5 ∧ b), where b

is the constant g(0, ..., 0, 1). Thus, the upper bound for the MCmax for n = 80 is equal to
88 = 78 + 6 + 1 + (3 + 0), where 78 is the MC of HBR on 80 variables, and where 6, 3
and 0 are the MC majorants for the 6-variable function g1, the 4-variable function g′

2, and
the 1-variable function b ∧ z5, respectively.

References

1. Wegener, I.: The complexity of symmetric Boolean functions, vol. 270 of LNCS, pp. 433–442. Springer,
Berlin (1987). https://doi.org/10.1007/3-540-18170-9 185

2. Canteaut, A., Videau, M.: Symmetric Boolean functions. IEEE Trans. Inf. Theory 51(8), 2791–2811
(2005). https://doi.org/10.1109/TIT.2005.851743

3. Sasao, T. Switching theory for logic synthesis, 1st. Kluwer Academic Publishers, Norwell (1999).
https://doi.org/10.1007/978-1-4615-5139-3

4. Kerntopf, P., Szyprowski, M.: Symmetry in reversible functions and circuits. In: Proceedings of 20th
ICCC/ACM international workshop on logic and synthesis — IWLS 2011, pp. 67–73 (2011)

5. Muller, D.E., Preparata, F.P.: Bounds to complexities of networks for sorting and for switching. J. ACM
22(2), 195–201 (1975). https://doi.org/10.1145/321879.321882

6. Kolesnikov, V., Schneider, T.: Improved garbled circuit: Free XOR gates and applications. In: Aceto, L.,
Damgård, I., Goldberg, L.A., Halldórsson, M.M., Ingólfsdóttir, A., Walukiewicz, I. (eds.) 35th interna-
tional colloquium — ICALP 2008 automata, languages and programming, vol. 5126 of LNCS, vol. 5126,
pp. 486–498. Springer (2008). https://doi.org/10.1007/978-3-540-70583-3 40

7. Brakerski, Z., Gentry, C., Vaikuntanathan, V.: (Leveled) fully homomorphic encryption without boot-
strapping. In: Goldwasser, S. (ed.) Proceedings of 3rd innovations in theoretical computer science
conference — ITCS ’12, pp. 309–325. ACM (2012). https://doi.org/10.1145/2090236.2090262

8. Boyar, J., Damgård, I., Peralta, R.: Short non-interactive cryptographic proofs. J. Cryptol. 13(4), 449–472
(2000). https://doi.org/10.1007/s001450010011

Cryptography and Communications (2019) 11:1339–1362 1361

https://doi.org/10.1007/3-540-18170-9_185
https://doi.org/10.1109/TIT.2005.851743
https://doi.org/10.1007/978-1-4615-5139-3
https://doi.org/10.1145/321879.321882
https://doi.org/10.1007/978-3-540-70583-3_40
https://doi.org/10.1145/2090236.2090262
https://doi.org/10.1007/s001450010011

9. Carlet, C., Goubin, L., Prouff, E., Quisquater, M., Rivain, M.: Higher-order masking schemes for S-
Boxes. In: Canteau, t.A. (ed.) Proceedings of 19th international workshop on fast software encryption —
FSE 2012, vol. 7549 of LNCS, vol. 7549, pp. 366–384. Springer (2012). https://doi.org/10.1007/978-3-
642-34047-5 21

10. Boyar, J., Peralta, R., Pochuev, D.: On the multiplicative complexity of Boolean functions over the basis
(∧,⊕, 1). Theor. Comput. Sci. 235(1), 43–57 (2000). https://doi.org/10.1016/S0304-3975(99)00182-6

11. Find, M.G.: On the complexity of computing two nonlinearity measures. In: Hirsch, E.A., Kuznetsov,
S.O., Pin, J.-É., Vereshchagin, N.K. (eds.) Proceedings of CSR 2014: Computer science — theory and
applications, vol. 8476 of LNCS, vol. 8476, pp. 167–175. Springer International Publishing (2014).
https://doi.org/10.1007/978-3-319-06686-8 13

12. Find, M.G., Smith-Tone, D., Sönmez Turan, M.: The number of Boolean functions with multiplicative
complexity 2. Int. J. Inf. Coding Theory (IJICOT) 4(4), 222–236 (2017). https://doi.org/10.1504/IJICOT.
2017.086890

13. Sönmez Turan, M., Peralta, R.: The multiplicative complexity of Boolean functions on four and five
variables. In: Eisenbarth, T., Öztürk, E. (eds.) Proceedings of 3rd international workshop on lightweight
cryptography for security and privacy — LightSec 2014, vol. 8898 of LNCS, pp. 21–33. Springer (2015).
https://doi.org/10.1007/978-3-319-16363-5 2

14. Çalık, Ç., Sönmez Turan, M., Peralta, R.: The multiplicative complexity of 6-variable Boolean functions,
Cryptography and Communucations. Special Issue on Boolean Functions and Their Applications, pp.
1–15. https://doi.org/10.1007/s12095-018-0297-2 (2018)

15. Boyar, J., Peralta, R.: Tight bounds for the multiplicative complexity of symmetric functions. Theor.
Comput. Sci. 396(1-3), 223–246 (2008). https://doi.org/10.1016/j.tcs.2008.01.030

16. Schnorr, C.P.: The multiplicative complexity of Boolean functions. In: Mora, T. (ed.) Applied algebra,
algebraic algorithms and error-correcting codes (AAECC 1988), vol. 357 of LNCS, pp. 45–58. Springer,
Berlin (1989). https://doi.org/10.1007/3-540-51083-4 47

17. Komamiya, Y.: Theory of computing networks, Bulletin of the Electrotechnical Laboratory. In Japanese
(1959)

18. Circuit minimization team at the Cryptographic Technology Group, NIST, Circuits for functions of
interest to cryptography. https://github.com/usnistgov/Circuits/ (2019)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Cryptography and Communications (2019) 11:1339–13621362

https://doi.org/10.1007/978-3-642-34047-5_21
https://doi.org/10.1007/978-3-642-34047-5_21
https://doi.org/10.1016/S0304-3975(99)00182-6
https://doi.org/10.1007/978-3-319-06686-8_13
https://doi.org/10.1504/IJICOT.2017.086890
https://doi.org/10.1504/IJICOT.2017.086890
https://doi.org/10.1007/978-3-319-16363-5_2
https://doi.org/10.1007/s12095-018-0297-2
https://doi.org/10.1016/j.tcs.2008.01.030
https://doi.org/10.1007/3-540-51083-4_47
https://github.com/usnistgov/Circuits/

	Upper bounds on the multiplicative complexity of symmetric Boolean functions
	Abstract
	1 Introduction
	Previous work
	Our results
	Organization

	2 Preliminaries
	Boolean functions
	Symmetric Boolean functions
	Multiplicative complexity

	3 Hamming weight method
	Phase I — computing the hamming weight
	Phase II — computing g
	Upper bounds on the MC of symmetric functions using the HW method

	4 New methods using fewer AND gates
	Arity-based HW-encodings
	Intuition
	Dot notation
	Calculating the dot configuration

	HW encodings using only full adders
	Comparing HBR vs. HFA

	HW encodings using one or a few half adders
	Notation
	Comparing HBR vs. HHA (H0, H1, H2)
	Where to apply HA

	Degree-based HW-encodings
	Bounded degree case

	Free entries in the truth table of g
	The concatenation method
	An exceptional case (G0)

	5 Results
	Symmetric functions with up to 25 variables
	Special classes of symmetric Boolean functions

	Maximum MC for up to large arities

	6 Conclusion and future work
	7 Appendix A A: MC upper-bounds for special classes of symmetric Boolean functions
	8 Appendix B: Description of MCmax upper bounds
	9 References

