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Abstract
Functions f from F

n
p , n = 2m, to Zpk for which the character sum Hk

f (pt , u) =
∑

x∈Fn
p
ζ

pt f (x)

pk ζ u·x
p (where ζq = e2πi/q is a q-th root of unity), has absolute value pm for

all u ∈ F
n
p and 0 ≤ t ≤ k − 1, induce relative difference sets in F

n
p × Zpk hence are called

bent. Functions only necessarily satisfying |Hk
f (1, u)| = pm are called generalized bent.

We show that with spreads we not only can construct a variety of bent and generalized bent
functions, but also can design functions from F

n
p to Zpm satisfying |Hm

f (pt , u)| = pm if and
only if t ∈ T for any T ⊂ {0, 1 . . . , m− 1}. A generalized bent function can also be seen as
a Boolean (p-ary) bent function together with a partition of Fn

p with certain properties. We
show that the functions from the completed Maiorana-McFarland class are bent functions,
which allow the largest possible partitions.

Keywords Bent function · Generalized bent function · Partial spread ·
Maiorana-McFarland · Walsh transform · Relative difference set
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1 Introduction

Let (A,+A), (B,+B) be finite abelian groups. A function f from A to B is called a bent
function if

|
∑

x∈A

χ(x, f (x))| = √|A| (1)
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for every character χ of A × B which is nontrivial on B. Alternatively, f : A → B is
bent if and only if for all nonzero a ∈ A the function Daf (x) = f (x +A a) −B f (x)

is balanced, i.e. every value in B is taken on the same number |A|/|B| times. The graph
G = {(x, f (x)) : x ∈ A} of f is then a relative difference set in A × B, see [15]. For
background on relative difference sets we refer to [16].

In this article we are interested in generalized Boolean functions and in generalized p-
ary functions. Let p be a prime, let Vn be an n-dimensional vector space over the finite
field Fp , and for an integer q, let Zq be the ring of integers modulo q. By ‘+’ and ‘−’ we
respectively denote addition and subtraction modulo q, whereas ‘⊕’ denotes the addition
in a vector space over F2 (or Fp). We call a function from Vn to Zpk a generalized p-ary
function, and in the case p = 2 a generalized Boolean function in n variables. We denote

the set of all generalized p-ary respectively Boolean functions by GBpk

n . For a function in

f ∈ GBpk

n the character sum (1) is of the form

Hk
f (α, u) =

∑

x∈Vn

ζ
αf (x)

pk ζ u·x
p , ζq = e2πi/q ,

where u · x denotes a nondegenerate inner product on Vn. Accordingly we call f ∈ GBpk

n

bent if |Hk
f (α, u)| = pn/2 for all u ∈ Vn and all nonzero α ∈ Zpk . For k = 1, the bent

condition is then |H1
f (α, u)| = |Wf (−u)| = pn/2, where

Wf (u) =
∑

x∈Vn

ζ
f (x)−u·x
p

is the Walsh transform of f . The function f from Vn to Fp is then a classical p-ary
(Boolean) bent function. Note that when k = 1 it is sufficient to impose the condition
for α = 1. Whereas many classes and constructions of Boolean and p-ary bent functions

are known, when k ≥ 3 it seems not easy to find bent functions in GBpk

n different from
functions obtained via the standard construction from a spread, see Section 3.

In [18] a generalization of bent functions in GB2k

n was defined satisfying a weaker con-

dition. We give the definition more general for functions in GBpk

n , see [11]. A function

f ∈ GBpk

n is called a generalized bent function if the generalized Walsh transform

Hk
f (1, u) = Hk

f (u) =
∑

x∈Vn

ζ
f (x)

pk ζ u·x
p

has absolute value pn/2 for all u ∈ Vn.
As shown in [8], a generalized bent function f : Vn → Z2k always satisfies Hk

f (u) =
2n/2ζ

f ∗(u)

2k for some f ∗ ∈ GB2k

n , except for the case when k = 2 and n is odd. In accordance
with the notation for Boolean bent functions we call f ∗ the dual of f . We remark that f ∗ is
again a generalized bent function, see e.g. [9]. A similar result holds for a generalized bent
function f from Vn to Zpk , p odd, see [11, Lemma 3].

Similarly as for the Boolean case, bent functions from Vn to Z2k can only exist for even
n. This is different for generalized bent functions, which also when p = 2 do exist for even
and for odd n. In this article we will investigate two classes of generalized bent functions
which are defined for even n, the partial spread class and generalized bent functions from
the Maiorana-McFarland class. Hence if not stated otherwise, n = 2m will always be an
even integer. Further we will mostly be interested in the case p = 2, but many results also
apply for odd primes p, which then will be also included in this article.
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Though generalized bent functions in general do not correspond to relative difference
sets, they turned out to be very interesting functions with rich structural properties and
interesting connections to Boolean respectively p-ary bent functions, see e.g. [4, 8, 11, 19].
In Section 2 we will summarize recent results on these connections. In Section 3, we study
generalized bent functions obtained from spreads and Section 4 investigates generalized
bent functions related to Maiorana-McFarland bent functions. As we will see both classes
seem particularly interesting.

2 Preliminaries

To a function f ∈ GBpk

n we can associate a unique sequence of Boolean respectively p-ary
functions ai (i = 0, 1, . . . , k − 1) such that

f (x) = a0(x) + pa1(x) + · · · + pk−1ak−1(x), for all x ∈ Vn. (2)

Further we associate to f ∈ GBpk

n given as in (2) the affine space of Boolean respectively
p-ary functions

A := ak−1 ⊕ 〈a0, a1, . . . , ak−2〉. (3)

Recall that “⊕” denotes the addition in the vector space over Fp of Boolean respectively p-
ary functions from Vn to Fp (in contrast to the addition in Zpk in (2)). If the function f ∈
GBpk

n is generalized bent, then all Boolean respectively p-ary functions in the corresponding
affine space A are bent functions (see e.g. [4, 8, 19] for p = 2 and for the according result

for odd p see [11]). For p = 2, more precisely, a function f ∈ GB2k

n is generalized bent
if and only if all functions in the corresponding affine space A are bent, such that for any
h0, h1, h2 ∈ A, h3 = h0 ⊕ h1 ⊕ h2 ∈ A we have h∗

3 = h∗
0 ⊕ h∗

1 ⊕ h∗
2, where h∗ denotes

the dual of a bent function h, cf. [4]. By a secondary construction of Boolean bent functions
proposed by Carlet in [2] (see also [12]), this is equivalent to the following statement: A

function f ∈ GB2k

n is generalized bent if and only if for any h0, h1, h2 ∈ A the function
h0h1 ⊕ h0h2 ⊕ h1h2 is a bent function. Hence there is a strong relation between Carlet’s

construction and generalized bent functions f ∈ GB2k

n . For details we refer to the treatment
of octal generalized bent functions in [10] and to Corollaries 1 and 2 in [4].

The most comprehensive description of generalized bent functions which also works for

functions f ∈ GBpk

n , p odd, has been given in [11]. There, a generalized bent function is
described as

– a Boolean (p-ary) bent function a(x) from Vn to F2 (Fp) with
– a partition P of Vn

with the property that a(x) ⊕ C(x) is bent for every C : Vn → F2 (C : Vn → Fp) which is
constant on the elements of P . This main result of [11] can be summarized more precisely
as follows: Let f : Vn → Zpk , n even, be given as in (2), and let P be the partition of Vn

obtained by P = {A(d) : 0 ≤ d ≤ pk−1 − 1}, where

A(d) =
{

x ∈ Vn :
k−2∑

i=0

ai(x)pi = d

}

, (4)

(some of the A(d) may be empty). Then we have the following theorem.
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Theorem 1 Let f : Vn → Zpk , n even, be given as in (2). Then f is generalized bent if and
only if ak−1(x) ⊕ C(x) is bent for every Boolean (p-ary) function C(x) which is constant
on the elements A(d) in (4) of the partition P .

For some alternative forms of the statement of Theorem 1, we refer to [11].

Remark 1 For an octal generalized bent function f : Vn → Z8, the corresponding affine
space A contains exactly four bent functions h0, h1, h2 and h3 = h0 ⊕ h1 ⊕ h2 with the
property that h∗

3 = h∗
0 ⊕ h∗

1 ⊕ h∗
2. With straightforward calculations one sees that the bent

functions h0(x) ⊕ C(x) of Theorem 1 are exactly the functions {h0, h1, h2, h3, h0h1 ⊕
h0h2 ⊕ h1h2, h0h1 ⊕ h0h3 ⊕ h1h3, h0h2 ⊕ h0h3 ⊕ h2h3, h1h2 ⊕ h1h3 ⊕ h2h3} ⊕ {0, 1},
which are all obtained from h0, h1, h2, h3 with Carlet’s secondary construction, [2].

Let f : Vn → Zpk be given as f (x) = ∑k−1
i=0 ai(x)pi be a generalized bent function and

let l ≥ k be an integer. As pointed out in [11], as an immediate consequence of Theorem 1
the function g : Vn → Zpl

g(x) = c0(a0(x), . . . , ak−2(x)) + pc1(a0(x), . . . , ak−2(x)) + · · ·
+pk−2ck−2(a0(x), . . . , ak−2(x)) + · · ·
+pl−2cl−2(a0(x), . . . , ak−2(x)) + pl−1ak−1(x) (5)

is a generalized bent function for every choice of ci : Fk−1
p → Fp, 0 ≤ i ≤ l − 2. However

this function, which formally maps into Z2l , is only another instance of the same object,
the bent function ak−1 with the partition already obtained from f above. One may say that
g is obtained from f by ”lifting and playing with the partition”. In this connection it was
already pointed out in [4], that only generalized bent functions given as in (2) for which
a0, . . . , ak−2 are linearly independent are relevant. Hence in [4] the dimension of a general-
ized bent function is defined as the dimension of the corresponding affine space (3), see [4]
for the details. On the other hand, the partitions for two generalized bent functions repre-
sented by their affine spaces,A1 = a ⊕ 〈a0, . . . ar−1〉 andA2 = a ⊕ 〈a0, . . . ar−1, ar 〉 with
a0, . . . , ar−1, ar linearly independent, may still be the same. Easy examples are obtained
with constant ar(x) = 1 and 1 �∈ 〈a0, . . . ar−1〉. The condition 1 �∈ 〈a0, . . . ar−1〉 is,
for instance, satisfied for the nontrivial octal examples in Remark 1. In the light of Theo-
rem 1 they are the same objects, hence we now modify the concept of the dimension of a
generalized bent function accordingly.

Lemma 1 Let g : Vn → Zpl , g(x) = ∑l−1
i=0 bi(x)pi be a generalized bent function,

and suppose that the partition {A(d) : 0 ≤ d ≤ pl−1 − 1} of Vn, defined as in (4),
contains pk−2 < � ≤ pk−1 nonempty sets. Then there exists a generalized bent function
f : Vn → Zpk given as

∑k−2
i=0 ai(x)pi +pk−1bl−1(x) with the same partition {A(d) : 0 ≤

d ≤ pk−1 − 1} and necessarily linearly independent a0, . . . , ak−2.

Proof Pick � distinct elements δ1, . . . , δ� ∈ {0, . . . , pk−1−1}, and denote the (nonempty)
sets in the partition of Vn by {A(δ1), . . . , A(δ�)}. Then a0(x) + pa1(x) + · · · +
pk−2ak−2(x) = δj if and only if x ∈ A(δj ), uniquely defines the p-ary functions ai ,
0 ≤ i ≤ k − 2. Since � > pk−2, the functions ai must be linearly independent. With The-
orem 1,

∑k−2
i=0 ai(x)pi + pk−1bl−1(x) is generalized bent. Moreover it can be transformed

to g described as in (5).
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We now can modify the definition of the dimension of a generalized bent function as
follows. We state three equivalent versions.

– The dimension of a generalized bent function is k − 1 if the corresponding partition P
(defined as above) contains pk−2 + 1 ≤ � ≤ pk−1 (nonempty) sets.

– The dimension of a generalized bent function f is k − 1, if k is the smallest number for
which there exists a generalized bent function f̃ (x) = ∑k−1

i=0 ai(x)pi from Vn to Zpk ,
which induces the same partition ofVn as f . The coordinate functions a0, a1, . . . , ak−2
are then necessarily linearly independent, i.e., the affine space of bent functions ak−1 ⊕
〈a0, . . . , ak−2〉 has dimension k − 1.

– The dimension of a generalized bent function f is k − 1 if k is the smallest number for
which there exists a generalized bent function f̃ : Vn → Zpk from which f can be
obtained by ”lifting and playing with the partition”.

3 Designing functions from the PS class

Let V2m be a 2m-dimensional vector space over Fp . As is well known, from a spread of
V2m one can construct bent functions from V2m to Zpk respectively relative difference sets
in V2m × Zpk (relative to Zpk ). We recall the proof from which we then also will infer
the conditions for obtaining generalized bent functions (which are weaker since generalized
bentness is a more general concept).

Proposition 1 Let U0, U1, . . . , Upm be the elements of a spread ofVn, n = 2m, and k ≤ m.
Define a function f : Vn → Z2k by

(i) f (x) = 0 for x ∈ U0,
(ii) f is constant on the nonzero elements of Ui , 1 ≤ i ≤ pm, such that for every c ∈ Z2k

the nonzero elements of exactly pm−k of the Ui’s are mapped to c.

Then f is a bent function from Vn to Z2k .

Proof Putting f (x) = ci if x ∈ U∗
i , 1 ≤ i ≤ pm, we have

Hk
f (α, u) =

pm
∑

i=0

∑

z∈Ui\{0}
ε
αf (z)

pk εu·z
p + ε

αf (0)
pk =

pm
∑

i=0

∑

z∈Ui

ε
αci

pk εu·z
p −

pm
∑

i=1

ε
αci

pk

=
pm
∑

i=0

ε
αci

pk

∑

z∈Ui

εu·z
p −

pm
∑

i=1

ε
αci

pk .

Using that for all u ∈ Vn, u �= 0, the inner product u · z is trivial on exactly one spread
element Uiu , i.e. u · z = 0 for all z ∈ Uiu , we obtain

Hk
f (α, u) = pmε

αciu

pk −
pm
∑

i=1

ε
αci

pk if u �= 0, and

Hk
f (α, 0) = pm + (pm − 1)

pm
∑

i=1

ε
αci

pk .
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With Condition (ii) we have
∑pm

i=1 ε
αci

pk = 0 for all nonzero α ∈ Zpk , which completes the
proof.

Remark 2 We note that Proposition 1 also holds if we replace Zpk by any abelian group of
order pk .

Generalized bent functions need to satisfy |Hk
f (α, u)| = pm solely for α = 1, hence

only the weaker condition
∑pm

i=1 ε
ci

pk = 0 has to hold. Observing that this condition is

satisfied if and only if in the sum
∑pm

i=1 ε
ci

pk for every 0 ≤ c ≤ pk−1 − 1 the elements

εc
pk , ε

c+pk−1

pk , ε
c+2pk−1

pk , . . . , ε
c+(p−1)pk−1

pk appear the same number of times, we immediately
obtain

Corollary 1 Let U0, U1, . . . , Upm be a spread of V2m, and let f : V2m → Zpk be a
function satisfying f (x) = 0 for x ∈ U0, and f is constant on the nonzero elements of Ui ,
1 ≤ i ≤ pm. Then f is generalized bent if and only if the number of Ui , i �= 0, mapped
to an arbitrary element in {c, c + pk−1, c + 2pk−1, . . . , c + (p − 1)pk−1} is the same for
every 0 ≤ c ≤ pk−1 − 1.

Remark 3 For the special case p = 2 the condition in Corollary 1 implies that the number of
spread elements mapped to c and to c+2k−1 has to be the same for every 0 ≤ c ≤ 2k−1−1.
This condition can also be deduced from the description of partial spread generalized bent
functions into Z2k given in [9].

The most interesting case, also giving generalized bent functions of largest dimension, is
the case that k = m. We collect some obvious observations on generalized bent functions
f : V2m → Z2m obtained from a spread, and on their partitions P of V2m defined as in (4).
We restrict ourselves to p = 2, similar observations hold for arbitrary p.

– |P | ≤ 2m−1, (hence P = {A(d) : 0 ≤ d ≤ 2m−1 − 1}), and |P | = 2m−1 if and only if
f : V2m → Z2m is bent.

– All A(d) but one (A(0) w.l.o.g.) contain an even number of spread elements (without
0 ∈ V2m). If f is bent, then A(d) is the union of 2 spread elements (without the 0),
1 ≤ d ≤ 2m−1 − 1, and A(0) (w.l.o.g) contains 3.

– All functions am−1(x)⊕C(x) as defined in Theorem 1 are partial spread bent functions.
– Since the elements of the partition P of any (generalized) bent function obtained from

a spread contains the (nonzero) elements of at least two spread elements, the spread is a
finer partition than P for any (generalized) bent function obtained from a spread. From
a spread one can obtain many (generalized) bent functions of (large) dimension m − 1
giving different partitions, hence are different in the light of Theorem 1.

The spread construction is thus very powerful, yielding bent functions in GBpm

2m conse-
quently relative difference sets in V2m × Zpm , and many more generalized bent functions
for which the character sumHf (α, u) must have absolute value pm only for α = 1 (and all

u). Next we investigate the question if there are functions f ∈ GBpm

2m with |Hf (α, u)| = pm

for several α without necessarily being bent.
First observe that |Hk

f (2t , u)| = 2m is equivalent to 2t f being a generalized bent func-

tion, and |Hk
f (2t , u)| = 2m implies |Hk

f (2t r, u)| = 2m for all odd r (i.e. only the order of
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the character matters), which is a consequence of the regularity of generalized bent func-
tions defined as in [7] (see [8]). The according statement also holds for odd primes p (for
the regularity of generalized bent functions when p is odd, we refer to [11, Lemma 3]).
Accordingly, our objective is to construct functions f ∈ GBpm

2m such that for a given subset
T ⊂ {0, 1, . . . , m − 1} we have |Hm

f (pt , u)| = pm for all u ∈ V2m if and only if t ∈ T . We
describe a procedure for p = 2, which can easily be adapted for any prime p.

Lemma 2 For a spread U0, U1, . . . , U2m of V2m, let f be a function from V2m to 2t+1
Z2m

with f (x) = 0 for all x ∈ U0, and f is constant on the nonzero elements of every Uj ,
1 ≤ j ≤ 2m. Suppose that for every c ∈ 2t+1

Z2m the number of Ui , 1 ≤ i ≤ 2m, of which
the (nonzero) elements are mapped to c is either zero or 2lc , lc ≥ t + 1. Construct from f a
function g ∈ GB2m

2m and a function h ∈ GB2m

2m, both taking values in 2t
Z2m , as follows.

A For every c ∈ 2t+1
Z2m the function g maps 2lc−1 of the 2lc spread elements which f

maps to c to the element c/2. The other 2lc−1 of these spread elements the function g

maps to c/2 + 2m−1.
B For every c ∈ 2t+1

Z2m , the function h maps either

(i) 2lc−1 of the 2lc spread elements which f maps to c to the element c/2, and the
other 2lc−1 of these spread elements the function h maps to c/2 + 2m−1, or

(ii) all of the 2lc spread elements which f maps to c the function h maps to one of c/2
and c/2 + 2m−1.

For at least one c ∈ 2t+1
Z2m the second situation occurs.

Then 2g = f , 2h = f , the function g is a generalized bent function, the function h is not a
generalized bent function.

Proof Clearly both g and h take values in 2t
Z2m , and 2g = f , 2h = f obviously holds.

The function g satisfies the conditions in Corollary 1, hence is generalized bent. Since for h,
situation (ii) described in the lemma occurs at least once, h does not satisfy the conditions
in Corollary 1, hence it is not generalized bent.

Lemma 2 is the basis of the algorithm we sketch below to construct a function f ∈ GB2m

2m
obtained from a spread U0, U1, . . . , U2m of V2m for which |Hf (2t , u)| = 2m if and only if
t ∈ T for any prescribed subset T of {0, 1, . . . , m − 1}.

Example f : V10 → Z32, T = {0, 2, 4}

Cryptography and Communications (2019) 11:1233–1245 1239



In this example c denotes the elements of Z32, the symbol # denotes the number of spread
elements different from U0 which are mapped by f to the element c above. W.l.o.g., U0 is
mapped to 0.

c 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

# : 1 0 2 2 1 0 1 2 1 0 0 2 1 0 1 2

c : 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

# : 1 0 2 2 1 0 1 2 1 0 0 2 1 0 1 2

From the distribution of the spread elements assigned to the elements of Z32, the
distribution for 2f , 4f , 8f , 16f of course follows. It is given in the tables below.

c : 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

# : 2 0 4 4 2 0 2 4 2 0 0 4 2 0 2 4

c : 0 4 8 12 16 20 24 28

# : 4 0 4 8 4 0 4 8

c : 0 8 16 24

# : 8 0 8 16
c : 0 16
# : 17 16

.

As we see, f , 4f , 16f are generalized bent, whereas 2f , 8f are not (the positions
at which the condition in Corollary 1 is violated are underlined). Equivalently, H5

f (1, u),

H5
f (4, u), H5

f (16, u) have absolute value 25 for all u ∈ V10, whereas this does not apply

for H5
f (2, u), H5

f (8, u). For constructing the function f , one reads the tables from down
to up. One first chooses 16f by assigning 17 spread elements (including U0) to 0 and 16
spread elements to 16. As one wants 8f not to be generalized bent, for 8f all these 16
spread elements are assigned to 24 and none to 8. In the next step one can then “repair”
the function and obtain the generalized bent function 4f . Observe that the value set of the
function f has cardinality 22, the corresponding partition contains 11 nonempty sets. Hence
the dimension of f is in fact m − 1 = 4. In this connection we remark that in the case of
m − 1 ∈ T , we have two options in the first step of our algorithm. We either assign all
spread elements to 0, or all but U0 to 2m−1. In the fist case, the resulting function maps only
into 2Z2m � Z2m−1 , hence the second choice is to prefer.

Lemma 2 and Algorithm can easily be adapted for odd primes p. In the following ternary
example, a function from V6 to Z27 is designed for which |H3

f (3t , u)| = 33 for all u, for
t = 0, 2 but not for t = 1.

Example f : V6 → Z27

c : 0 1 2 3 4 5 6 7 8
# : 1 2 1 1 1 1 1 0 1

c : 9 10 11 12 13 14 15 16 17
# : 1 2 1 1 1 1 1 0 1

c : 18 19 20 21 22 23 24 25 26
# : 1 2 1 1 1 1 1 0 1
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With this choice the distribution for 3f , 9f is as follows:

c : 0 3 6 9 12 15 18 21 24
# : 3 6 3 3 3 3 3 0 3

c : 0 9 18
# : 9 9 9

Summarizing, in this section we gave a constructive proof of

Theorem 2 For every integer m ≥ 2 and subset T of {0, 1, . . . , m−1} there exist functions
from V2m to Zpm such thatHm

f (pt , u) has absolute value pm for all u ∈ V2m if and only if
t ∈ T .

Remark 4 We note that it is in general difficult to find a function f if only the absolute
values of the Walsh transform are known. Therefore, Theorem 2 is quite remarkable. The
reason why we can construct a function given the absolute values of the Walsh transform
heavily rely on the nice properties of the underlying spread.

4 TheMaiorana-McFarland class and generalized bent functions
of largest dimension

As seen in the previous section, from a spread of V2m one can obtain various bent and
generalized bent functions fromV2m to Zpm (with large dimensionm−1, i.e. the cardinality
� of the corresponding partition P of V2m satisfies pm−2 + 1 ≤ � ≤ pm−1). Note that
when p = 2, for a bent function from V2m to Z2k , the largest value for k is m, cf. [13, 17].
In this section we will see that generalized bent functions can have an even finer partition.
More precisely, we will show that there exist generalized bent functions from V2m to Zpm+1

for which the corresponding partition P of V2m has cardinality larger than pm. We show
that the cardinality of the partition of a generalized bent function from V2m into a cyclic
group is upper bounded by pm+1. This upper bound can be attained with functions obtained
from the completed Maiorana-McFarland class.

We require some results from the literature. For a subset A of Vn we denote the indicator
function of A by I (A), i.e.,

I (A)(x) =
{
1 : x ∈ A,

0 : otherwise.

In [3], Carlet presented the following secondary construction of Boolean bent functions
which can easily be generalized to p-ary bent functions, see [14]:

Lemma 3 If g is a bent function fromVn to Fp which is affine on an n/2-dimensional affine
subspace A of Vn, then for all c ∈ Fp , the function g ⊕ cI (A) is again a bent function.

In [5, 6], Kolomeec further analysed this observation and used it to investigate the graph
of minimal distances of bent functions. We will use the following lemma, see [5] and
Proposition 1 in [6], and for the p-ary version [14].
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Lemma 4 Two bent functions from Vn to Fp differ at least at pn/2 positions. Two bent
functions with minimal distance pn/2 always differ on an affine subspace (of dimension
n/2), restricted to which they are affine functions.

With Lemma 4, we can show some properties of the partition P corresponding to a

generalized bent function in GBpk

n .

Theorem 3 Let f ∈ GBpk

n , f (x) = ∑k−1
i=0 ai(x)pi , be a generalized bent function with the

partition P = {A(d) : 0 ≤ d ≤ pk−1 − 1} of Vn defined as in (4). Then

(i) |A(d)| ≥ pn/2 (or A(d) = ∅) , and if |A(d)| = pn/2, then A(d) is an affine subspace
of Vn on which ak−1 is affine,

(ii) there are at most pn/2 integers 0 ≤ d ≤ pk−1 − 1 such that A(d) �= ∅.

Proof (i) If f is generalized bent, then ak−1(x) ⊕ C(x) is bent for every Boolean (p-
ary) function which is constant on A(d) for all 0 ≤ d ≤ pk−1 − 1. In particular this
applies if C(x) = I (A(d)), where I (A(d)) is the indicator function of A(d) for a
fixed 0 ≤ d ≤ pk−1 − 1. Since by Lemma 4 two bent functions differ at least at pn/2

positions, we must have |A(d)| ≥ pn/2 for all 0 ≤ d ≤ pk−1 − 1 (or A(d) = ∅).
Furthermore, by Lemma 4, two bent functions with minimal distance pn/2 always
differ on an affine subspace (of dimension n/2), restricted to which they are affine
functions. This shows the second statement in (i).

(ii) follows immediately from the fact that every nonempty set A(d) in the partition of Vn

has cardinality at least pn/2.

Bent functions in dimension n which are affine on many n/2-dimensional affine sub-
spaces are the Maiorana-McFarland bent functions. The following characterization of the
completed Maiorana-McFarland class is well known, see e.g. [6, Proposition 11]

Lemma 5 A bent function f : Vn → Fp is in the completed Maiorana-McFarland class if
and only if there exists an n/2-dimensional affine subspace 	 of Vn such that f is affine on
each coset of 	.

With Lemmas 3 and 5 we obtain the following theorem.

Theorem 4 Let f : V2m → Zpm+1 be a generalized bent function for which the cor-
responding partition P = {A(d) : 0 ≤ d ≤ pm − 1} defined as in (4) attains the
upper bound |P | = pm (hence for all 0 ≤ d ≤ pm − 1 the set A(d) is not empty and
|A(d)| = pm), and the affine subspaces in P = {A(d) : 0 ≤ d ≤ pm − 1} are paral-
lel. Then f (x) = a0(x) + · · · + pm−1am−1(x) + pmam(x) for a bent function am in the
completed Maiorana-McFarland class. Conversely, for every bent function in the completed
Maiorana-McFarland class we have such an extremal generalized bent function.

Proof If |A(d)| = pm for all d, then by Theorem 3, V2m is partitioned by P = {A(d) :
0 ≤ d ≤ pm − 1} into affine subspaces. We assume that these are parallel. Consequently, P
must be the set of all cosets of an n/2-dimensional subspace of Vn. Again by Theorem 3,
the bent function am(x) is then affine on all of these cosets. (Note that the dimension of f is
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m, and f has a representation as given in the theorem.) By Lemma 5, am is in the completed
Maiorana-McFarland class.

Let now a : V2m → Fp be in the completed Maiorana-McFarland class, i.e. a(x) is
affine on the cosets of an m-dimensional linear subspace of V2m. These cosets form then a
partitionP = {A(d) : 0 ≤ d ≤ pm−1} ofV2m. It remains to show that then a(x)⊕C(x) is
bent for all C : V2m → Fp which are constant on A(d) for all d. This follows by repeatedly
applying Carlet’s construction of bent functions in Lemma 3 using the affine subspaces
A(d).

Remark 5 The fact that the sets in P = {A(d) : 0 ≤ d ≤ pm − 1} are affine subspaces
does not imply that they are parallel. As shown in [1], there even exist partitions of Vn into
affine subspaces all of dimension r , 1 ≤ r ≤ n − 2, no two of which are parallel.

We close with a result for p = 2 which is related to vertices of maximum degree in
the graph of minimal distances of bent functions, see [6]. It shows that for a Maiorana-
McFarland bent function, we can have many such maximal partitions P . Most of such
partitions we have for the quadratic bent function.

Theorem 5 Let q : Vn → F2 be a quadratic bent function. Then there are K = (21 +
1)(22 + 1) · · · · · (2

n
2 + 1) distinct linear subspaces of Vn of dimension n/2 such that q is

constant on any of the cosets. This yields K distinct partitions of Vn for generalized bent
functions from Vn to Z2n/2+1 , i.e. K different generalized bent functions from Vn to Z2n/2+1 .
This is the maximal number of such partitions a bent function can have.

Proof The proof uses the following results of [6].

(i) [6, Theorem 1]: The only bent function f : Vn → F2 with the properties

I f is affine on some n/2-dimensional affine subspace of Vn,
II if f is affine on an n/2-dimensional affine subspace L of Vn, then f is affine on

every coset of L,

is the quadratic bent function (invariant under EA-equivalence).
(ii) The number of the m-dimensional affine subspaces, m = n/2, on which the quadratic

bent function is affine is 2m(21 + 1)(22 + 1) · · · · · (2m + 1), [6, Theorem 2]. (In
the language of [6] this is the maximum degree of a vertex in the graph of minimal
distances of bent functions.)

(iii) Every not quadratic bent function is affine on a smaller number of such affine
subspaces, [6, Theorem 2].

By (ii) and (i) there are K distinct linear subspaces of Vn of dimension n/2 such that q is
constant on any of the cosets, which by (i) yield K distinct partitions of Vn for generalized
bent functions. With (iii), K is the maximal number of such partitions a bent function can
have.

5 Perspectives

A generalized bent function from V2m to Zpk (of dimension k − 1), which satisfies

|Hk
f (1, u)| = pm, can be also viewed as a bent function a : V2m → Fp , for which
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additionally there exists a partition P of V2m of cardinality pk−2 + 1 ≤ � ≤ pk−1 such
that a(x) ⊕ C(x) is also bent for every function C which is constant on the elements of P .
Generalized bent functions (for k ≥ 3) are harder to find than conventional bent functions
since the image set is contained in a cyclic group rather than an elementary abelian group.

We first showed that with spreads we not only can construct bent functions f from V2m
to Zpm (satisfying |Hm

f (pt , u)| = pm for all 0 ≤ t ≤ m − 1 (and all u ∈ V2m)), and a large
variety of generalized bent functions, i.e. functions for which |Hm

f (1, u)| = pm, but we can

also design functions f ∈ GBpm

2m for which |Hm
f (pt , u)| = pm if and only if t ∈ T for any

subset T of {0, 1, . . . , m − 1}.
For a bent function from V2m to Z2k , the value k = m, which is attained by spread bent

functions, is maximal possible. We show that the weaker generalized bent functions can
even have dimension m, i.e. there are Boolean (p-ary) bent functions which allow an even
finer partition than the spread partition. Bent functions with the finest possible partition
are the functions in the completed Maiorana-McFarland class. Note that by Remark 5, we
cannot exclude the existence of other such bent functions.

There are many further interesting questions to investigate, some of which may be the
following:

– Note that there are bent functions from Vn to Z2n/2 and from Vn to Zpn/2 . As far as we
know, the only examples of such bent functions rely on spreads in Vn. Try to prove that
this has to be the case, or find a counter example. Note that our Theorem 4 shows that
there are other constructions in the generalized bent case.

– Find bent functionsVn → Zpk (p prime) which are not related to spreads. This problem
is, of course, related to the problem of proving inequivalence of relative difference sets,
which might be difficult. One potential example is the function in [10, Corollary 3]
(based on Theorem 14 in [12]), of which one can show that it is a bent function from
Vn to Z8 (obtained from Maiorana-McFarland functions), which is not obtained from
a spread as described in Section 3 for some n ≥ 12. In fact, the concrete example
obtained by choosing m = 6 and e = 5 in Table 1 in [12] yields a bent function in GB8

12
for which the components have algebraic degree 3. The components of all generalized
bent functions obtained from the spread construction have degree m.

– Find ”best partitions” P for classes of bent functions other than spread or Maiorana-
McFarland bent functions. This, of course, means to construct, first, other examples of
generalized bent functions.
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