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Abstract
In the present paper we introduce some sufficient conditions and a procedure for check-
ing whether, for a given function, CCZ-equivalence is more general than EA-equivalence
together with taking inverses of permutations. It is known from Budaghyan et al. (IEEE
Trans. Inf. Theory 52.3, 1141–1152 2006; Finite Fields Appl. 15(2), 150–159 2009) that for
quadratic APN functions (both monomial and polynomial cases) CCZ-equivalence is more
general. We prove hereby that for non-quadratic APN functions CCZ-equivalence can be
more general (by studying the only known APN function which is CCZ-inequivalent to both
power functions and quadratics). On the contrary, we prove that for power non-Gold APN
functions, CCZ equivalence coincides with EA-equivalence and inverse transformation for
n ≤ 8. We conjecture that this is true for any n.
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1 Introduction

Given n and m two positive integers, a function F from the finite field with 2n elements to
the finite field with 2m elements is called a vectorial Boolean function, or an (n, m)-function
and it is simply called Boolean function when m = 1. Boolean functions and vectorial
Boolean functions are useful objects since they have many applications in mathematics and
information theory; in particular they are one of the fundamental entities investigated in
cryptography. Nowadays it is of fundamental importance to exchange and store information
in an efficient, secure and reliable manner and cryptographic primitives are indeed used
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to protect information against eavesdropping, unauthorized changes and other misuses. In
symmetric cryptography the design of ciphers is based on an appropriate composition of
nonlinear Boolean functions. For example, in block ciphers the security depends on S-boxes
which are (n, m)-functions. Among the attacks that can be performed on a block cipher,
one of the most efficient is the differential attack, introduced by Biham and Shamir [1]. It is
based on the study of how differences in an input can affect the resulting difference at the
output. To minimize the success probability of this attack, the theory of vectorial Boolean
functions has identified an ideal property for the S-box when n = m, that is, to be Almost
Perfect Non-linear (APN).

The role of APN functions is not just related to cryptography. There are indeed applica-
tions of APN functions in coding theory, projective geometry and theory of commutative
semifields. For these reasons many different works have been focused on finding and
constructing new families of APN functions.

The APN property is preserved by some transformations of functions, which define
equivalence relations between vectorial Boolean functions. There are mainly two such
equivalence notions, called extended affine equivalence (EA-equivalence) and Carlet-
Charpin-Zinoviev equivalence (CCZ-equivalence). EA-equivalence is a particular case of
CCZ-equivalence and any permutation is CCZ-equivalent to its inverse.

It is investigated in [5, 8] when CCZ-equivalence could produce more functions
than applying only EA-equivalence and the inverse transformation. In particular, in [5],
Budaghyan proves that for the Gold functions it is possible to construct, using EA-
equivalence and the inverse transformation, a function which is not EA-equivalent to the
starting function and its inverse. In [6, 8], the authors show that for quadratic APN func-
tions (in particular Gold functions and x3 + T r(x9)) CCZ-equivalence is more general than
EA-equivalence with the inverse transformation.

In this work, we focus on investigating this problem for the case of non-quadratic APN
functions. In particular, we characterize some linear permutations on (F2n)2 which imply
that CCZ-equivalence between two functions, F and F ′ can be obtained via EA-equivalence
and inverse transformation. We also introduce a procedure that, at least in small dimensions,
permits to verify whether a sufficient condition for CCZ-equivalence to be restricted to EA-
equivalence and inverse transformation holds. Using this procedure we are able to verify
that also for APN functions CCZ-inequivalent to quadratic functions CCZ-equivalence is
more general than EA-equivalence together with the inverse. With the same procedure we
verify that, for contrary, up to dimension 8 for all non-Gold power APN functions and the
inverse function CCZ-equivalence coincides with EA-equivalence together with the inverse
transformation. This leads us to a conjecture that for all non-Gold power APN functions
and for the inverse function CCZ-equivalence coincides with EA-equivalence together the
inverse transformation. We conclude the paper with some observations on CCZ-equivalence
classes for functions with linear structures.

2 Preliminaries

Let n ≥ 2, we denote by F2n the finite field with 2n elements, by F
∗
2n its multiplicative

group and by F2n [x] the polynomial ring defined over F2n . Any function F : F2n → F2n

can be represented as a univariate polynomial of degree at most 2n − 1 in F2n [x], that is

F(x) =
2n−1∑

i=0

cix
i, ci ∈ F2n .
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For any i, 0 ≤ i ≤ 2n −1, the 2-weight of i is the (Hamming) weight of its binary represen-
tation. It is well known that the algebraic degree of a function F is equal to the maximum
2-weight of the exponent i such that ci �= 0. Functions of algebraic degree 1 are called
affine and of degree 2 quadratic. Linear functions are affine functions without the constant
term and they can be represented as L(x) = ∑n−1

i=0 cix
2i
. A well known example of a linear

function is the trace function

T r(x) = x + x2 + · · · + x2n−1
,

in particular, the trace is a Boolean function, i.e T r : F2n → F2. Besides, for any m ≥ 1
such that m|n we can define the linear function from F2n to F2m

T rm
n (x) =

n/m−1∑

i=0

x2im

.

Let λ ∈ F
∗
2n and F be a function from F2n to itself, we define the λ-component of F as

the Boolean function Fλ : F2n → F2 with Fλ(x) = T r(λF (x)).
For any function F : F2n → F2n we denote theWalsh transform in a, b ∈ F2n by

WF (a, b) =
∑

x∈F2n
(−1)T r(ax+bF(x)).

For any Boolean function f : F2n → F2 the Walsh transform in a ∈ F2n is given by

Wf (a) =
∑

x∈F2n
(−1)T r(ax)+f (x).

With Walsh spectrum we refer to the set of all possible values of the Walsh transform. A
Boolean function f is called bent if its Walsh spectrum corresponds to the set {±2n/2}.
Since Wf (a) is an integer bent functions can exist only for even n.
If Wf (0) = 0 then the Boolean function is called balanced. Note that a bent function cannot
be balanced. For any function F : F2n → F2n it is well know that F is a permutation if and
only if all its component functions are balanced.

We denote the derivative of F in the direction of a ∈ F
∗
2n by DaF(x) = F(x+a)+F(x)

and the image of F by 	(F ) = {F(x) | x ∈ F2n}.
A function F is called almost perfect nonlinear (APN) if for every a �= 0 and every b in F2n ,
the equation DaF(x) = b admits at most 2 solutions, or equivalently |	(DaF )| = 2n−1.

There are several equivalence relations of functions for which the APN property is
preserved. Two functions F and F ′ from F2n to itself are called:

• affine equivalent if F ′ = A1 ◦ F ◦ A2 where the mappings A1, A2 : F2n → F2n are
affine permutations;

• extended affine equivalent (EA-equivalent) if F ′ = F ′′ + A, where the mappings A :
F2n → F2n is affine and F ′′ is affine equivalent to F ;

• Carlet-Charpin-Zinoviev equivalent (CCZ-equivalent) if for some affine permutation
L of F2n ×F2n the image of the graph of F is the graph of F ′, that is, L (GF ) = GF ′ ,
where GF = {(x, F (x)) : x ∈ F2n} and GF ′ = {(x, F ′(x)) : x ∈ F2n}.

Obviously, affine equivalence is included in EA-equivalence, and it is also well known
that EA-equivalence is a particular case of CCZ-equivalence and every permutation is CCZ-
equivalent to its inverse [11]. The algebraic degree of a function (if it is not affine) is
invariant under EA-equivalence but, in general, it is not preserved by CCZ-equivalence. In
general, neither EA-equivalence nor CCZ-equivalence preserve the permutation property.
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Table 1 Known APN power functions xd over F2n

Functions Exponents d Conditions Degree Proven

Golden 2i + 1 gcd(i, n)=1 2 [18, 23]

Kasami 22i − 2i + 1 gcd(i, n)=1 i+1 [19, 20]

Welch 2t + 3 n = 2t + 1 3 [14]

Niho 2t + 2
t
2 − 1, t even n = 2t + 1 t+2

2 [15]

2t + 2
3t+1
2 − 1, t odd t+1

Inverse 22t − 1 n = 2t + 1 n − 1 [2, 23]

Dobbertin 24i + 23i + 22i + 2i − 1 n = 5i i + 3 [16]

There are six known infinite families of power APN functions. They are presented in
Table 1.

Since these power functions have different algebraic degree they are EA-inequivalent.
Instead CCZ-inequivalence is not so straightforward, but also for this case it was possible
to prove some inequalities. In both [24] and [13] Yoshiara and Dempwolff show that two
APN power functions are CCZ-equivalent if and only if they are cyclotomic-equivalent, i.e.
they are EA-equivalent or one is EA-equivalent to the inverse of the second one. To be more
precise if we consider xk and xl defined over F2n the functions are cyclotomic-equivalent if
there exists an integer 0 ≤ a < n such that l ≡ k2a mod (2n − 1) or kl ≡ 2a mod (2n − 1),
when k is coprime with 2n − 1. Earlier, some results on CCZ-inequivalence between the
functions in Table 1 were proven in [7].

Among these power functions, only for the Gold power function x2i+1, it was shown
that CCZ-equivalence is more general than applying EA-equivalence and the inverse
transformation in [8]. For the other power functions it is an open problem.

3 Remarks on CCZ-equivalence

In this section we will report some remarks regarding CCZ-equivalence that will be use-
ful in the investigation of the relation between EA-equivalence and CCZ-equivalence.
Without loss of generality, we assume that the affine permutation in the definition of CCZ-
equivalence is linear. It means that using affine permutations instead of linear one we simply
make a shift by a constant in the input and output of the resulting function as it is shown in
the lemma below.

Lemma 3.1 Let L1, L2 : (F2n)2 → F2n be linear maps and a, b ∈ F2n , such that
L (x, y) = (L1(x, y)+a, L2(x, y)+b) is a permutation. Let F and F ′ be CCZ-equivalent
functions such that L maps the graph of F to the graph of F ′. Then the linear part L ′ of
L maps the graph of F to the graph of F ′′(x) = F ′(x + a) + b.

Proof Indeed, if for an affine permutation L (x, y) = (L1(x, y) + a, L2(x, y) + b), where
L1, L2 : (F2n)2 → F2n are linear and a, b ∈ F2n , the image of the graph of a function
F is the graph of a function F ′, then by denoting F1(x) = L1(x, F (x)) and F2(x) =
L2(x, F (x)) we get

F ′(x) = F2 ◦ [F1(x) + a]−1 = F2 ◦ F−1
1 (x + a) + b
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(since F1 must be a permutation [8]). Hence, neglecting a and b we get a function F ′′ affine
equivalent to F ′, that is, F ′′(x) = F ′(x + a) + b.

We can describe a linear map L as a formal matrix

L =
[

A1 A2
A3 A4

]

where Ai are linear maps over F2n for 1 ≤ i ≤ 4, and

L (x, y) =
[

A1 A2
A3 A4

]
·
[

x

y

]
= (A1(x) + A2(y), A3(x) + A4(y)).

In particular,
F1(x) = L1(x, F (x)) = A1(x) + A2 ◦ F(x) (1)

and
F2(x) = L2(x, F (x)) = A3(x) + A4 ◦ F(x). (2)

We can make the following straightforward but important observations about F1.

Observation 3.2 The function F1 in (1) is a permutation if and only if all its components
are balanced. In terms of Walsh transforma we have that F1 is a permutation if and only if

WF1(0, λ) =
∑

x∈F2n
(−1)Tr(λA1(x)+λA2◦F(x)) = 0, for all λ ∈ F

∗
2n .

Denoting by L∗ the adjoint operator of a linear map L (i.e. T r(yL(x)) = T r(xL∗(y)) for
all x, y ∈ F2n ), we have

WF1(0, λ) =
∑

x∈F2n
(−1)Tr(A

∗
1(λ)x+A∗

2(λ)F (x)) = WF (A∗
1(λ), A∗

2(λ)) = WFA∗
2(λ)

(A∗
1(λ)) = 0.

(3)
In particular, we have that Ker(A∗

1) ∩ Ker(A∗
2) = {0} and for all λ ∈ Ker(A∗

1) \ {0}, the
A∗
2(λ)-component of F , FA∗

2(λ), has to be balanced. Moreover, it is easy to observe from
equality (3) that if F has no balanced components then A1 has to be a linear permutation
on F2n .

4 CCZ-equivalence and EA-equivalence

In [8], it is proved that for quadratic APN functions CCZ-equivalence is strictly more gen-
eral than EA-equivalence and inverse transformation. Such a result has been obtained by
exhibiting APN functions which are CCZ-equivalent to Gold functions F(x) = x2i+1.

In this section we provide a procedure which allows, at least in small dimensions, to
investigate if CCZ-equivalence leads to more functions than applying EA-equivalence and
inverse transformation.

Given a function F : F2n → F2n we want to construct a possible linear permutation

L =
[

A1 A2
A3 A4

]

mapping the graph of F onto the graph of some function F ′. In particular, we want to
construct the linear functions A1 and A2 on F2n so that F1(x) = L1(x, F (x)) = A1(x) +
A2 ◦ F(x) is a permutation.
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For any λ ∈ F2n we define the set

ZW(λ) = {a ∈ F2n : WFλ(a) = 0}.
Then we can define the following set

SF = {λ ∈ F
∗
2n : ZW(λ) �= ∅} ∪ {0}. (4)

Remark 4.1 It is easy to see that the set 	(A∗
2) is contained in SF (see (3)).

Along this section we denote by Span(v1, . . . , vm) the vector (sub)space over F2
generated by the elements v1, . . . , vm ∈ F2n .

Now, to construct the possible functions F1 we should consider all the vector subspaces
of SF . Let U be a fixed subspace contained in SF , this will be a possible candidate for
	(A∗

2).

Observation 4.2 Without loss of generality, fixing any basis {u1, . . . , uk} of U (where k is
the dimension of U ) and fixing a basis {β1, ..., βn} of F2n (as a vector space over F2), we
can suppose that A∗

2(βi) = ui for i = 1, ..., k and Ker(A∗
2) = Span(βk+1, ..., βn).

Indeed, suppose A∗
2 is such that A∗

2(wi) = ui for i = 1, ..., k and Ker(A∗
2) =

Span(wk+1, ..., wn) for some w1, ..., wn linearly independent. Then, there exists a unique
linear permutation L̄ such that L̄∗(βi) = wi for all i. Now, if F1(x) = A1(x) + A2(F (x))

is a permutation, we can consider F ′
1 = L̄ ◦ F1, which is again a permutation, and

Ā2
∗ = (L̄ ◦ A2)

∗ is s.t. Ā2
∗
(βi) = ui for i = 1, ..., k and Ker(Ā2

∗
) = Span(βk+1, ..., βn).

Remark 4.3 As stated in [21, Theorem 2.3] for any linear polynomial L(x) we have that,
given a basis {β1, ..., βn} of F2n , there exist unique θ1, ..., θn in F2n such that L(x) =∑n

i=1 Tr(βix)θi . Then, we can construct the linear polynomial A∗
2 from the image of the

basis {β1, ..., βn} by solving the linear system
∑n

i=1 Tr(β1βi)θi = A∗
2(β1)

...∑n
i=1 Tr(βnβi)θi = A∗

2(βn).

Now, we have fixed U and our function A∗
2 (using Observation 4.2 and Remark 4.3) and

we want to construct all possible A∗
1 such that F1(x) = A1(x)+A2 ◦F(x) is a permutation.

In the following we report the procedure to construct the matrices A∗
1 (for fixed A∗

2). The
steps of this procedure will be explained in the proof of Proposition 4.5.

Procedure 4.4 For any u ∈ U \ {0} we consider the set ZW(u), as defined before. To
construct A1 we need to determine the images of the vectors βi’s. In order to do that, we
need to select any possible k-tuple a1 ∈ ZW(u1), ..., ak ∈ ZW(uk) such that

(P1)
∑k

i=1 λiai ∈ ZW(
∑k

i=1 λiui) for anyλ1, ..., λk ∈ F2, not all zero.

These a1, ..., ak will be the images by A∗
1 of β1, ..., βk , respectively.

After that, for any of these k-tuples, we need to determine all possible (n − k)-tuples of
elements ak+1, ..., an satisfying:

(P2) ak+1, ..., an are linearly independent;
(P3) for any a ∈ Span(ak+1, ..., an)\{0}, a + ∑k

i=1 λiai ∈ ZW(
∑k

i=1 λiui), for any
λ1, . . . , λk ∈ F2.
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Condition (P3) is equivalent to have

Span(ak+1, ..., an) ⊆
⋂

λ1,...,λk∈F2

k∑

i=1

λiai + ZW
(

k∑

i=1

λiui

)
,

where a + ZW(u) = {a + v : v ∈ ZW(u)}.
Let us note that if we include the case a = 0 in Condition (P3), then it would imply also

Condition (P1). However, verifying (P1) after the selection of a1, ..., ak will help in filtering
the elements for which (P3) is not satisfied.

Proposition 4.5 Let U be a subspace contained in SF , where F is a function from F2n to
itself and SF defined as in (4). Then, there exists a permutation of F2n F1(x) = A1(x) +
A2 ◦ F(x), with A1 and A2 linear and 	(A∗

2) = U , if and only if Procedure 4.4 applied to
the space U is successful.

Proof Let us suppose that F1(x) = A1(x) + A2 ◦ F(x) is a permutation and 	(A∗
2) = U .

From the Observation 4.2 without loss of generality we can suppose that A∗
2(βi) = ui for

i = 1, ..., k and Ker(A∗
2) = Span(βk+1, ..., βn), where {u1, . . . , uk} is a basis of U fixed for

the procedure. Then, we need to show that A∗
1 is generated by the procedure. That is, we

need to show that (P1), (P2) and (P3) are satisfied.
Let ai = A∗

1(βi) for 1 ≤ i ≤ n. Suppose that (P1) is not satisfied, then there exist

λ1, . . . , λk in F2, not all zero, such that
∑k

i=1 λiai /∈ ZW(
∑k

i=1 λiui), which means that
WF (

∑k
i=1 λiai,

∑k
i=1 λiui) �= 0. Since

WF (

k∑

i=1

λiai,

k∑

i=1

λiui) = WF (A∗
1(

k∑

i=1

λiβi), A
∗
2(

k∑

i=1

λiβi)) = WF1(0,
k∑

i=1

λiβi)

(see Observation 3.2) and F1 is a permutation, this is not possible.
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If (P2) is not satisfied we have that there exist λk+1, . . . , λn in F2, not all zero, such that∑n
i=k+1 λiai = 0. Then,

∑n
i=k+1 λiβi ∈ Ker(A∗

1)∩Ker(A∗
2) and from Observation 3.2 this

is not possible.
The last condition (P3) is similar to (P1). Indeed, suppose that there exist λ1, . . . , λn in

F2 such that
∑k

i=1 λiai + ∑n
i=k+1 λiai /∈ ZW(

∑k
i=1 λiui). Then, we have

WF1(0,
n∑

i=1
λiβi) = WF (A∗

1(
n∑

i=1
λiβi), A

∗
2(

n∑
i=1

λiβi))

= WF (A∗
1(

n∑
i=1

λiβi), A
∗
2(

k∑
i=1

λiβi)) �= 0,

A∗
2(

∑k
i=1 λiβi) = A∗

2(
∑n

i=1 λiβi) since Ker(A∗
2) = Span(βk+1, ..., βn)).

Vice versa, if we are successful on generating, at least, one matrix A∗
1 with Procedure

4.4, then from Condition (P1), (P2) and (P3) it is easy to verify that for any λ1, . . . , λn in
F2, not all zero,

WF1(0,
n∑

i=1

λiβi) = WF (A∗
1(

n∑

i=1

λiβi), A
∗
2(

n∑

i=1

λiβi)) = WF (

n∑

i=1

λiai,

n∑

i=1

λiui) = 0.

Indeed, from Condition (P1) we have WF1(0,
∑n

i=1 λiβi) = 0, for all possible λ1, . . . , λk

not all zero and λk+1 = · · · = λn = 0. From Condition (P2) we have that for all possible
λk+1, . . . , λn not all zero and λ1 = · · · = λk = 0, WF1(0,

∑n
i=1 λiβi) = 0. The last

condition, (P3), guarantees that WF1(0,
∑n

i=1 λiβi) = 0 when both λ1, . . . , λk are not all
zero and λk+1, . . . , λn are not all zero.

On the other hand, if we cannot construct a matrix A1 for all spaces U ⊆ SF , we have
that all the CCZ-transformations that we can apply to F are a composition of EA- and
inverse transformations. Before proving it, we recall the following remark from [8]. Further,
in Lemma 4.8 we extend Proposition 3 of [8].

Remark 4.6 (Remark 2 in [8]) For a function F : F2n → F2n , if L = (L1, L2) and
L ′ = (L1, L

′
2) are permutations such that the function L1(x, F (x)) is a permutation, then

the functions defined by the graphs L (GF ) and L ′(GF ) are EA-equivalent.

Remark 4.7 Proposition 4.5 implies that if we apply Procedure 4.4 to a subspace U in
SF , for a given function F , then we obtain all the possible maps A1 (and thus L1(x, y) =
A1(x) + A2(y)) such that A1(x) + A2 ◦ F(x) is a permutation and A2 is a fixed map as in
Observation 4.2 for which 	(A∗

2) = U .
Consider the set of all the functions L1’s obtained from Procedure 4.4 applied to all

the subspace U in SF . From Observation 4.2 and Remark 4.6, in order to cover all EA-
inequivalent functions in the CCZ-class of F , it is sufficient to determine a single L2 for
each of the L1 constructed before, and apply the transformation L = (L1, L2) to GF .

In Proposition 3 of [8], the authors characterized which type of linear maps L , admissi-
ble for a CCZ-transformation, gives us EA-equivalence of a function F ′ to a function F or
to its inverse (if it exists). That is, they studied the linear maps, L , that applied to the graph
of F permit to obtain the graph of F ′ in the following cases

F ′ ∼EA F and F ′ ∼EA F−1 inv→ F .
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In the following lemma we extend this characterization to the case when we apply, again,
an EA-transformation and the inverse transformation (if it is possible). That is, we study the
maps, L , that maps the graph of F onto the graph F ′ when

F ′ ∼EA G
inv→ G−1 ∼EA F (5)

and

F ′ ∼EA G
inv→ G−1 ∼EA F−1 inv→ F, (6)

for some permutation G.
Note that for applying the inverse transformation it is necessary that the function (in

this case G) is a permutation. Indeed, for a given permutation L that is suitable for CCZ-
equivalence (i.e. F1(x) = A1(x) + A2 ◦ F(x) is a permutation) it may be possible to
decomposeL in several iterations of maps which represent EA-equivalence and the inverse
transformation, but if we apply the inverse transformation to the graph of a non invertible
function the obtained set is no more a graph of a function.

Lemma 4.8 Let F,F ′ : F2n → F2n . The function F ′ is EA-equivalent to the function F

or to the inverse of F (if it exists) if and only if there exists a linear map L = (L1, L2)

such that L (GF ) = GF ′ and L1 depends only in one variable, i.e. L1(x, y) = A1(x)

or L1(x, y) = A2(y). In particular, in the first case A1, A4 are permutations and in the
second case A2, A3 are permutations.

While, we have the case (5), for some permutation G, if and only if there exists a linear
permutation L = (L1, L2) such that L (GF ) = GF ′ and L1(x, y) = A1(x) + A2(y) with
A2 a permutation of F2n . In particular, if A1 = 0 we would obtain the identity map for
EA-equivalence on the right side of (5).

Moreover, if F−1 exists, then we have (6), for some permutation G, if and only if there
exists a linear permutation L = (L1, L2) such that L (GF ) = GF ′ and L1(x, y) =
A1(x) + A2(y) with A1 a permutation of F2n . In particular, if A2 = 0 we would obtain the
identity map for EA-equivalence in the middle of (6) and thus the inverse transformations
cancel.

Proof The first part is Proposition 3 in [8]. Note that the condition A1, A4 permutations
(and similarly A2, A3 permutations) is equivalent to L = (L1, L2) being a permutation.

We will show the last two claims. Suppose F ′ is EA-equivalent to the function G which
inverse is EA-equivalent to F , that is

F ′ ∼EA G
inv→ G−1 ∼EA F .

Recalling that in the inverse transformation we are applying the linear permutation over
(F2n)2 given by Inv(x, y) = (y, x), from the first part of the lemma we can construct the
permutation L given by

(A′
1(x), A′

3(x) + A′
4(y)) ◦ (A3(x) + A4(y), A1(x)) =

= (A′
1 ◦ A3(x) + A′

1 ◦ A4(y), A′
3 ◦ A3(x) + A′

3 ◦ A4(y) + A′
4 ◦ A1(x)),

where (A′
1(x), A′

3(x) + A′
4(y)) maps GG onto GF ′ and (A3(x) + A4(y), A1(x)) maps GF

onto GG. Since A′
1 and A4 are permutations also A′

1 ◦ A4 is a permutation.
Vice versa, let L (x, y) = (A1(x) + A2(y), A3(x) + A4(y)) be a linear permutation of

(F2n)2 such that L (GF ) = GF ′ and A2 is permutation of F2n . Consider the linear map
L ′(x, y) = (A1(x)+A2(y), x). L ′ is a linear permutation of (F2n)2 since A2(x) and x are
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permutations. Moreover F1(x) = A1(x)+A2(F (x)) is a permutation sinceL (GF ) = GF ′ .
Then, F1 is a permutation EA-equivalent to F and the function G defined by the graph
L ′(GF ), that is F−1

1 , is such that G−1 is EA-equivalent to F . From Remark 4.6 we obtain
that F ′ and G are also EA-equivalent.

The case when G−1 is equivalent to F−1 is similar. Indeed, suppose

F ′ ∼EA G
inv→ G−1 ∼EA F−1 inv→ F,

using the first part of the lemma we can construct the permutation L given by

(A′
1(x), A′

3(x) + A′
4(y)) ◦ (A3(x) + A4(y), A2(y)) =

(A′
1 ◦ A3(x) + A′

1 ◦ A4(y), A′
3 ◦ A3(x) + A′

3 ◦ A4(y) + A′
4 ◦ A2(y)),

where (A′
1(x), A′

3(x) + A′
4(y)) maps GG onto GF ′ and (A3(x) + A4(y), A2(y)) maps GF

onto GG. Since A′
1 and A3 are permutations also A′

1 ◦ A3 is a permutation.
Conversely, supposeL (x, y) = (A1(x)+A2(y), A3(x)+A4(y)) is a linear permutation

of (F2n)2 such that L (GF ) = GF ′ with A1 a permutation of F2n .
As before, we can consider L ′(x, y) = (A1(x) + A2(y), y), which is a permutation of

(F2n)2. Let G be defined by the graph L ′(GF ), that is G(x) = F ◦ F−1
1 (x) with F1(x) =

A1(x) + A2 ◦ F(x). Since F is a permutation also G is a permutation and we obtain that
GG−1 = Inv◦L ′(GF ). From the first part of the lemma we have thatG−1 is EA-equivalent
to F−1 since Inv ◦ L ′(x, y) = (y,A1(x) + A2(y)).

Let us denote by A an EA-transformation and Inv the inverse transformation, then in
Lemma 4.8 we have obtained the followingcharacterization:

• A :

[
A1 0
A3 A4

]
, A1 and A4 permutations.

• A Inv:

[
0 A2
A3 A4

]
, A2 and A3 permutations.

• A InvA :

[
A1 A2
A3 A4

]
, A2 a permutation and A1 �= 0.

• A InvA Inv:

[
A1 A2
A3 A4

]
, A1 a permutation and A2 �= 0.

In the following we will show that using Procedure 4.4 it is possible to investigate when we
can obtain only these transformations for a given function F .

Theorem 4.9 Let F be a function from F2n to itself. If for any nonzero vector subspace U

in SF different from F2n it is not possible to construct any matrix A∗
1 �= 0 with Procedure

4.4, then any function F ′ CCZ-equivalent to F can be obtained from F applying only EA-
equivalence and inverse transformation (when applicable) iteratively. Moreover, the only
maps suitable for CCZ-equivalence can be of type A , A Inv and A InvA (studied in
Lemma 4.8).

Proof Using Procedure 4.4 we can obtain only functions L1(x, y) = A1(x) + A2(y) such
that A2 is either the zero function, when U = {0}, or a permutation, when U = F2n .
Otherwise, from Proposition 4.5 we cannot obtainL1 such thatL1(x, F (x)) is a permutation
of F2n . Then, for any CCZ-transformation L such that L (GF ) = GF ′ the function L1
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needs to satisfies one of the conditions in Lemma 4.8, implying that F ′ can be obtained
from F applying only EA-equivalence and inverse transformation iteratively.

When F is also a permutation we have the following.

Theorem 4.10 Let F be a permutation over F2n . If for any nonzero vector subspace U in
SF different from F2n it is not possible to construct a matrix A∗

1 �= 0 of rank(A∗
1) < n with

Procedure 4.4, then any function F ′ CCZ-equivalent to F can be obtained from F applying
only EA-equivalence and inverse (when applicable) transformation iteratively. Moreover,
the only maps suitable for CCZ-equivalence are those studied in Lemma 4.8, i.e. A , A Inv,
A InvA and A InvA Inv.

Proof In this case, from Procedure 4.4 we could obtain a function L1(x, y) = A1(x) +
A2(y) for some space U �= {0},F2n in SF . However, A1 would be a permutation, and from
the last part of Lemma 4.8 we have our claim.

Applying Procedure 4.4, using the software MAGMA, from Theorem 4.8 we obtain the
following corollary.

Corollary 4.11 Let n ≤ 8 and F(x) = xd be an APN power function defined over F2n ,
which is CCZ-inequivalent to a Gold function. Then, for the function F CCZ-equivalence
coincides with EA-equivalence together with the inverse transformation.

Corollary 4.12 Let n ≤ 8 be even. Then, for the inverse function F(x) = x2n−2 CCZ-
equivalence coincides with EA-equivalence together with the inverse transformation.

Observation 4.13 From the computational results obtained for non-Gold APN power func-
tions and the inverse function, we were able to observe that the class of CCZ-equivalence
can be divided in at most two classes of EA-equivalence.

From these two results we conjecture the following.

Conjecture 4.14 Let F(x) = xd be a non-Gold APN power function or the inverse function
over F2n . Then, for F CCZ-equivalence coincides with EA-equivalence together with the
inverse transformation (when applicable).

Applying Procedure 4.4 to the non-Gold APN power functions, we were able to obtain
only linear permutations L that can be reduced to at most the case A InvA , where we
repeat the inverse transformation at most one time. However, note that there are cases dif-
ferent from ones described in Theorem 4.10. In general, if a CCZ-transformation of a given
function can be decomposed into sequence of EA- and inverse transformations, then we
may need to apply the inverse transformation more than one or two times. For example, let
us consider n = 4. The full classification of all the bijective maps in 4-bit was obtained in
[22]. We consider the following permutation

F(x) = u10x14 + u5x13 + u10x12 + x11 + u8x10 + u11x9 + u12x8

+u11x7 + u4x6 + u10x5 + x4 + u10x2 + u11x,
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where u is a primitive element of F24 . In the CCZ-class of F we have only five EA-classes
containing a permutation, that is

EA1 represented by F1(x) = u6x14 + u5x13 + u9x12 + u11x10 + u11x9 + u3x8 +
u7x7 + u13x5 + u4x4 + u14x3 + u6x2 + u14x,

EA2 represented by F2(x) = u10x14 + u5x13 + u10x12 + x11 + u8x10 + u11x9 + u12x8

+ u11x7 + u4x6 + u10x5 + x4 + u10x2 + u11x,

EA3 represented by F3(x) = u6x14 + u12x13 + u2x12 + u11x11 + u9x10 + ux9 + u3x8

+u9x7 + u10x6 + u7x4 + u5x3 + u14x2 + x,

EA4 represented by F4(x) = u6x14 + u4x13 + u14x12 + ux11 + u6x10 + u5x9 + u7x8

+ u12x7 + u8x6 + u10x5 + u8x4 + u9x3 + ux2 + u2x,

EA5represented by F5(x) = u6x14 + ux13 + ux12 + u8x11 + u5x10 + u7x9 + u9x8 +
u13x7 + u3x6 + u4x5 + u8x4 + u11x3 + ux.

If we consider the graph whose nodes are EA1, EA2, EA3, EA4 and EA5 and we create an
edge between two nodes EAi and EAj whenever there exists a permutation F ′ in EAi such
that F ′−1 is in EAj , then we obtain the relations between EA-equivalence classes presented
in the graph of Fig. 1.

Thus, any CCZ-transformation necessary for going from EA1 to EA5, in the decompo-
sition in EA- and inverse transformations needs at least 4 inverse transformations.

5 On functions not equivalent to quadratic functions

For quadratic APN functions it is known that applying CCZ-equivalence it is possible to
obtain functions which cannot be obtained using EA-equivalence and the inverse transfor-
mation only, see for instance [8], for the case of Gold functions, or also the APN permutation
in dimension six introduced by Dillon et al. in [4] which was constructed by applying CCZ-
equivalence to the so-called Kim function, which is quadratic (and inequivalent to a Gold
function). In the following we provide an example which shows for the first time that CCZ-
equivalence is more general than EA-equivalence together with inverse transformation also
for non quadratic APN functions.

Let n = 6, and F : F2n → F2n be

F(x) = x3 + u17(x17 + x18 + x20 + x24) + u14((u52x3 + u6x5 + u19x7 + u28x11 + u2x13) +
(u52x3+u6x5+u19x7+u28x11+u2x13)2+(u52x3 + u6x5 + u19x7 + u28x11 + u2x13)4 +
(u52x3+u6x5+u19x7+u28x11+u2x13)8+(u52x3+u6x5 + u19x7 + u28x11 + u2x13)16 +
(u52x3+u6x5+u19x7+u28x11+u2x13)32+(u2x)9+(u2x)18 + (u2x)36 + x21 + x42),

Fig. 1 Graph of connection between EA-classes through inverse transformation
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where u is a primitive element of F2n . The function F is the first (and only currently
known) example of an APN function CCZ-inequivalent to quadratic functions and to power
functions (see [3, 17]). Using the procedure described in the previous section it is possible
to construct the functions A1 and A2 given by

A1(x) = u50x32 + u51x16 + u43x8 + ux4 + u26x2 + u26x

and

A2(x) = u26x32 + u17x16 + u56x8 + u9x4 + u54x2 + u46x,

so that F1(x) = L1(x, F (x)) = A1(x)+A2◦F(x) is a permutation of F2n . Now considering
the function F2(x) = L2(x, F (x)) = F(x) we have that F is CCZ-equivalente to F ′ =
F2 ◦ F−1

1 having univariate polynomial representation

F ′(x) = u41x60 + u29x58 + u46x57 + u3x56 + u39x54 + u47x53 + u3x52 + u62x51 + u54x50 +
u62x49 + u53x48 + u14x46 + u39x45 + u20x44 + u26x43 + u11x42 + u31x41 + u53x40 +
u59x39 + u53x38 + u41x37 + u19x36 + u58x35 + u2x34 + u7x33 + u39x32 + u15x30 +
u17x29 + u45x28 + u39x27 + u57x26 + u33x25 + u61x24 + u41x23 + u50x22 + u58x21 +
u55x20 + u26x19 + u17x18 + u37x17 + u30x16 + ux15 + u46x14 + u21x13 + u13x12 +
u61x11 + u20x10 + x9 + u61x8 + u32x7 + u44x6+u62x5+u16x4+u48x3 + u58x2 + u37x.

The function F ′ cannot be constructed from F via EA-equivalence and inverse trans-
formation. Indeed F �EA F ′ since F has algebraic degree 3 and F ′ algebraic degree 4.
Moreover, to apply the inverse transformation, at least once, we need F ∼EA G with G a
permutation, but since F has quadratic components, as for example

T r(F (x)) = u15x48 + u60x40 + u36x36 + u51x34 + u30x33 + u39x24 + u30x20 +
u18x18 + u57x17 + u51x12 + u15x10 + u9x9 + u57x6 + u39x5 + u60x3,

this cannot be possible (see [9, Corollary 3.8]).

6 Some remarks on functions with linear structures

In the previous section we showed that also for functions CCZ-inequivalent to a quadratic
function CCZ-equivalence is more general than EA-equivalence with the inverse transfor-
mation. Recall that the function studied in Section 5 has some quadratic components and any
non bent quadratic function has at least one linear structure. In this section we will report
some considerations that can explain why for functions with components having some lin-
ear structures it is more likely that CCZ-equivalence is more general than EA-equivalence
with inverse transformation.

We recall that α ∈ F2n is a c-linear structure, with c ∈ F2, of a Boolean function
f : F2n → F2 if f (x + α) + f (x) = c for all x ∈ F2n . For a vectorial Boolean function
F : F2n → F2n we say that F has a linear structure if there exists a component T r(γF ),
with γ �= 0, of F which has a linear structure.

In [12], the authors study permutation polynomials (PP) of type G(x) + γ T r(F (x)). In
particular when G(x) is a linearized polynomial from the results in [12] we have directly
the following.
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Lemma 6.1 [12] Let L,F : F2n → F2n with L a linear polynomial. Then we have the
following properties:

i) if L(x) + γ T r(F (x)) is PP then L is a PP or is a 2-to-1 map.
ii) If L is a PP, then L(x) + γ T r(F (x)) is a PP if and only if F(x) = R(L(x)) for some

polynomial R and γ is a 0-linear structure of T r(R(x)) (and in particular L−1(γ ) is
a 0-linear structure of T r(F (x))).

iii) If L is a 2-to-1 map with kernel {0, α}, then L(x) + γ T r(F (x)) is a PP if and only if
γ is not in the image of L and α is a 1-linear structure of T r(F (x)).

Corollary 6.2 If L(x) + γ T r(F (x)) is a PP then F has a linear structure.

So, given a function F defined over F2n with a component having some linear struc-
ture, from Lemma 6.1 we can obtain some linear functions L1 : (F2n)2 → F2n such that
F1(x) = L1(x, F (x)) is a permutation. Indeed, another direct consequence of Lemma 6.1
is the following.

Proposition 6.3 Let F : F2n → F2n . Then there exists a linear function L1(x, y) =
A1(x) + A2(y) such that L1(x, F (x)) is a permutation and A2 has rank 1 if and only if F

has at least one component with a linear structure.

Proof Since A2 has rank 1, then 	(A2) = γF2 for some γ ∈ F2n . Moreover, any linear
transformations from F2n to F2 is of the type T r(λx) with λ ∈ F2n . Thus, we can suppose
that L1(x, y) = A1(x) + γ T r(λy) for some γ, λ ∈ F2n and from Corollary 6.2 we have
that if F1(x) = L1(x, F (x)) is a permutation, then F has a linear structure.

Vice versa, suppose that γ is a 0-linear structure of the component T r(λF (x)). Then, it
follows from Lemma 6.1 that

x + γ T r(λF (x))

is a PP. Let now γ be a 1-linear structure of the component T r(λF (x)). Then, similarly
from Lemma 6.1 if T r(γ ) = 1 we have that

x + γ T r(λF (x) + x)

is a PP (note that γ /∈ 	(x + γ T r(x))). If T r(γ ) = 0, then we can consider any element θ
such that T r(γ θ) = 1. Then, already for iii) of Lemma 6.1,

x + γ T r(θx) + γ T r(λF (x))

is a PP.

This result has been obtained, independently, in [10] Corollary 2 in terms of function
twisting (introduced always in [10]).

From Proposition 6.3 we obtained a possible function L1(x, y) = A1(x) + A2(y) such
that F1(x) = L1(x, F (x)) is a permutation, when F has a linear structure. In the following,
we will construct a function F ′ CCZ-equivalent to F , using this type of linear function
L1(x, y).

First of all, note that the functions constructed in Proposition 6.3

F1(x) = x + γ T r(λF (x))

when γ is a 0-linear structure of the component T r(λF (x)), and

F ′
1(x) = x + γ T r(λF (x) + θx),
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with θ as in Proposition 6.3, when γ is a 1-linear structure, are involutions. Indeed,

F1 ◦ F1(x) = x + γ T r(λF (x)) + γ T r(λF (x + γ tr(λF (x))))

=
{

x if T r(λF (x)) = 0 .
x + γ T r(λF (x) + λF(x + γ )) = x if T r(λF (x)) = 1

It is similar for F ′
1, we just need to verify the cases (T r(θx), T r(λF (x))) =

(0, 0), (1, 0), (0, 1) and (1, 1).
Now, for the case F1(x) = x + γ T r(λF (x)), we have L1(x, y) = x + γ T r(λy) and,

considering the linear function L2(x, y) = y, we get the linear permutation L (x, y) =
(L1(x, y), L2(x, y)). Denoting F2(x) = L2(x, F (x)) = F(x), this permutation permits to
obtain the equivalent function

F ′(x) = F2 ◦F1(x) = F(x +γ T r(λF (x)) = F(x)+T r(λF (x))(F (x)+F(x +γ )). (7)

Similarly, for F ′
1(x) = x + γ T r(λF (x) + θx) we can consider L2(x, y) = y + γ T r(θx),

that is F2(x) = F(x) + γ T r(θx) and

F ′(x)=F2 ◦ F ′
1(x) = F(x + γ T r(λF (x) + θx)) + γ T r(x + γ T r(λF (x) + θx))

= F(x)+T r(λF (x)+θx)(F (x)+ F(x + γ ) + γ T r(1)) + γ T r(θx).

(8)

We can note that in both cases we are multiplying the component T r(λF (x)) with the
derivative F(x) + F(x + γ ), such a multiplication could change the degree of the resulting
function. In the case of quadratic functions such a transformation could lead to a function
of degree 3.

For the particular case of quadratic function, this has been also observed in [10] in terms
of function twisting.

In [8], the authors constructed some permutation polynomials as those described in
Proposition 6.3. Applying these polynomials to the Gold power functions x2i+1, they
obtained, in the same way described for (7) and (8), functions EA-inequivalent to any power
functions.

7 Conclusions

We have investigated the problem if for a given APN function F the class of CCZ-equivalent
functions can be obtained by EA-equivalence and the inverse transformation (when appli-
cable) only. Such a problem was investigated also in [5, 6, 8] for the case of quadratic
APN functions, in particular for the Gold functions. We characterized some linear permu-
tations on (F2n )2 which imply that the equivalence between two functions F and F ′ can be
obtained via EA-equivalence and inverse transformation. We also gave a procedure to verify
if a sufficient condition (Theorem 4.9), implying that CCZ-equivalence coincides with EA-
equivalence and inverse transformation, holds. Using this procedure, we proved that also
for APN functions CCZ-inequivalent to quadratic functions CCZ-equivalence can be more
general than EA-equivalence and inverse. On the contrary, with the same procedure we were
able to verify, up to dimension 8, that for the non-Gold APN power functions the class of
CCZ-equivalent functions can be obtained using only EA-equivalence and the inverse trans-
formation. This leads us to a conjecture that for all non-Gold APN power functions and the
inverse function CCZ-equivalence coincides with EA-equivalence together with the inverse
transformation.
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