
https://doi.org/10.1007/s12095-019-00365-7

A new two-error-correcting binary code of length 16

Moshe Milshtein1

Received: 7 December 2018 / Accepted: 29 March 2019 /
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
The maximum possible cardinality of a binary code of length n and Hamming distance
d is denoted by A(n, d). The current lower bound for A(16, 5) is 256, as implied by the
Nordstrom–Robinson code. We improve this bound to 258 by presenting a binary code
of length 16, minimum distance 5 and cardinality 258. The code is found using a known
construction and Tabu Search.

Keywords Error-correcting code · Block code · Lower bound · Tabu search

Mathematics Subject Classification (2010) MSC 94B60 · MSC 94B65

1 Introduction

A q-ary (n, M, d)-code is a code of length n over an alphabet with q symbols, with M code-
words and minimum Hamming distance d . If we increase M while fixing n and d , the code
can be used to encode more messages with the same number of symbols transmitted and the
same number of correctable errors. For given q, n and d , the maximum possible cardinality
of a q-ary (n,M, d)-code is denoted by Aq(n, d), and for binary codes by A(n, d). This is
one version of what is called ‘the main problem of coding theory’.

For binary codes of length n up to 15 and any minimum distance d , the exact values of
A(n, d) are known. For 6 ≤ n ≤ 28 Brouwer [1] maintains an updated table of lower and
upper bounds.

We see in [1] that 256 ≤ A(16, 5) ≤ 340. The lower bound is obtained by adding a
zero in front of every codeword of the Nordstrom–Robinson code [7]. Some experiments
attempting to find large (16,M, 5)-codes are discussed by Haas and Houghten [5]. In this
note we improve this lower bound to 258 by describing a (16, 258, 5)-binary code.

In Section 2 we explain the construction and Tabu Search algorithm we use to find the
code. In Section 3 we present the code.

� Moshe Milshtein

1 New Hampshire, USA

Cryptography and Communications (2020) 12:71–75

Published online: 24 April 2019

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-019-00365-7&domain=pdf
http://orcid.org/0000-0002-0466-1282

2 Code construction and Tabu Search

In [2, p. 173], Dueck and Scheuer construct a binary constant weight code with weight w

and length 2w from a binary constant weight code with half the number of codewords. They
find the smaller code using their Threshold Accepting method, which is a stochastic local
search [6] method.

We use the above construction here, but apply it to unrestricted binary codes. We find the
smaller code with Tabu Search [4], which is also a stochastic local search method.

First we give the construction.

Proposition 1 (from [2], applied to general codes) Let C be a binary code of length
n with M codewords. Assume that for every two distinct codewords x, y in C we have
d ≤ d(x, y) ≤ n − d . Then the code obtained by adding the complements of the codewords
in C to C has 2M codewords and minimum distance at least d .

Proof We denote the complement of a vector v by v̄. The code C and the code consisting
of the complements of the codewords in C both have only distances at least d between
distinct codewords. Now let x be a codeword in C and ȳ a codeword in the complements
code (y ∈ C). Clearly d(x, y) + d(x, ȳ) = n. Therefore, d(x, ȳ) = n − d(x, y) ≥ d .

Next we give the description of the Tabu Search algorithm we use to find the smaller
code. We do this by specifying the components of a stochastic local search algorithm as
suggested by Hoos and Stützle [6, p. 38].

The problem of finding a binary code of length n, with M codewords, and distances at
least d and at most n − d is a combinatorial decision problem. A stochastic local search
algorithm for a decision problem starts with an initial candidate solution. At each iteration
the next candidate solution is chosen according to some probability distribution over the
neighborhood of the current candidate solution. When the termination criterion is met the
algorithm stops and returns the current candidate solution if it is indeed a solution, or reports
failure otherwise [6, p. 41].

We define the search space S of candidate solutions as the set of binary codes of length n

with M codewords. A solution is a code in S such that the distance between any two distinct
codewords is in the range [d, n − d]. The algorithm initially chooses a candidate solution
from S randomly with equal probability. It terminates when a solution is found or when we
stop it manually, whichever comes first.

The neighborhood of a candidate solution C is the set of codes in S that can be obtained
from C by replacing one codeword with a vector that is not already in C. Formally,
N(C) = {C′ ∈ S | |C′ \ C| = 1}.

Next we associate a cost with every two distinct evctors.

Definition 1 The function c is defined for every two vectors x �= y by the rule

c(x, y) =
⎧
⎨

⎩

(d − d(x, y))2 if d(x, y) < d,

(n − d − d(x, y))2 if d(x, y) > n − d,

0 otherwise.

For pairs of distinct vectors that are at a distance smaller than d , the smaller the distance
the higher the cost. Similarly, for pairs of distinct vectors that are at a distance larger than
n − d , the larger the distance the higher the cost.

Cryptography and Communications (2020) 12:71–7572

Using the cost c we define an assisting evaluation function that ranks the candidate
solutions and guides the search.

Definition 2 (Evaluation function) g : S �→ R, where for all C ∈ S

g(C) =
∑

x,y∈C
x<y

c(x, y)

and x < y refers to lexicographical order.

The function g has the property that its global minima correspond to the solutions. Notice
that the evaluation function defined here is different from the one used in [2], because the
cost we give here to pairs of vectors at a distance larger than n − d is different than the one
given in [2].

A neighbor of a candidate solution meets the tabu criterion if it is obtained by reintro-
ducing a codeword that has been removed in the previous t t iterations. The value t t is called
the tabu tenure. Based on some experiments we chose the tabu tenure value to be 2M . A
neighbor meets the aspiration criterion if it has a value of g lower than the value of any
candidate solution that was encountered in previous iterations. The set A(C) of admissible
neighbors of C consists of the neighbors that do not meet the tabu criterion or meet the
aspiration criterion.

For every candidate solution C and a neighbor C′ in N(C) the step function gives
the probability that C′ would be chosen to be the next candidate solution. Now we can
define this function: if C is a candidate solution then the next candidate solution is chosen
randomly with equal probability from the ‘best’ admissible neighbors, that is from

arg min
C′∈A(C)

g(C′).

Finally, we give a few details about some of the data structures we use. They are almost
identical to the ones described by Fiduccia and Mattheyses in [3, Fig. 2].

By definition 2 if C is a candidate solution then the total cost of distinct codewords pairs
in C is g(C). If we remove a codeword v from C this total cost is reduced by

∑

u∈C
u�=v

c(v,u). (1)

Likewise, if we add a vector v /∈ C to C then this total cost is increased by expression 1.
Therefore we define the gain of v with respect to a candidate solution C as the reduction in
the total cost of distinct vectors pairs when v is moved into or out of C.

Definition 3 Given a candidate solution C and a vector v

gainC(v) =
⎧
⎨

⎩

∑
u∈C
u�=v

c(v,u) if v ∈ C,

−∑
u∈C
u�=v

c(v,u) if v /∈ C.

We maintain an array, GAIN, of the gains of all the vectors with respect to the current
candidate solution. Given the evaluation function’s value of the current candidate solution
C, the gain of a codeword x ∈ C and the gain of a vector y /∈ C, we can calculate the
evaluation function’s value of the neighbor C \ {x} ∪ {y} in constant time. Its evaluation
value is g(C) − gain(x) − gain(y) − c(x, y).

Cryptography and Communications (2020) 12:71–75 73

Table 1 A code of length 16, with 129 codewords, and distances in the range [5, 11]
30 11F 2DA 794 AAC B83 C27 DBA 108D 126F

13B9 16A2 181A 19DC 1E7C 1FE5 2545 2679 27AF 2952

29B5 2A33 2C1C 2EF6 3123 35F0 36B5 3E43 43CD 4558

4899 4914 4BF0 4E12 4F3D 50E8 521C 57FE 5A21 5CB4

5D62 5F88 61FB 6311 6536 665E 66A8 67C2 68A2 6A48

6D0B 6E85 728B 759D 7817 7938 79C1 7F54 7FB3 8096

81D1 8325 84FD 8502 8650 8B18 8BFF 8C5B 8D8D 8EB1

9213 93AE 9461 9498 9F2B 9FC2 A3B2 A4A4 A531 A8F8

A93E ABC4 AE2D AE8A B059 B114 B228 B781 BA5E BB71

BB9B BCC5 BD08 BFBC C269 C280 C356 C415 C4F2 C52F

C79B C8E5 C933 CC38 CF01 D022 D0DF D730 DA95 DB6C

DC8B DDF9 DE77 DF1E E160 E2EE E4C9 E70C E88C EA34

EAD3 EBA9 ECBF F0B1 F337 F5AA F692 F9F4 FE19

We maintain an array, CODEWORDS, indexed by gain values. The element,
CODEWORDS[gain], is a container holding all the codewords of the current candidate
solution that have the gain value gain. This way we can iterate efficiently through all the
codewords with a fixed gain. A second array of containers, OUTSIDE VECTORS, holds
all the the vectors that do not belong to the current candidate solution. Finally, for every
vector we keep a pointer to its location in its respective container (in CODEWORDS or in
OUTSIDE VECTORS). This way we can move a vector between containers in constant time
when its gain value changes or when it is moving into or out of a code.

3 Search result

We wrote a C++ program and ran it on a PC with a 3.4GHz processor and 40GB of RAM.
We report here the results for the problem instance n = 16, d = 5,M = 258/2 = 129. We
ran the program 20 times. The mean time for finding a solution (not including some lookup
table precalculations) was 9.9 seconds and the mean number of iterations executed was
about 40731. In the worst case it took 32.2 seconds and 170973 iterations to find a solution.

The first solution that was found is shown in hexadecimal representation in Table 1.
Adding the complements of the codewords of this code we get a (16, 258, 5)-code.

References

1. Brouwer, A.E.: Small binary codes. website at https://www.win.tue.nl/∼aeb/codes/binary.html (2018).
Accessed 26 November 2018

2. Dueck, G., Scheuer, T.: Threshold accepting: a general purpose optimization algorithm appearing
superior to simulated annealing. J. Comput. Phys. 90(1), 161–175 (1990)

3. Fiduccia, C.M., Mattheyses, R.M.: A linear-time heuristic for improving network partitions. In:
Proceedings of the 19th Design Automation Conference, pp. 175–181. IEEE Press (1982)

4. Glover, F.: Tabu search—part i. ORSA J. Comput. 1(3), 190–206 (1989)
5. Haas, W., Houghten, S.: A comparison of evolutionary algorithms for finding optimal error-correcting

codes. In: Proceedings of the Third IASTED International Conference on Computational Intelligence,
pp. 64–70. ACTA Press (2007)

Cryptography and Communications (2020) 12:71–7574

https://www.win.tue.nl/~aeb/codes/binary.html

6. Hoos, H.H., Stützle, T.: Stochastic Local Search: Foundations and Applications. Elsevier, Amsterdam
(2004)

7. Nordstrom, A.W., Robinson, J.P.: An optimum nonlinear code. Inf. Control. 11(5-6), 613–616 (1967)

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

Cryptography and Communications (2020) 12:71–75 75

	A new two-error-correcting binary code of length 16
	Abstract
	Introduction
	Code construction and Tabu Search
	Search result
	References

