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Abstract
Whether there exist Almost Perfect Non-linear permutations (APN) operating on an even
number of bits is the so-called Big APN Problem. It has been solved in the 6-bit case by
Dillon et al. in 2009 but, since then, the general case has remained an open problem. In 2016,
Perrin et al. discovered the butterfly structure which contains Dillon et al.’s permutation
over F26 . Later, Canteaut et al. generalised this structure and proved that no other butterflies
with exponent 3 can be APN. Recently, Yongqiang et al. further generalized the structure
with Gold exponent and obtained more differentially 4-uniform permutations with optimal
nonlinearity. However, the existence of more APN permutations in their generalization was
left as an open problem. In this paper, we adapt the proof technique of Canteaut et al. to
handle all Gold exponents and prove that a generalised butterfly with Gold exponents over
F2n can never be APN when n > 3. More precisely, we prove that such a generalised
butterfly being APN implies that the branch size is strictly smaller than 5. Hence, the only
APN butterflies operate on 3-bit branches, i.e. on 6 bits in total.
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1 Introduction

S(ubstitution)-boxes are core components in symmetric ciphers where they serve as the part
providing confusion. In most cases, they are their only nonlinear components. In order for
the algorithm to resist the two most prominent cryptanalytic techniques, namely differential
[2, 3] and linear attacks [13], S-boxes should have a low differential uniformity [14] and a
high nonlinearity [7].

Let F be a vectorial Boolean function from the vector space Fm
2 (composed of all binary

vectors of length m) to F
m
2 . The nonlinearity of F , denoted by NL(F ), is determined by

the Walsh transform of F , defined as

WF (u, v) =
∑

x∈Fm
2

(−1)v·F(x)+u·x, u, v ∈ F
m
2 ,

by the following relation

NL(F ) = 2m−1 − 1

2
max

u,v∈Fm
2 ,v �=0

|WF (u, v)|.

We say that F is differentially δ-uniform if, for any nonzero a in F
m
2 and b ∈ F

m
2 , the

equation F(x) + F(x + a) = b has at most δ solutions in F
m
2 . The lower bound on the

differential uniformity for functions on F
m
2 is 2, and the functions that achieve this bound

are called Almost Perfect Nonlinear (APN) [15]. That is, a function F : Fm
2 → F

m
2 is APN

if the following equation

F(x) + F(x + a) = b

has at most two solutions for any b ∈ F
m
2 and any nonzero a ∈ F

m
2 . An APN permutation

over Fm
2 would be an S-box providing optimal protection against differential attacks. Such

components are easy to find for m odd: the Gold functions x �→ x2i+1 and the inverse
mapping x �→ x2m−2, which are defined by identifying F2m with Fm

2 , are APN permutations
in this case. However, the very existence of APN permutations operating on an even number
of bits is an open problem nicknamed the big APN problem.

Open Problem 1 (Big APN Problem) Is there an APN permutation of F2m where m = 2n?

It has been an open problem in the field of vectorial Boolean functions since Nyberg
introduced the differential uniformity in the early 90’s [14].

Some negative results are known. For instance, Hou proved in [10] that there are no APN
permutations over F24 and that there are no APN permutations over F22n with coefficients
in F2n . Also, an APN permutation over F22n can be neither a monomial function nor a
quadratic function [1].

The only known solution to this problem is a sporadic case found by Dillon et al. [4] for
m = 6. At the time of writing, it remains the only known APN permutation over F22n . This
solution was constructed by finding a permutation in the CCZ-equivalence class of a known
quadratic APN function, namely the Kim mapping x �→ x3 + x10 + gx24 where g is a root
of the primitive polynomial used to define F26 .

To try and use a similar approach, Yu et al. [17] designed a new matrix-based method to
generate quadratic APN functions. They obtained 8157 new quadratic APN functions over
F28 . However, none of these APN functions are CCZ-equivalent to permutations.

In [16], Perrin et al. identified a specific structure called Open Butterfly which is
affine-equivalent to Dillon et al.’s permutation. This structure is easily defined over higher
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dimensions, but, unfortunately, Canteaut et al. [5] proved that an even broader family of per-
mutations containing the butterflies of Perrin et al. does not contain any APN permutations
for m > 6.

Several teams then studied other generalizations of the original butterfly of [16]. Firstly,
it was shown in [8] that changing the exponent from 3 to 2i + 1 in the construction of Per-
rin et al. still yielded differentially 4-uniform permutations. Then, Li et al. showed that the
generalization of Canteaut et al. had the same properties [11], and that this family of gen-
eralised butterflies contains some functions which are not CCZ-equivalent to the functions
studied in [5]. In each case, the authors established that such generalizations have a differen-
tial uniformity at most equal to 4 except in some sporadic cases but they left the existence of
APN permutations among them as an open problem. In this paper, we answer this question
by proving the following theorem.

Theorem 1 If a generalised butterfly is APN then it operates on 6 bits.

In other words, natural quadratic generalizations of the initial structure of Perrin et al. do
not provide any new solutions to the big APN problem.

The remainder of the paper is our proof of this theorem. First, we formally describe
generalized butterflies and some of their basic properties in Section 2. Then, in Section 3,
we present some useful propositions, both new ones and from the literature, which will be
used further in the paper. Our proof then operates in two high level steps. In Section 4, we
establish a necessary criterion for a butterfly to be APN which we call the refined trace
condition. Then, in Section 5, we show that this condition implies that the block size is
bounded from above by 6 so that Theorem 1 holds.

2 Generalised butterflies

In this section, we formally define the generalisation of the butterfly structure we consider
in this paper and establish some of its most basic properties.

2.1 Definition

In the remainder of the paper, we consider an even integer m = 2n which is not divisible
by 4, i.e., n is always odd. Also, vectorial Boolean functions from F

m
2 into Fm

2 are identified
with mappings from F2n ×F2n to itself. It is worth noticing that the choice of the basis used
for identifying F2n with F

n
2 does not affect the cryptographic properties of the functions

we are studying since different bases lead to functions which are affine-equivalent (see the
definition in Section 2.2).

We now define the family of vectorial functions that will be studied in the paper.

Definition 1 (Generalised Butterflies) Let R be a bivariate polynomial of F2n such that
Ry : x �→ R(x, y) is a permutation of F2n for all y in F2n . The closed butterfly VR is the
function of (F2n)2 defined by

VR(x, y) = (R(x, y), R(y, x))

and the open butterfly HR is the permutation of (F2n)2 defined by

HR(x, y) =
(
R

R−1
y (x)

(y), R−1
y (x)

)
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Fig. 1 The butterfly constructions

where Ry(x) = R(x, y) and R−1
y

(
Ry(x)

) = x for any x, y. A representation of HR is given
in Fig. 1a and one of VR is given in Fig. 1b.

It can be easily checked that, for any choice of the keyed permutation R, the open
butterfly HR is an involution and, as such, a permutation.

Several particular cases of this structure have been presented in the literature. They con-
sist in iterative generalizations of the first butterfly structure which was introduced in [16].

• In [16], Perrin et al. found that Dillon et al.’s permutation is affine equivalent to HR

with Ry(x) = (x + αy)3 + y3, for n = 3, where Tr (α) = 0. They showed that such
structures always have algebraic degree n+1 and a differential uniformity at most equal
to 4 whenever α �= 0 and n is odd. However, they left their nonlinearity as an open
problem along with the existence of APN permutations for n > 3 among them.

• Canteaut et al. [5] considered the broader class of polynomials Ry(x) = (x + αy)3 +
βy3 which, up to equivalence, contains all R of degree 3 such that Ry is always a
permutation. They showed that it is always differentially 4-uniform (except for some
sporadic cases) and that it could only be APN when n = 3. They also showed that the
nonlinearity of butterflies was always equal to the best known one (except for some
sporadic cases). Their results are trivially generalized to exponents of the form 3 × 2i .

• Fu et al. [8] instead chose to look at different exponents, i.e. at Ry(x) = (x +αy)2
i+1+

y2i+1 with gcd(i, n) = 1. They showed that, again, such structures were always differ-
entially 4-uniform and always have the best nonlinearity known to be possible. They
also proved that the closed butterfly with α = 1 is always a permutation.

• Li et al. [11] investigated the broadest class of butterflies, namely those with Ry(x) =
(x + αy)2

i+1 + βy2i+1 with gcd(i, n) = 1. They showed that, except in some sporadic
cases, the nonlinearity of such constructions is the best known to be possible and the
differential uniformity is at most 4. However, they left the existence of APN functions
among them as an open problem.

In this paper, we focus on the broadest definition, i.e. on the case where

Ry(x) = (x + αy)2
i+1 + βy2i+1

with gcd(i, n) = 1. As Li et al. already proved that such structures yield the best known
nonlinearity and differential uniformity, we focus only on whether they can be APN or not.

2.2 Equivalence Relations

To begin with, we recall some basic notations of equivalence relations between vectorial
Boolean functions. Two functionsF1, F2 fromF

m
2 intoFm

2 areE(xtended) A(ffine)-equivalent
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if there exist two affine permutations A1, A2 from F
m
2 into F

m
2 and an affine function A3

from F
m
2 into F

m
2 such that

F1(x) = A1(F2(A2(x))) + A3(x).

If (A3) is the all-zero function, then we say that (F1) and (F2) are affine equivalent. A
more general framework is introduced by considering the graphs of the functions [6]. Two
functions F1, F2 from F

m
2 into F

m
2 are called CCZ-equivalent (after Carlet, Charpin and

Zinoviev) if there exists an affine permutation L over F2m
2 such that

L
({

(x, F1(x)) : x ∈ F
m
2

}) = {
(x, F2(x)) : x ∈ F

m
2

}
.

Both the differential uniformity and the nonlinearity are invariant under EA-equivalence
and under CCZ-equivalence. In particular, all functions CCZ-equivalent to an APN function
are APN themselves.

In the following we denote the generalised closed butterflies as Vα,β : (x, y) �→(
Ry(x), Rx(y)

)
), where Ry(x) = (x + αy)2

i+1 + βy2i+1. As in the case studied in [5], the
following relations hold.

• If the exponent is equal to e = (2i + 1) × 2t , the corresponding closed butterfly is
affine-equivalent to the closed butterfly with e = 2i + 1 and the same α, β. Therefore,
all results presented in the paper also hold when

R(x, y) = (x + αy)(2
i+1)×2t + βy(2i+1)×2t

for some t .
• The closed butterflies Vα,β and Vα2,β2 are affine-equivalent as

Vα2,β2 ◦ L1(x, y) = Vα2,β2(x
2, y2) = L1 ◦ Vα,β(x, y)

where L1(x, y) = (x2, y2) is a linear permutation.
• For any α �= 1 and β �= 0, the closed butterflies Vα,β and Vα,β ′ with β ′ = β−1(1 +

α)2(2
i+1) are affine-equivalent.

This equivalence is obtained by composing Vα,β with the inverse of the linear
permutation

L : (x, y) �→ (z1, z2) = (αx + y, x + αy) .

Indeed,

Vα,β ◦ L−1(z1, z2) =
(

z2
i+1

2 + β
[
(1 + α)−2(z1 + αz2)

]2i+1
,

z2
i+1

1 + β
[
(1 + α)−2(z2 + αz1)

]2i+1
)

,

which is obtained by substituting (x+αy) = z2 and y = (1+α)−2(z1+αz2) in Ry(x),

and (αx+y) = z1 and x = (1+α)−2(αz1+z2) inRx(y). With β ′ = β−1(1+α)2(2
i+1),

we deduce that

Vα,β ◦ L−1(z1, z2)

=
(
β(1 + α)−2(2i+1)

[
β ′z2

i+1
2 + (z1 + αz2)

2i+1
]
,

β(1 + α)−2(2i+1)
[
β ′z2

i+1
1 + (z2 + αz1)

2i+1
])

=
(
β(1 + α)−2(2i+1)R′

z2
(z1), β(1 + α)−2(2i+1)R′

z1
(z2)

)
,

where R′
y(x) = (x + αy)2

i+1 + β ′y2i+1.
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3 Useful results

Several steps of our reasoning require counting the number of solutions of an equation. The
following two propositions allow us to predict this number for two simple equations.

The first is a well-known result established by Helleseth and Kholosha in 2008.

Proposition 1 (Theorem 1 in [9]). Let n be odd and i be such that i < n and gcd(i, n) = 1.
Let Sk for any integer k be defined as

Sk = {a �= 0, x2i+1 + x = a has exactly k solutions}.
Then Sk is empty unless k ∈ {0, 1, 3}, in which case it has the following sizes:

|S0| = 2n + 1

3
;

|S1| = 2n−1 − 1;
|S3| = 2n−1 − 1

3
.

Furthermore, if x is such that x2i+1 + x + a = 0 then x2i+1 + x + a = 0 has exactly 1
solution if and only if Tr

(
(1 + x−1)τ

) = 1, where τ(2i − 1) ≡ 1 mod (2n − 1). It is worth
noticing that τ is well-defined since gcd(i, n) = 1.

The second proposition is an adaptation of Lemma 4 of [5] to the case where the
exponents are 2i and 22i rather than 2 and 4 respectively.

Proposition 2 Let U, V be elements of F2n with n odd. For any constant C ∈ F2n , the
linearised equation in z

Uz2
2i + V z2

i + (U + V )z = C

with gcd(i, n) = 1 has

• 0 or 2n solutions if U = V = 0,
• 0 or 4 solutions if U �= 0, U �= V and Tr

((
1 + V

U

)τ
)

= 0,
• 0 or 2 solutions otherwise, that is if one of the following is true:

– U = 0, V �= 0,
– U �= 0 and V = U ,

– U �= 0 and Tr
((
1 + V

U

)τ
)

= 1,

where τ(2i − 1) ≡ 1 mod (2n − 1).

Proof First of all, for any value of the constant C, the number of solutions of the equation
is either zero or equal to the number of solutions of the linearised equation Uz2

2i + V z2
i +

(U + V )z = 0. We then only need to study the case C = 0. Obviously, the number of
solutions is always even as if z is a solution then z + 1 is a solution too.

We consider each case separately.

• If U = V = 0 then the linearised equation does not involve z, meaning that all values
of z satisfy it. We now suppose that either U �= 0 or V �= 0.

• If U = 0, V �= 0 then the equation corresponds to V z(z2
i−1 + 1) = 0, implying that it

has 2 solutions since gcd(i, n) = 1.
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• Let us now suppose that U �= 0. In this case, we can write

Uz2
2i + V z2

i + (U + V )z = U(z2
i + z)2

i + (U + V )z2
i + (U + V )z

= U(z2
i + z)

(
(z2

i + z)2
i−1 + U + V

U

)

= Uz(z2
i−1 + 1)

(
(z2

i + z)2
i−1 + 1 + V/U

)
,

implying that the equation corresponds to

Uz(z2
i−1 + 1)

(
(z2

i + z)2
i−1 + 1 + V/U

)
= 0 .

Both z = 0 and z = 1 are obviously solutions. In fact, they are the only ones if
V = U so that the equation has 0 or 2 solutions in this case. Let us now suppose that

V �= U . In this case, the equation
(
(z2

i + z)2
i−1 + 1 + V/U

)
= 0 can be rewritten as

z2
i + z +

(
1 + V

U

)τ

= 0.

This equation has two solutions when Tr
((
1 + V

U

)τ
)

= 0 while it has no solution

when Tr
((
1 + V

U

)τ
)

= 1, meaning that the linearised equation has 2 solutions if

Tr
((
1 + V

U

)τ
)

= 1 and 4 otherwise.

Finally, an a priori complicated trace will appear further in this paper. The following
lemma establishes that it is in fact constant.

Lemma 1 Let n be an odd integer and i < n with gcd(i, n) = 1. For any α, β ∈ F
∗
2n , we

define

Bα,β = (α + α2i+1−1)2
i−1 × α2i+1+1 + α2i+1−1 + α2i

β

α22i+1+2i + α2i + α22i β2i
.

Then, for all α, β �= 0, we have that Tr
(
Bτ

α,β

)
= 0 where τ(2i − 1) ≡ 1 mod (2n − 1).

Proof We note that Bα,β is equal to

Bα,β = (α + α2i+1−1)2
i−1 × α2i+1+1+α2i+1−1+α2i β

α22i+1+2i +α2i +α22i β2i

= (α + α2i+1−1)2
i−1

α2i
(
α2i+1+α2i−1+β

)

α22i
(
α22i+2i +α2i−22i +β2i

)

=
(

α+α2i+1−1

α2i

)2i−1
α2i+1+α2i−1+β

(
α2i+1+α1−2i +β

)2i

=
(
α1−2i + α2i−1

)2i−1
α2i+1+α2i−1+β

(
α2i+1+α1−2i +β

)2i ,

which we simplify using λα = α2i−1 + α1−2i
and Qα(β) = α2i+1 + α1−2i + β by writing

Bα,β = λ2
i−1

α × λα + Qα(β)

Qα(β)2
i

=
(

λα

Qα(β)

)2i

+
(

λα

Qα(β)

)2i−1

.
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The trace of
(
(1 + q)2

i + (1 + q)2
i−1

)τ

is equal to 0 for any q. Indeed, the case q = 0

is trivial, and for q �= 0, we have

(1 + q)2
i + (1 + q)2

i−1 = (1 + q)2
i+1 + (1 + q)2

i

1 + q
= q2i+1 + q

1 + q
= q(q + 1)2

i−1,

from which we deduce that(
(1 + q)2

i + (1 + q)2
i−1

)τ = qτ (1 + q) = qτ + qτ+1.

We note that 2iτ ≡ τ + 1 mod (2n − 1) and deduce that

Tr
((

(1 + q)2
i + (1 + q)2

i−1
)τ) = Tr

(
qτ + q2i τ

)
= 0.

As a consequence, since

Tr
(
Bτ

α,β

)
= Tr

(((
λα

Qα(β)

)2i

+
(

λα

Qα(β)

)2i−1
)τ)

,

we have that Tr
(
Bτ

α,β

)
= 0 for any α, β �= 0.

4 Necessary condition for a generalized butterfly to be APN

We first show that, in order for a generalized butterfly to be APN, it is necessary that β takes
some very specific values.

Proposition 3 (Condition on β) Let n > 1 be an odd integer, (α, β) be a pair of nonzero
elements in F2n and i > 0 be an integer such that gcd(i, n) = 1. If the generalised butterfly
with parameters α, β and exponent 2i + 1 is APN then

β ∈
{
(α2i−1 + α2i+1), (α−2i+1 + α2i+1)

}
.

Proof In order to bound the differential uniformity of Vα,β , we must bound the number of
solutions (x, y) of the following system

{
R(x, y) + R(x + a, y + b) = c

R(y, x) + R(y + b, x + a) = d

for any tuple (a, b, c, d) of F2n with (a, b) �= (0, 0) and where R(x, y) = (x + αy)2
i+1 +

βy2i+1.
In order to derive the necessary condition on β given by this proposition, we simply need

to consider the case b = 0. In this case, the system becomes
{

R(x, y) + R(x + a, y) = c

R(y, x) + R(y, x + a) = d

where
R(x, y) + R(x + a, y) = (x + αy)a2

i + (x + αy)2
i

a + a2
i+1

and

R(y, x) + R(y, x + a) = (αa)2
i

(y + αx) + (αa)(y + αx)2
i + (αa)2

i+1

+β
(
a2

i

x + ax2i + a2
i+1

)

Cryptography and Communications (2019) 11:1147–11641154



so that the original system can be re-written into
{

ax2i + a2
i
x + α2i

ay2i + αa2
i
y = c′

(α2i+1a + aβ)x2i + (α2i+1a2
i + a2

i
β)x + αay2i + α2i

a2
i
y = d ′ .

(1)

By summing the first equation and the second one multiplied by α2i−1, we get that

ya2
i

(α + α2i+1−1) = (α2i+1
a + a + α2i−1aβ)(x2i + a2

i−1x) + g

for some constant g. If α = 1 then the corresponding open butterfly is functionally equiva-
lent to a 3-round Feistel network (see [5]). Thus, we can use the results of [12] to deduce that
the differential uniformity in this case is at least equal to 4 and thus that the corresponding
butterflies are not APN.

We thus assume that α �= 1. In this case, we replace y by its value

y = (1 + α2i+1 + α2i−1β)

a2
i−1(α + α2i+1−1)

(x2i + a2
i−1x) + g′

in the first equation of System (1). We get

α2i

aμ2i

x22i +
[
a + α2i

a2
2i−2i+1μ2i + αa2

i

μ
]
x2i +

[
a2

i + αa2
i+1−1μ

]
x = c′′ ,

where

μ = (1 + α2i+1 + α2i−1β)

a2
i−1(α + α2i+1−1)

.

Using the substitution x = ax′, we obtain that

Ux′22i + V x′2i + (U + V )x′ = c′′ (2)

with

U = α2i

a2
2i+1μ2i

andV = a2
i+1 + α2i

a2
2i+1μ2i + αa2

i+1
μ .

Using Proposition 2, this equation has at most four solutions xi , and each xi leads to a single
y, implying that the whole system has at most four solutions.

We now show that the whole system has 4 solutions for some a �= 0 except for two
specific values of β. Recall that we exclude the case α = 1. If Vα,β is APN, then (2) must
have at most two solutions for any a �= 0 and any c′′. We derive from Proposition 2 that this
happens if and only if, for all a �= 0,

U = 0 and V �= 0

or

U = V and U �= 0

or

U �= 0 and Tr

((
1 + V

U

)τ)
= 1.

We first observe that V �= 0, otherwise

α2i

a2
2i−2i

μ2i + αa2
i−1μ + 1 = 0
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which would mean that (αa2
i−1μ) is a root of X2i + X + 1. It follows that (αa2

i−1μ)

is a solution of (X + 1)2
i+1 = X2i+1, a contradiction since x �→ x2i+1 is a permutation

because gcd(n, i) = 1 and n is odd. Then, the first condition means that

μ = (1 + α2i+1 + α2i−1β)

a2
i−1(α + α2i+1−1)

= 0,

or equivalently

β = α−2i+1 + α2i+1 .

The second condition corresponds to

αa2
i−1μ = 1 ⇔ 1 + α2i+1 + α2i−1β = 1 + α2i+1−2 ,

which is equivalent to

β = α2i−1 + α2i+1 .

The last condition corresponds to

1 = Tr

((
1 + V

U

)τ)
= Tr

((
a2

i+1 + αa2
i+1

μ

α2i
a2

2i+1μ2i

)τ)
.

We simplify the fraction on the right-hand side as follows:

a2
i+1 + αa2

i+1
μ

α2i
a2

2i+1μ2i
= 1 + a2

i−1αμ

a2
2i−2i

α2i
μ2i

=
α2i+1+1+α2i+1−1+α2i β

α+α2i+1−1

(
α+α2i+1+1+α2i β

α+α2i+1−1
)2

i

= Bα,β,

where

Bα,β = α2i+1+1 + α2i+1−1 + α2i
β

α + α2i+1−1

(
α + α2i+1−1

α + α2i+1+1 + α2i
β

)2i

= (α + α2i+1−1)2
i−1 × α2i+1+1 + α2i+1−1 + α2i

β

(α + α2i+1+1 + α2i
β)2

i

= (α + α2i+1−1)2
i−1 × α2i+1+1 + α2i+1−1 + α2i

β

α22i+1+2i + α2i + α22i β2i
.

We have established in Lemma 1 that Tr(Bτ
α,β) is always equal to 0, implying that

Tr

((
1 + V

U

)τ)
= 0 .

Therefore, if Vα,β is APN then β = α−2i+1 + α2i+1 or β = α2i−1 + α2i+1.

We then show that, for the two particular values of β that we consider, the corresponding
butterfly is APN if and only if a specific trace is constant on F2n except on 3 particular
values.
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Proposition 4 (Trace Condition) Let α �= 0, 1. A generalised butterfly with parameters α

and β is APN if and only if

∀e �∈ {0, α, 1/α}, Tr (
Aα(e)τ

) = 1 and β ∈ {α2i−1 + α2i+1, α−2i+1 + α2i+1},
where τ(2i − 1) ≡ 1 mod (2n − 1) and

Aα(e) = α2i−1 × e(1 + α)2

(1 + αe)(α + e)2
i
.

Proof Since we have proved in Section 2.2 that generalised butterflies with parameters
(α, β0) and (α, β1) where β1 = β−1

0 (1 + α)2(2
i+1) are affine-equivalent, we only need to

prove the result for β = α2i−1 + α2i+1.
As before, we need to count the number of solutions of

{
R(x, y) + R(x + a, y + b) = c

R(y, x) + R(y + b, x + a) = d
(3)

for any tuple (a, b, c, d) of F2n with (a, b) �= (0, 0). We develop each line of this system
and obtain{

(a + bα)x2i + (a + bα)2
i
x + (α2i

a + α2i−1b)y2i + (αa2
i + α2i−1b2

i
)y = c0

(α2i
b + α2i−1a)x2i + (αb2

i + α2i−1a2
i
)x + (αa + b)y2i + (αa + b)2

i
y = d0.

As α �= 1, we can replace the lines �1 and �2 of this system by �1+α2i−1�2 and α2i−1�1+�2
to obtain a system with the exact same number of solutions. We obtain

{
(a + αb)(1 + α2i+1−2)x2i + a2

i
(1 + α2i+1−2)x + a2

i
α(1 + α2i+1−2)y = c1

(αa + b)(1 + α2i+1−2)y2i + b2
i
(1 + α2i+1−2)y + b2

i
α(1 + α2i+1−2)x = d1 ,

i.e., {
(a + αb)x2i + a2

i
x + a2

i
αy = c2

(αa + b)y2i + b2
i
y + b2

i
αx = d2 ,

which can be rewritten as
{

(ax2i + a2
i
x) + α(bx2i + a2

i
y) = c2

(by2i + b2
i
y) + α(ay2i + b2

i
x) = d2 .

(4)

We first consider the cases a = 0 and b = 0. Recall that a = b = 0 is excluded. If a = 0,
then the first line of the system is equivalent to

x =
( c2

αb

)2n−i

.

Replacing x by this value in the second line of System (4) yields an equation in y with
nonzero coefficients of the form by2i + b2

i
y = c3. Since gcd(i, n) = 1, this equation has

at most two solutions, implying that (4) has at most two solutions (x, y). The case b = 0 is
similar.

We now suppose a �= 0 and b �= 0, which allows us to set x = ax′ and y = by′. In this
context, System (4) has as many solutions as

{
a2

i+1(x′2i + x′) + αa2
i
b(x′2i + y′) = c2

b2
i+1(y′2i + y′) + αab2

i
(y′2i + x′) = d2 ,
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which we rewrite using e = a/b as
{

e(x′2i + x′) + α(x′2i + y′) = c3

e−1(y′2i + y′) + α(y′2i + x′) = d3 .
(5)

Summing its lines yields

(x′2i + x′)(e + α) + (y′2i + y′)(e−1 + α) = c3 + d3 .

If e = α, then the equation holds for precisely two values y′
0 and y′

1 which satisfy y′
0 +y′

1 =
1. The first line of the system implies in this case that x′ = y′

i + c3/α as the terms in x2i

cancel each other, meaning that the system has at most two solutions. The case e = α−1 is
similar. We now suppose e �= α, α−1.

The first line of System (5) allows us to express y′ as a function of x′:

y′ =
( e

α
+ 1

)
x′2i + e

α
x′ + c3

α
.

We replace y′ by this expression in the second line of (5) and obtain

(
e−1 + α

)
y′2i + e−1y′ + αx′

= (
e−1 + α

) ((
e
α

+ 1
)
x′2i + e

α
x′ + c3

α

)2i

+ e−1
((

e
α

+ 1
)
x′2i + e

α
x′ + c3

α

)
+ αx′

= (e−1 + α)
(

e
α

+ 1
)2i

x′22i +
(

(e−1 + α) e2
i

α2i
+ e−1

(
e
α

+ 1
))

x′2i +
(
1
α

+ α
)

x′

= d ′
3,

for some constant d ′
3. If we let U = (1 + e/α)2

i
(α + 1/e) and V = U + 1/α + α, then the

number of solutions of this equation can be computed using Proposition 2. First, U �= 0 and
U + V �= 0 as α �= 1. Therefore, the possible number of solutions is at most equal to 4 and

is given by the trace of (1 + V/U)τ : if Tr
((
1 + V

U

)τ
)

= 1 then the equation has at most 2

solutions, otherwise it has 0 or 4 solutions. It holds that

1 + V
U

= α−1+α

(e−1+α)(1+eα−1)2
i

= α2i−1 e(1+α)2

(1+αe)(α+e)2
i

so the function is APN if and only if

Tr
(
Aα(e)τ

) = 1, ∀e �= 0, α, 1/α,withAα(e) = α2i−1 × e(1 + α)2

(1 + αe)(α + e)2
i
.

The trace condition provided by Proposition 4 is sufficient to describe all APN gener-
alised butterflies but it can be greatly simplified. This is stated in the following proposition
which presents the refined trace condition.

Proposition 5 (Refined Trace Condition) Let α ∈ F2n \ {0, 1}, with n odd. The generalised
butterfly with parameters α and β = α2i−1 + α2i+1 is APN if and only if:

Tr(FD(t)τ ) = 1, ∀t /∈ {0, 1,D} whereFD(t) = t + t2
i+1

t + D
,

τ(2i − 1) ≡ 1 mod (2n − 1) and D = 1/(1 + α2).
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Proof Let FD(t) = t+t2
i+1

t+D
. Based on Proposition 4, we only have to prove that the number

of e /∈ {0, α, 1/α} such that Tr(Aα,i(e)
τ ) = 1 is equal to the number of t /∈ {0, 1,D} such

that Tr(FD(t)τ ) = 1. Using that 2iτ ≡ 1 + τ mod (2n − 1), the term Aα,i(e)
τ can be

re-written as follows
Aα,i(e)

τ =
(
α2i−1 e(1+α)2

(1+αe)(α+e)2
i

)τ

= α
eτ (1+α)2τ

(1+αe)τ (α+e)2
i τ

= α
eτ (1+α)2τ

(1+αe)τ (α+e)τ+1

= α
α+e

(
e(1+α)2

(1+αe)(α+e)

)τ

.

We further simplify this expression by reusing the change of variable introduced in [5],
namely

� = (e + α)(1 + α)2

which implies in particular that, for γ0 = α + α3 and γ1 = α−1 + α3:

• e �∈ {0, α, 1/α} is equivalent to � �∈ {γ0, 0, γ1},
• e(1 + α)2 = � + γ0, and
• (1 + αe)(1 + α)2 = α(� + γ1).

We deduce:
Aα,i(e)

τ = α
(

e(1+α)2

(1+αe)(1+α2)(α+e)(1+α2)/(1+α)4

)τ
1

α+e

= α
(

�+γ0
α(�+γ1)�

(1 + α4)
)τ

1+α2

�

= γ0

(
γ1(�+γ0)
(�+γ1)�

)τ
1
�
.

As a sanity check, if we let τ = 1, we can see that we obtain

Aα,i(e) = γ0γ1

�2
× � + γ0

� + γ1

which is exactly the equation Canteaut et al. derived on page 7585 of [5].
We further let γ1/v = �, which is well-defined since v �= 0. We note that γ0/γ1 =

(1 + α−2)−1 =: C (where this notation does not correspond to any previously defined
value). As a consequence, it can be checked that, when � varies in F2n \ {γ0, 0, γ1}, then v

takes all values in F2n \ {1/C, 0, 1}. We can then write:

Aα,i(e)
τ = γ0

(
γ 2
1 v−1+γ0γ1

(γ1v
−1+γ1)γ1v

−1

)τ

v/γ1

= γ0/γ1

(
v−1+γ0/γ1
(v−1+1)v−1

)τ

v

= C
(

v−1+C

(v−1+1)v−1

)τ

v

= C
(

v+Cv2

1+v

)τ

v

= C
(

v+Cv2

1+v
v2

i−1
)τ

= C

(
v2

i +Cv2
i+1

1+v

)τ

.

We now let v = (t + 1)/C, so that v �∈ {1/C, 0, 1} becomes t �∈ {0, 1,D} where
D = 1 + C = 1 + 1/(1 + α−2) = 1/(1 + α2). Thus, we can write:

v2
i + Cv2

i+1 = (t + 1)2
i
C−2i + C(t + 1)2

i+1C−2i−1

= C−2i
(t2

i + 1 + t2
i+1 + t2

i + t + 1)

= C−2i
(t2

i+1 + t)
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and v + 1 = C−1(t + 1 + C). The expression then becomes

Aα,i(e)
τ = C

(
C−2i

(t + t2
i+1)

C−1(t + 1 + C)

)τ

=
(

t + t2
i+1

t + D

)τ

= FD(t)τ ,

so we can conclude that the number of e �∈ {0, α, 1/α} such that Tr (Aα,i(e)
τ
) = 1 is equal

to the number of t �∈ {0, 1,D} such that Tr (FD(t)τ ) = 1.

5 The necessary condition needs a small branch size

In what follows, we prove the last step of our reasoning: if a butterfly is APN then n ≤ 3.
This statement is given by the following proposition that we prove below.

Proposition 6 If the refined trace condition of Proposition 5 holds then n ≤ 3.

Proof Suppose that the refined trace condition holds for some D, i and α. Then we have

Tr
(
FD(x)τ

) = 1, ∀x �∈ {0, 1,D}

with FD(x) = (x2i+1 + x)/(x + D) and D = 1/(1 + α2). Let Im(FD) be defined by

Im(FD) = {c ∈ F2n , ∃x ∈ F2n\{0, 1,D}, FD(x) = c} .
Since FD is a well-defined function, we have

⋃

c∈Im(FD)

{x ∈ F2n\{0, 1,D}, FD(x) = c} = F2n\{0, 1,D}

so that
∑

c∈Im(FD)

|{x ∈ F2n\{0, 1,D}, FD(x) = c}| = 2n − 3.

As FD(0) = FD(1) = 0 and since these are the only two preimages of 0 under FD , we have
that 0 �∈ Im(FD) when the input varies in F2n\{0, 1,D} and we can therefore simplify this
expression into

∑

c∈Im(FD)\{0}
|{x ∈ F2n\{D}, FD(x) = c}| = 2n − 3 . (6)

Let us rewrite this sum using another expression of c.
Suppose that c = FD(x) for some x �∈ {0, 1,D}. Then x2i+1 + x = c(x + D), or,

equivalently,

x2i+1 + x(c + 1) + Dc = 0 .

If c = 1 In this case, the equation is equivalent to x2i+1 + D = 0. Thus, c = 1 has exactly
one preimage in F2n\{0, 1,D} since gcd(i, n) = 1 (and hence x �→ x2i+1 is a permutation).
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If c �= 1 We then have that c = FD(x) if and only if x2i+1+(c+1)x+cD = 0. Substituting
x with D yields D2i = 1, which is impossible as this is equivalent to α = 0. Hence, the
condition FD(x) = c already implies x �= D. Using x = u(1 + c)2

n−i
, we rewrite this

equation into

u2
i+1(1 + c)2

n−i (2i+1) + u(1 + c)2
n−i+1 + Dc = 0

which, after a division by (1 + c)2
n−i+1, is seen to be equivalent to

u2
i+1 + u + gD(c) = 0, where gD(c) = cD

(1 + c)2
n−i+1

.

We deduce that

|{x ∈ F2n\{0, 1,D}, FD(x) = c}| =
∣∣∣
{
u ∈ F2n , u2

i+1 + u + gD(c) = 0
}∣∣∣

when c �= 1.
As a consequence, we can rewrite (6) as

2n − 3 = |{x ∈ F2n\{0, 1,D}, FD(x) = 1}|
+

∑

c∈Im(FD)\{0,1}

∣∣∣
{
u ∈ F2n , u2

i+1 + u + gD(c) = 0
}∣∣∣

which is equivalent to

2n − 4 =
∑

c∈Im(FD)\{0,1}

∣∣∣
{
u ∈ F2n , u2

i+1 + u + gD(c) = 0
}∣∣∣ . (7)

Because of Proposition 1, we have that u2
i+1 + u + gD(c) = 0 has exactly 1 or 3 solutions.

Indeed, it cannot have 0 solution since it is equivalent to FD

(
u(1 + c)2

n−i
)

= c which,

by definition of c, has at least one solution. Thus, gD(c) ∈ S1 ∪ S3, where S1 and S3 are
defined as in Proposition 1.

Let T be the set defined as

T = {gD(c), c ∈ Im(FD)\{0, 1}} .

Then (7) can be re-written as

2n − 4 = |T ∩ S1| + 3 × |T ∩ S3| . (8)

Let us now show that |T | = |Im(FD)\{0, 1}|. Let a′ = c

(c+1)2n−i+1
and let us investigate the

number of c ∈ Im(FD) that correspond to the same a′. Note that

c

(c + 1)2n−i+1
= 1

(c + 1)2n−i+1
+ 1

(c + 1)2n−i
,
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and, by the substitution b = 1
(c+1)2n−i , we get

b2
i+1 + b + a′ = 0.

In order to figure out the number of b corresponding to a given a′, we will apply Proposition 1.
To this end, we compute the following trace:

Tr
(
(1 + b−1)τ

)

= Tr
((

1 + (c + 1)2
n−i

)τ)

= Tr

⎛

⎝

⎛

⎝1 +
(

x2i+1 + D

x + D

)2n−i
⎞

⎠
τ⎞

⎠

= Tr

((
x2n−i+1 + x2n−i

x2n−i + D2n−i

)τ)

= Tr

⎛

⎝
(

x2n−i+1 + x2n−i

x2n−i + D2n−i

)2i τ
⎞

⎠

= Tr

((
x2i+1 + x

x + D

)τ)

= Tr(FD(x)τ ).

This trace has to be equal to 1 under our assumption that the refined trace condition holds.
Thus, using Proposition 1, we deduce that any given a′ = c

(c+1)2n−i+1
corresponds to a

unique b = 1
(c+1)2n−i and, therefore, that |T | = |Im(FD)\{0, 1}|.

We define

i1 = |T ∩ S1| and i3 = |T ∩ S3| .

From (8), we know that 2n − 4 = i1 + 3i3. The values of i1 and i3 are upperbounded by
the sizes of S1 and S3 respectively which are given by Proposition 1: i1 ≤ 2n−1 − 1 and
i3 ≤ (2n−1 − 1)/3. Furthermore, i1 + i3 = |T | = |Im(FD)\{0, 1}| and, since we have
assumed that the trace of FD(x)τ is constant and equal to 1, the size of the image of FD

is upperbounded by 2n−1, which we decrement because we remove 1 from Im(FD). We
deduce that

i1 ≤ 2n−1 − 1

i3 ≤ (2n−1 − 1)/3

i1 + i3 ≤ 2n−1 − 1

i1 + 3i3 = 2n − 4.

It holds that i1+3i3 = (i1+i3)+2i3 which we can upperbound by 2n−1−1+2(2n−1−1)/3,
a quantity equal to

2n−1 − 1 + 2(2n−1−1)
3 = 3(2n−1−1)+2(2n−1−1)

3

= 6×2n−1−2n−1−5
3

= 2n − 2n−1+5
3 .
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As a consequence, if (2n−1 +5)/3 > 4 then we have a contradiction because i1 +3i3 would
then be both equal to 2n−4 and strictly smaller than 2n−4. This inequality can be re-written
as follows:

2n−1 + 5

3
> 4 ⇔ 2n−1 > 7.

Thus, if the refined trace condition holds then we have a contradiction whenever 2n−1 > 7
or, equivalently, n > 3. We conclude that the refined trace condition implies n ≤ 3.

6 Conclusion

Since generalised butterflies defined in [11] have very good differential uniformity and
nonlinearity, and, moreover, contain the only known APN permutation, it was natural to
wonder whether there would be APN permutations among them. However, we give a nega-
tive answer to this question: through a rigorous proof, we confirm that all APN generalised
butterflies operate on 6 bits. In other words, all APN generalised butterflies were already
known.
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