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Abstract
In this article a family of statistical randomness tests for binary strings are introduced, based
on Golomb’s pseudorandomness postulate R-2 on the number of runs. The basic idea is
to construct recursive formulae with computationally tenable probability distribution func-
tions. The technique is illustrated on testing strings of 27, 28, 210 and 212 bits. Furthermore,
the expected value of the number of runs with a specific length is obtained. Finally the tests
are applied to several collections of strings arising from different pseudorandom number
generators.

Keywords Cryptography · Statistical randomness testing · Golomb’s randomness
postulates · Compositions · Run test

Mathematics Subject Classification (2010) 05A15 · 05A17 · 94A55 · 94A60

1 Introduction

In cryptography, outputs of block ciphers, stream ciphers, hash functions, and key genera-
tors should be indistinguishable from the outputs of random generators. To decide whether
a generator is distinguishable from a random generator or not, a common approach is to
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compare certain statistics of the output of the generator with the theoretical expected values
computed for the sample space consisting of all strings of the same length.

As in the case of stream ciphers, when the outputs of a given generator are long strings
(106 or more terms), decision on randomness is based on a sample output (key stream).
Under such circumstances where one deals with long strings, asymptotic computations and
approximate values of theoretical constants can be employed safely.

On the other hand, outputs of block ciphers, hash functions, and key generators are in
general short binary strings (128 to 4096 bits) and statistical randomness tests of such gener-
ators are based on a large collection of their output strings. By concatenating all the strings
in that collection, one obtains a long string which can be evaluated as if it were the output
of a stream cipher. However, a more natural approach is to consider each output string indi-
vidually and then to evaluate the entire collection. In this case, since we deal with relatively
short strings, it is not safe to employ approximations or asymptotic formulations. Main dif-
ficulty in this approach is not only to obtain the probability distribution functions, but also
to express these functions in such a form that their evaluation is feasible.

In the present article, we design a family of statistical randomness tests for a collection
of short binary strings by defining a number of random variables and deriving recursive
formulae with computationally feasible probability distribution functions.

Whether a given string is “like” a random string is conventionally decided by means of
Golomb’s pseudorandomness postulates R-1, R-2 and R-3 [1], which we now state for the
sake of completeness albeit the first and the last will be beyond the scope of this work:

R-1 The difference between the number of 1’s and the number of 0’s should be at most
one.

R-2 The number of runs of length one should be at least half of the total number of runs,
while the number of runs of length two should be at least one-fourth of the total
number of runs, and the number of runs of length three should be at least one-eighth
of the total number of runs and so on. Moreover the number of runs of ones and the
number of runs of zeros should not differ more than one for each fixed run length.

R-3 The autocorrelation function should be two-valued.

The first postulate considers the frequencies of ones and zeros. The second one is about
the number of runs in a string, where a run is defined as an uninterrupted maximal strings
of identical bits. Lastly, the third postulate reveals information about the amount of similar-
ities between the string and its shifted versions. A two-valued autocorrelation function is
required to assure that the amount of mentioned similarity remains constant for all shifted
versions of the string.

Almost all test suites include a test function based on R-1, under the name frequency
test or weight test, (see for instance [2, 3, 6, 7]). Similarly, most of the test suites include
a test considering certain properties of runs, however none of these tests correspond R-2
completely, [3, 6, 7]. Up to our knowledge, a test function for R-3 is not included in any
test suite. The main purpose of this study is to design a family of randomness tests that
depend on the R-2 requirements.

In the context of runs, randomness test suites generally consider the following quantities:

– the number of all runs,
– length of the longest run,
– the number of runs of a specified length.
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The distribution function related with the number of all runs involves considerably straight-
forward computations and it is included in almost all test suites. For instance, NIST test
suite has “Runs Test”, TESTU01 has “Run and gap tests”, see [3, 7] respectively. Similarly,
length of the longest run test appears in both NIST test suite and TESTU01.

However, obtaining a feasible formulation of the distribution function related with the
number of runs with a specified length is a difficult task (especially when specified length
is enlarged). Mood obtained the distribution of runs of any length using a combinatorial
approach [4]. Later, following similar methods, Doğanaksoy et al. designed randomness
tests based on number of runs of lengths one, two and three, [8]. These explicit formulations
heavily depend on binomial coefficients and hence as the length grows, calculations become
more complex, and the time required for these calculations grows drastically. As a result,
these tests are limited to strings of length 256 bits (for runs of length three) and 512 bits (for
runs of length at most two).

By making use of Markov chains and transition matrices, Fu and Koutras proposed the
statistics of runs of any length and also the length of the longest run [5]. Their work consid-
ers the general case where the probability of occurrences of 1’s and 0’s are not necessarily
equal. On the other hand, this method naturally depends on computations performed on a
transition matrix dimension of which gets very large depending on the lengths of strings
and runs (for instance, for the strings of length 4096 and runs of length 2, dimension of the
required transition matrix is 5459). This method is particularly useful for relatively short
sequences.

In this work, we use an alternative method which depend on generating functions to
obtain simple recursive formulation of related distribution functions. More specifically, we
propose a family of test functions depending on the following probabilities:

– the probability that a random string of length n has r runs,
– the probability that a random string of length n has exactly k runs of length a,
– the probability that a random string of length n has exactly k runs of length at least a,
– the probability that a random string of length n has no runs of length longer than L,

where n, r, a, L are positive integers and k is a non-negative integer. Rather than com-
plex explicit expressions, we focus specifically on getting simple recursive relations for the
probability functions mentioned above. Different from the previous approaches which use
binomial coefficients or transition matrices, all the relations we obtain are linear, thus have
low complexities. Employing these relations, we obtained exact probabilities for sufficiently
(from cryptographical point of view) long strings such as 214 bits.

The organization of this paper is as follows. In Section 2, compositions and certain
restrictions on them are defined, and a correspondence between their numbers and the num-
ber of runs is explained. The notations about the number of compositions of certain types
and their generating functions are also introduced in this section. In Section 3, generating
functions for the number of all compositions of n with exactly r parts and for the number
of all compositions of n and finally for the number of all compositions of n whose parts
are from a predefined set Γ are computed. Corresponding generating functions are given in
examples for some specific choices of Γ . The generating functions for the last three restric-
tions in Table 1 are given in Theorems 1, 2, and 3. The results obtained in this sections are
listed in the Table 2. In Section 4, an alternative method to compute recursions defining the
number of certain compositions are introduced. Theorems 4, 5, and 6 are the ones analogous
to the theorems given in Section 3. In Theorem 7, the recursion to calculate the number of
compositions of n without parts exceeding L is derived. In Section 5, basic probabilities on
which our tests depend are introduced in terms of compositions, and generating functions.
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Table 1 Notations for the restricted compositions of the positive integer n

Restriction on compositions of n Number Generating function

All c(n) C(z) =
∞∑

n=0

c(n)zn

Exactly r ≥ 1 parts c(n, r) C(z, x) =
∞∑

n,r=0

c(n, r)znxr

All parts in a set Γ cΓ (n) CΓ (z) =
∞∑

n=0

cΓ (n)zn

No part exceeding L cL(n) CL(z) =
∞∑

n=0

cL(n)zn

Exactly r parts, with k of them equal to a ca(n, k, r) Ca(z, y, x) =
∞∑

n,k,r=0

ca(n, k, r)znyrxk

All with exactly k parts equal to a, ca(n, k) Ca(z, y) =
∞∑

n,k=0

ca(n, k)znyk

Exactly k parts greater than or equal to a cā(n, k) Cā(z, y) =
∞∑

n,k=0

cā(n)znyk

Moreover these probability values are derived and then recursions for these probability val-
ues are obtained. Theorems 8, 9, 10, and 11 are the main results, and they form the basis of
the new randomness tests. In Section 6, expected values and variances for the random vari-
ables are computed and they may be used to define new randomness tests. In Section 7.1 we
defined the outline of the proposed randomness test. We give a pseudo code for the Algo-
rithm 2 of R-2 Composition Test and an example to evaluate the outputs of AES algorithm
with respect to the randomness. We have illustrated the p-values obtained for different types
of runs in the Table 5. Section 8 contains several applications of the proposed randomness

Table 2 Generating functions for the number of restricted compositions of the positive integer n

c(n) C(z) =
∞∑

n=0

c(n)zn = 1 − z

1 − 2z

c(n, r) C(z, x) =
∞∑

n,k=0

c(n, r)znxk = 1 − z

1 − z − zx

cΓ (n) CΓ (z) =
∞∑

n=0

cΓ (n)zn = 1

1 − zΓ

cL(n) CL(z) =
∞∑

n=0

cL(n)zn = 1 − z

1 − 2z + zL+1

ca(n, k, r) Ca(z, y, x) =
∞∑

n,k,r=0

ca(n, k, r)znyrxk = 1 − z

1 − z(x + 1) + zax(1 − z)(1 − y)

ca(n, k) Ca(z, y) =
∞∑

n,k=0

ca(n, k)znyk = 1 − z

1 − 2z + za(1 − z)(1 − y)

cā(n, k) Cā(z, y) =
∞∑

n,k=0

cL(n)znyk = 1 − z

1 − 2z + za(1 − y)
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test to different type of binary string collections. Finally, in Section 9, we give a conclusion
and a future work plan.

2 Compositions and restricted compositions

Definition 1 A composition of a positive integer n is an ordered array of one or more
positive integers whose sum is n.

For example, the number 4 has 8 different compositions:

(4)(3, 1)(1, 3)(2, 2)(2, 1, 1)(1, 2, 1)(1, 1, 2)(1, 1, 1, 1)

Each term in a composition is called a part. As shown below, the number of compositions
of a positive integer n is c(n) = 2n−1 and c(0) = 1 by convention [9].

Let the numbers l1, . . . , lr denote the lengths of the runs of a given binary string of
length n. Obviously, the sum of these lengths is equal to the length of the string, thus the
ordered array (l1, . . . , lr ) is a composition of n. The lengths of runs of a binary string of
length n corresponds to a unique composition of n. Conversely, to each composition of n,
there corresponds two strings (one starting with a one; the other starting with a zero) so that
lengths of runs are equal to the corresponding parts of the composition. Due to this 2 − 1
correspondence, any restriction or any problem on the compositions can be visualized as a
restriction or a problem on the number of runs of a binary string.

There are numerous studies on compositions with certain restrictions on the parts such
as compositions with no occurrence of k (by Chinn et al. [10]), compositions whose parts
are from a predefined set (Heubach et al. [11]), compositions with distinct parts (Richmond
et al. [12]), compositions with no parts exceeding L (M. E. Malandro [13] and so on [14,
15]. Almost all studies result in recursive relations; Jaklic et al. [16] obtained some results
on closed form formulas of restricted compositions.

We now list our notation for the numbers of compositions under certain restrictions:

c(n): number of all compositions of n,
c(n, r): number of compositions of n with r parts,
cΓ (n): number of compositions of n with all parts in a given set Γ ⊂ Z,
cL(n): number of compositions of n with no part larger than L,
ca(n, r, k): number of compositions of n with r parts and k of these parts equal to a,
ca(n, k): number of compositions of n with k parts equal to a,
cā(n, k): number of compositions of n with k parts larger than or equal to a.

Table 1 below summarizes these notations and introduces the corresponding generating
functions.

First two cases in the table are basic cases and can be found in many text books on
combinatorics or discrete mathematics (for instance, Lint [9]). cΓ (n) is given in [11] and
ca(n, k) is studied in [10] for only k = 0.

The main contribution of this paper is the introduction of recursions for ca(n, k, r),
ca(n, k) and cā(n, k) for k > 0 and giving the related generating functions.

The convention c(0) = 1 leads to the conventions c(0, 0) = cA(0) = ca(0, 0, 0) =
ca(0, 0) = cā(0, 0) = 1. In addition to these conventions, in order to introduce some ease
in computations, we extend the domain of all counting functions (mentioned in the list) to
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all nonnegative integers by setting the value as 0 whenever variables are not in the natural
domain of the function. For instance, we assume that ca(n, k) = 0 when n < ka.

3 Generating functions

There are several ways to approach the problem of finding the number of compositions
[16]. We firstly concentrate on generating functions. Recall that, for positive integers n, r ,
to find the number of nonnegative integer solutions of the equation x1 + x2 + · · · + xr = n,
after associating the formal sum 1 + z + z2 + · · · with each summand (xi), it is sufficient
to compute the coefficient of zn in (1 + z + z2 + · · · )r . Any restriction on summands has
a natural reflection to the corresponding factors. For instance, the number of solutions of
x1+x2+· · ·+x8 = 30 subject to the condition 3 ≤ xi ≤ 10 is given by the coefficient of z30

in (z3+z4+· · ·+z10)8. Similarly, coefficient of z30 in (1+z2+z4+· · · )4(z+z3+z5+· · · )4

is the number of solutions of the same equation, if x1, x2, x3 and x4 are to be even and the
others to be odd.

If we return to the compositions again, we see that c(n, r), the number of compositions
of the positive integer n with r ≥ 1 parts is the number of positive integer solutions of the
equation

x1 + x2 + · · · + xr = n (1)

and this number is given by the coefficient of zn in (z + z2 + · · · )r =
(

z

1 − z

)r

or equiv-

alently, c(n, r) is the coefficient of znxr in 1 +
∞∑

r=1

(
z

1 − z

)r

xr = 1

1 −
(

z
1−z

)
x

which

means

C(z, x) = 1 − z

1 − z − zx
.

On the other hand, as
zr

(1 − z)r
= zr

∞∑

i=0

(−r

i

)
(−z)i = zr

∞∑

i=0

(
r + i − 1

r − 1

)
zi by taking

i = n − r, the coefficient of zn in (z + z2 + · · · )r can be obtained as

c(n, r) =
(

n − 1

r − 1

)
.

It follows that the recursion satisfied by c(n, r) is the Pascal’s identity

c(n, r) = c(n − 1, r) + c(n − 1, r − 1).

By definition, for n ≥ 1 we have c(n) =
n∑

r=1

c(n, r). In other words, including the case for

n = 0, c(n) is the sum of coefficients of zn in 1,
z

1 − z
,

z2

(1 − z)2
, . . . or equivalently, c(n)

is the coefficient of zn in 1 +
∞∑

r=1

(
z

1 − z
)r = 1

1 − z
1−z

= 1 − z

1 − 2z
. It follows that

C(z) = 1 − z

1 − 2z
.
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Since

C(z) = 1 − z

1 − 2z
= 1

1 − 2z
− z

1 − 2z
=

∞∑

n=0

2nzn −
∞∑

n=0

2nzn+1 = 1 +
∞∑

n=1

2n−1zn

= 1 +
∞∑

n=1

c(n)zn =
∞∑

n=0

c(n)zn

for n ≥ 1 we get

c(n) = 2n−1.

In (1), if we require xi ∈ Γ, i = 1, . . . , r for some subset Γ of nonnegative integers
then

∑
γ∈Γ zγ is the factor corresponding to each summand. For simplicity, we will denote

the sum
∑

γ∈Γ zγ by zΓ . Consequently, the number of compositions with r parts and all

parts in Γ , is the coefficient of zn in(zΓ )r (for more details see [11]). Then it follows that,
the number of compositions with all parts in Γ , namely cΓ (n), is the coefficient of zn in∑∞

r=1 (zΓ )r so that

CΓ (z) = 1 +
∞∑

r=1

(zΓ )r = 1

1 − zΓ
.

For the following examples recall that the Fibonacci string fn is defined by the recursion
fn = fn−1 + fn−2 subject to the initial conditions f0 = 0, f1 = 1. Generating function of

this string is f (z) = z

1 − z − z2
.

Example 1 Γ = {1, 2} : For the number of compositions of n with each part equal to either
1 or 2 we have zΓ = z + z2 and generating function is

1

1 − z − z2
− 1.

Hence the number of such compositions is the Fibonacci number fn+1.

Example 2 Γ = Z−{1} : the number of compositions of n with no part equal to 1, we have

zΓ = z2 + z3 + · · · = z2

1 − z
and generating function is

1

1 −
(

z2

1−z

) − 1 = 1 − z

1 − z − z2
− 1.

It follows that the number of compositions of n without 1 is the Fibonacci number fn−1.
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Example 3 Γ = Z − 2Z : For the number of compositions of n with all parts odd we have

zΓ = z + z3 + z5 + · · · = z

1 − z2
and generating function is

z

1 − z − z2
.

Hence the number of such compositions is the Fibonacci number fn.

Example 4 Γ = Z − {a} : For the number of compositions of n without any occurrence of

a, zΓ =
∞∑

i=1

zi − za = z

1 − z
− za so that the associated generating function is

1 − z

1 − 2z + za − za+1
.

Example 5 Γ = {0, 1, . . . , L} : For the number of compositions of n with no part exceeding

L, zΓ =
L∑

i=1

zi = z(1 − zL)

1 − z
so that the associated generating function is

CL(z) = 1 − z

1 − 2z + zL+1
.

We give the generating functions for the last three restrictions in Table 1, namely
generating functions of ca(n, k, r), of ca(n, k) and of cā(n, k) in the following three
theorems.

Theorem 1 If a is a fixed positive integer then

Ca(z, y, x) = 1 − z

1 − z(x + 1) + zax(1 − z)(1 − y)
.

Proof ca(n, k, r) is the number of positive solutions of the equation x1 + x2 + · · ·+ xr = n

such that xi1 = · · · = xik = a for some {i1, . . . , ik} ⊂ {1, . . . , r} and xi �= a for i /∈
{i1, . . . , ik}. The subset {i1, . . . , ik} can be chosen in

(
r

k

)
distinct ways and once this set is

determined, the number of solutions of the equation is given by the coefficient of zn in

(za)k
(
(z + z2 + · · · ) − za

)r−k = (za)k
(

z

1 − z
− za

)r−k

.

It follows that ca(n, k, r) is the coefficient of znykxr in

Ca(z, y, x) = 1 +
∞∑

k=0

∞∑

r=1

(
r

k

)
zkaUr−kykxr (2)
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where U = z

1 − z
− za . The double sum on the right hand side can be separated for the

cases k = 0 and k = 1, 2, . . . to obtain

Ca(z, y, x) = 1 +
∞∑

r=1

Urxr +
∞∑

k=1

zkaykxk

∞∑

r=1

(
r

k

)
Ur−kxr−k

= 1

1 − Ux
+

∞∑

k=1

zkaykxk

∞∑

r=1

(
r

k

)
(Ux)r−k

= 1

1 − Ux
+ 1

1 − Ux

∞∑

k=1

(
zayx

1 − Ux

)k

= 1

1 − Ux − zayx

and finally by substituting U = z

1 − z
+ za , desired expression can be obtained.

Theorem 2 If a is a fixed positive integer then

Ca(z, y) = 1 − z

1 − 2z + za(1 − z)(1 − y)
.

Proof From the proof of Theorem 1, we see that ca(n, k) is the coefficient of zn in
∞∑

r=1

(
r

k

)
(za)kUr−k . It follows that ca(n, k) is the coefficient of znyk in

1 +
∞∑

k=0

∞∑

r=1

(
r

k

)
zkaUr−kyk .

From (2), we observe that this expression is in fact Ca(z, y, 1), thus Ca(z, y) = Ca(z, y, 1).

Note that, the coefficient of y0 in Ca(z, y) is 1+
∞∑

r=1

Ur = 1

1 − U
= 1 − z

1 − z + za − za+1
.

This expression is the generating function for the number of strings which do not contain
a, as we have previously obtained in Example 4.

Theorem 3 If a is a fixed positive integer then

Cā(z, y) = 1 − z

1 − 2z + za(1 − y)
.

Proof The number of positive solutions of the equation x1 + x2 + · · · + xr = n such that
xi1 = · · · = xik ≥ a for some {i1, . . . , ik} ⊂ {1, . . . , r} and xi < a for i /∈ {i1, . . . , ik} is
given by the coefficient of zn in
(

r

k

)
(za + za+1 + · · · )k(z + z2 + · · · + za−1)r−k =

(
r

k

) (
za

1 − z

)k

zr−k

(
1 − za−1

1 − z

)r−k

.
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Then cā(n, k) is the coefficient of zn in
∞∑

r=1

(
r

k

)(
za

1 − z

)k

zr−kUr−kyk where U =

1 − za−1

1 − z
. But this means that

Cā(z, y) = 1 +
∞∑

k=0

∞∑

r=1

(
r

k

)(
za

1 − z

)k

Ur−kzr−kyk

The double sum on the right hand side can be separated for the cases k = 0 and k = 1, 2, . . .

to obtain

Cā(z, y) = 1 +
∞∑

r=1

Urzr +
∞∑

k=1

(
za

1 − z

)k

yk
∞∑

r=1

(
r

k

)
Ur−kzr−k

= 1

1 − Uz
+

∞∑

k=1

(
zay

1 − z

)k ∞∑

r=1

(
r

k

)
(Uz)r−k

= 1

1 − Uz
+ 1

1 − Uz

∞∑

k=1

(
zay

(1 − z)(1 − Uz)

)k

= 1 − z

(1 − z)(1 − Uz) − zay

and substituting (1 − z)U = 1 − za−1 we obtain Cā(z, y) = 1 − z

1 − 2z + za(1 − y)
.

We summarize the results in the following table on the number of restricted compositions
and generating functions.

All the generating functions we have obtained are rational functions, hence the strings
which they correspond satisfy constant coefficient homogeneous recursive relations. More-
over, these relations can be obtained immediately from the denominators of the generating
functions. However, we can obtain these recursions by employing some elementary and
straightforward counting arguments.

4 Recursions

When we delete the first part, say a < n, of a composition of n we obtain a composition of
n − a. Thus, by deleting the first parts of all compositions of n we obtain the complete list
of all compositions of integers 1, 2, . . . , n − 1.

For instance consider the compositions 4 :
(4) (3, 1) (1, 3) (2, 2) (2, 1, 1) (1, 2, 1) (1, 1, 2) (1, 1, 1, 1).

If the first part of the composition (2, 1, 1) of 4 is deleted, we obtain the composition (1, 1)

of 2. By deleting the first parts of all compositions of 4 we obtain the following list

Besides the compositions of 1, 2, . . . , n−1, this list contains one more object, namely the
empty composition which is obtained when the first part of composition (n) is deleted. We



Cryptography and Communications (2019) 11:921–949 931

may visualize the empty composition to be the unique composition of 0 as an interpretation
of c(0) = 1. In a similar manner, by appending the positive integer a, as the first part, to
any composition of n − a, we obtain a unique composition of n. Therefore the set of all
compositions of n is equivalent to the set of all compositions of all integers less than n,

including 0, hence for any integer n ≥ 1

c(n) = c(n − 1) + · · · + c(1) + c(0) =
n∑

i=1

c(n − i). (3)

Theorem 4 The string {c(n)}∞n=0 is determined with the initial conditions c(0) = c(1) =
1and the recurrence relation c(n) = 2c(n − 1) for all integers n ≥ 2.

Proof By convention we have c(0) = 1 and thus c(1) = 1 is obvious. We can write the
recursion (3) as

c(n − 1) =
n−1∑

i=1

c(n − 1 − i) =
n∑

i=2

c(n − i) =
(

n∑

i=1

c(n − i)

)
− c(n − 1)

for n ≥ 2. Comparing this expression to (3), one obtains c(n) = 2c(n − 1) for n ≥ 2.

Notice that, since the generating function of c(n) is C(z) =
∑

c(n)zn = 1 − z

1 − 2z
, from

it’s denominator one can read the recursion for c(n) as c(n) = 2c(n − 1) and this agrees
with the recursion obtained above.

A recursion for ca(n, k) can be obtained in a way analogous to the one used in obtaining
(3). First consider the case k = 0. By deleting the first part of each composition of n which
has no part equal to a, we obtain such compositions of all integers less than n, except n− a.
Thus, the recursion for ca(n, 0) differs from the recursion for c(a) only by the summand
c(n − a, 0), that is

ca(n, 0) =
n∑

i=1

ca(n − i, 0) − ca(n − a, 0). (4)

Delete the first part of a composition of n which has k ≥ 1 parts equal to a. If the deleted
part is equal to a, then the remaining parts constitute a composition of n − a with k − 1
parts equal to a. If the deleted term is equal to i (i �= a), then the remaining parts form a
composition of n − i with k parts equal to a. Then we can write

ca(n, k) =
n∑

i=1

ca(n − i, k) − ca(n − a, k) + ca(n − a, k − 1). (5)

Theorem 5 Let a be a positive integer. The string {ca(n, k)}∞n=0 is determined with the
initial conditions;

– for k = 0

ca(n, 0) =
⎧
⎨

⎩

1 if n = 0
2n−1 if 1 ≤ n < a

2n−1 − 1 if n = a



932 Cryptography and Communications (2019) 11:921–949

– for k ≥ 1

ca(n, k) =
{

0 if n ≤ ka − 1
1 if n = ka

and the recurrence relations are

– for n ≥ a + 1 :
ca(n, 0) = 2ca(n − 1, 0) − ca(n − a, 0) + ca(n − 1 − a, 0) (6)

– for k ≥ 1 and n ≥ ka + 1 :

ca(n, k) = 2ca(n−1, k)−ca(n−a, k)+ca(n−a−1, k)+ca(n−a, k−1)−ca(n−a−1, k−1).
(7)

Proof When k = 0, we have ca(0, 0) = 1 by convention. If n < a, then no composition of
n contains a as a part, so ca(n, 0) = 2n−1. For n = a, only one composition of a contains
a, thus ca(a, 0) = 2n−1 − 1.

When k ≥ 1, then c(0, k) = 0 by convention. If n < ka, then no composition of n can
contain k parts equal to a, so ca(n, k) = 0 for n < ka. Only one composition of n = ka

consists of k parts, each equal to a, thus cka(a, k) = 1.
For n ≥ a + 1, recursion (4) can be written as

ca(n − 1, 0) =
n−1∑

i=1

ca(n − 1 − i, 0) − ca(n − 1 − a, 0)

=
n∑

i=2

ca(n − i, 0) − ca(n − 1 − a, 0)

=
n∑

i=1

ca(n − i, 0) − ca(n − 1, 0) − ca(n − 1 − a, 0).

Comparing this expression to (4), we obtain (6).
In a similar manner, for n ≥ ka + 1 we write the recursion (5) as

ca(n − 1, k) =
n−1∑

i=1

ca(n − 1 − i, k) − ca(n − 1 − a, k) + ca(n − 1 − a, k − 1)

=
n∑

i=2

ca(n − i, k) − ca(n − 1 − a, k) + ca(n − 1 − a, k − 1)

=
n∑

i=1

ca(n − i, k) − ca(n−1, k) + ca(n−1 − a, k−1) + ca(n−1 − a, k−1).

Comparing this expression to (5), we obtain (7).

Notice that, since the generating function for ca(n, k) is Ca(z, y) =
∑

ca(n, k)znyk =
1 − z

1 − 2z + za(1 − z)(1 − y)
= 1 − z

1 − 2z + za − za+1 − zay + za+1y
, from it’s denominator

one can read the recursion as ca(n, k) = 2ca(n − 1, k) − ca(n − a, k) + ca(n − a − 1, k) +
ca(n − a, k − 1) − ca(n − a − 1, k − 1) and this agrees with recursion we obtained above.
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Finally, for cā(n, k) consider the case k = 0. By deleting the first part of each com-
position of n which has all parts less than a, we obtain such compositions of all integers
n − 1, n − 2, · · · , n − a + 1. Thus, the recursion for cā(n, 0) differs from the recursion for
c(a) only by the summand cā(n − a, 0), that is

cā(n, 0) =
a−1∑

i=1

cā(n − i, 0). (8)

Delete the first part of a composition of n which has k > 1 parts equal to a. If the deleted
part is i ≥ a, then the remaining parts constitute a composition of n−i with k−1 parts equal
to or larger than a. If the deleted term is i < a, then the remaining parts form a composition
of n − i with k parts equal to or larger than a. Then we can write

cā(n, k) =
a−1∑

i=1

cā(n − i, k) +
n∑

i=a

cā(n − i, k − 1). (9)

Theorem 6 Let a be a positive integer. The string {cā(n, k)}∞n=0 is determined with the
initial conditions:

– for k = 0

cā(n, 0) =
⎧
⎨

⎩

1 if n = 0
2n−1 if a > 1 and 1 ≤ n ≤ a − 1
2a−1 − 1 if n = a

– for k ≥ 1

cā(n, k) =
{

0 if n ≤ ka − 1
1 if n = ka

and the recurrence relations

cā(n, 0) = 2cā(n − 1, 0) − cā(n − a, 0) (10)

and
cā(n, k) = 2cā(n − 1, k) − cā(n − a, k) + cā(n − a, k − 1) (11)

for k ≥ 1 and n ≥ ka + 1.

Proof Initial conditions are same with the ones given in Theorem 5. For n ≥ a+1, recursion
(8) can be written as cā(n − 1, 0) = ∑a−1

i=1 cā(n − 1 − i, 0).
Comparing this expression to (8), we obtain (10).
In a similar manner, for n ≥ ka + 1 we write the recursion (9) as

cā(n − 1, k) =
a−1∑

i=1

cā(n − 1 − i, k) +
n−1∑

i=a

cā(n − 1 − i, k − 1)

=
a∑

i=2

cā(n − i, k) +
n∑

i=a+1

cā(n − i, k − 1)

=
a−1∑

i=1

cā(n − i, k) + cā(n − a, k) +
n∑

i=a

cā(n − i, k − 1) − cā(n − a, k − 1)

Comparing this expression to (9), we obtain (11).
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Notice that, since the generating function for cā(n, k) is Cā(z, y) =
∑

cā(n, k)znyk =
1 − z

1 − 2z + za(1 − y)
, from it’s denominator one can read the recursion as cā(n, k) =

2cā(n − 1, k) − cā(n − a, k) + cā(n − a, k − 1) and this agrees with recursion we obtained
above.

Theorem 7 Let L be a fixed positive integer. The string {cL(n)}∞n=0 is determined with the
initial conditions

cL(n) =
{

1 if n = 0
2n−1 if n ≤ L

and the recurrence relation

cL(n) = 2cL(n − 1) − cL(n − L − 1).

for n ≥ L + 1.

Proof Call a composition as an L-composition if no part exceeds L. A positive integer n

has two type of L-compositions:

Type 1: L-Compositions with the first part equal to 1. Each such composition is equivalent
to a unique L-composition of n−1. Thus the number of L-compositions of n with
the first part equal to 1 is cL(n − 1).

Type 2: L-Compositions with the first part larger than 1. If we decrease the first part of
such a composition by 1, we obtain a unique L-composition of n − 1. By this
way all L-compositions of n − 1, except the ones with the first part equal to
L, are obtained. But, the set of exceptional compositions is equivalent to the set
of L-compositions of n − 1 − L. Hence the number of Type 2 compositions is
cL(n − 1) − cL(n − L − 1) .

Again notice that, since the generating function for cL(n) is CL(z) =
∑

cL(n)zn =
1 − z

1 − 2z + zL+1
, from it’s denominator one can read the recursion as cL(n) = 2cL(n − 1) −

cL(n − L − 1) and this agrees with recursion we obtained above.

5 Restricted compositions statistics

5.1 Generating functions for probability sequences

In this section we compute the basic probabilities on which our tests depend. Let �n be the
set of binary strings σ of length n. Define the value of nonnegative integer valued random
variables X, Xmax, Xa,Xā on σ ∈ �n as

X(σ) = number of runs of σ,

Xmax(σ ) = length of a longest run of σ,

Xa(σ ) = number of runs of length a of σ,

Xā(σ ) = number of runs of length at least a of σ .
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We denote the probability mass functions of these random variables as

p(n, r) =probability(X = r),
pL(n) =probability(Xmax ≤ L),
pa(n, r) = probability(Xa = r),
pā(n, r) = probability(Xā = r).

After giving the definition of a composition, we have showed that to each binary string of
length n there corresponds a unique composition of n and conversely, to each composition
of n there corresponds exactly two binary strings of length 2. Thus, for example, the number
of binary strings of length n which have r runs is twice the number of compositions of n

with r parts. Since the number of all binary strings of length n is 2n, we immediately get

p(n, r) = 1

2n
(2c(n, r)) = 21−nc(n, r)

and analogously
pL(n) = 21−ncL(n),

pa(n, k) = 21−nca(n, k)

and
pā(n, k) = 21−ncā(n, k).

Let n be a fixed nonnegative integer, then the probability generating function
∞∑

r=0

p(n, r)xrof

X is the coefficient of zn in:

P(z, y) =
∞∑

n,r=0

p(n, r)znyr = 21−n

∞∑

n,r=0

c(n, r)znyr

= 2
∞∑

n,r=0

c(n, r)
( z

2

)n

yr = 2C(z/2, y)

= 2(2 − z)

2 − z − zy
.

Similarly, probability generating functions of Xa and Xā are coefficients of zn in

Pa(z, y) = 2Ca(z/2, y) = 2 − z

1 − z + 2−a−1za(2 − z)(1 − y)
,

Pā(z, y) = 2Cā(z/2, y) = 2 − z

1 − z + 2−aza(1 − y)

respectively.

5.2 Probability calculations

Theorem 8 The string {p(n, r)}∞n=0 is determined with the initial conditions

p(n, r) =
⎧
⎨

⎩

1
2n−1 if r = n

0 if r = 0 and n > 0
0 if r > 0 and r > n

and the recursion

p(n, r) = 1

2
(p(n − 1, r) + p(n − 1, r − 1))

for n > r > 0.
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Proof We already know that c(n, r) =
(

n − 1

r − 1

)
. Pascal’s identity

(
n − 1

r − 1

)
=

(
n − 2

r − 1

)
+

(
n − 2

r − 2

)
leads the desired expression.

Theorem 9 Let a be a positive integer. The string {pa(n, r)}∞n=0 is determined with the
initial conditions:

for r = 0

pa(n, 0) =
{

1 if n ∈ {0, . . . , a − 1}
1 − 21−a if n ∈ {a, a + 1}

for r ≥ 1

pa(n, r) =
{

0 if n ≤ ra − 1
21−n if n ∈ {ra, ra + 1}

and the recurrence relations

– for n ≥ a + 2

pa(n, 0) = pa(n − 1, 0) − 2−apa(n − a, 0) + 2−a−1pa(n − 1 − a, 0)

– for r ≥ 1 and n ≥ ra + 2

pa(n, r) = pa(n − 1, r) − 2−apa(n − a, r) + 2−a−1pa(n − a − 1, r)

+ 2−apa(n − a, r − 1) − 2−a−1pa(n − a − 1, r − 1).

Proof By convention, pa(0, 0) = 1. Initial conditions can be checked by direct computing.
For the other cases, just substitute pa(n, r) = 21−nca(n, r) in Theorem 5.

Theorem 10 Let a be a positive integer. The string {pā(n, r)}∞n=0 is determined with the
initial conditions:

for r = 0

pā(n, 0) =
{

1 if n ≤ a − 1
1 − 21−n if n = a

for r > 1

pā(n, r) =
{

0 if n ≤ ra − 1
21−n if n = ra

and the recurrence relations

– for n ≥ a + 1
pā(n, 0) = pā(n − 1, 0) − 2−apā(n − a, 0)

– for r ≥ 1 and n ≥ ra + 1

pā(n, r) = pā(n − 1, r) − 2−apā(n − a, r) + 2−apā(n − a, r − 1).

Proof Just substitute pā(n, r) = 21−ncā(n, r) in Theorem 6.

Theorem 11 Let a be a positive integer. The string {pL(n)}∞n=0 is determined with the initial
conditions pL(0) = pL(1) = · · · = pL(L) = 1 and the recurrence relation

pL(n) = pL(n − 1) − 2−L−1pL(n − L − 1).
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Proof Just substitute pL(n) = 21−ncL(n) in Theorem 7.

As for the complexities, to find the complexity of the computations needed in determi-
nation of the value of pa(n0, r) for a specific value of a, using the recursive formula given
in theorem 9, first we assume that all of the values pa(n, r) are computed for n ≤ n0 and
1 ≤ r ≤ � n0

a
	. Then to compute pa(n0, r) we need 4 addition operations for each r . Thus,

in total one has to perform
n0∑

n=0

4
n

a
= 2n(n + 1)

a
additions. This means that the complexity

to determine pa(n0, r) is O(n2). Similar arguments can be given for the formulas stated in
the other theorems and the same complexity bound is also valid for them.

6 Expected values and variance

For our purposes we need neither expected values nor variances. On the other hand, these
quantities are quite important tools for various similar statistical computations. For the
sake of completeness and possible future references here we compute expected values and
variances of the random variables X, Xa and Xā .

It is well known that when n is fixed the expected value and the variance of X appear

as the coefficient of zn, respectively in
∂P

∂x
and

∂2P

∂x2
+ ∂P

∂x
−

(
∂P

∂x

)2

where all partial

derivatives are evaluated at x = 1. Similar expressions can be written for Xa and Xā . After
some straightforward, but boring computations we obtain the following:

– Coefficient of zn in

∂

∂x
P (z, x)|x=1 = 1

2

(2 − z)z

(1 − z)2
=

(
z − z2

2

) ∞∑

i=0

(i + 1)zi

is
n + 1

2
.

– Coefficient of zn in

∂2

∂x2
P(z, x)|x=1 = 1

2

(2 − z)z2

(1 − z)3
= 1

2
(2 − z)z2

∞∑

i=0

(
i + 2

2

)
zi

is
(n − 1)(n + 2)

4
.

– Coefficient of zn in

∂

∂y
Pa(z, y)|y=1 = 1

2a+1

(2 − z)2za

(1 − z)2
= 1

2a+1
(4za − 4za+1 + za+2)

∞∑

i=0

(i + 1)zi

is
n − a + 3

2a+1
.
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– Coefficient of zn in

∂2

∂y2
Pa(z, y)|y=1 = − 1

22a+1

(2 − z)3z2a

(1 − z)3

is
1

4a+1
(4a2 − 4an − 18a + n2 + 9n + 14).

– Coefficient of zn in
∂

∂y
Pā(z, y)|y=1 = 1

2a

(2 − z)za

(1 − z)2

is
n − a + 2

2a
.

– Coefficient of zn in

∂2

∂y2
Pā(z, y)|y=1 = 1

22a−1

(2 − z)z2a

(1 − z)3

is
4a2 − 4an − 10a + n2 + 5n + 4

22a
.

The following theorem follows immediately.

Theorem 12 Let n be a fixed positive integer. Expected values and variances of the random
variables X, Xa and Xā defined on �n are as follows:

E(X) = n + 1

2
, V ar(X) = n − 1

4
,

E(Xa) = n + 3 − a

2a+1
, V ar(Xa) = (2a+1 − 2a + 3)n + 3(a2 − 4a + 2) + 2a+1(3 − a)

4a+1
,

E(Xā) = n + 2 − a

2a
, V ar(Xā) = (2a − 2a + 1)n + (3a − 2a) + (a − 2)

4a
.

7 R-2 composition tests

R-2 composition tests count the number of pre-specified runs in a string. The input of the test
is a collection of binary strings with equal length n. We apply the test function to determine
the number of occurrences of the restricted runs in each string, and call them as observed
values. Afterwards, we apply χ2 test and produce p-value using the bin probability tables
(as described in [17]). We give the probabilities for n ∈ {128, 256, 1024, 4096}. It should
be noted that the 8 test statistics defined in this paper are not necessarily independent.

7.1 Walkthrough

Tables 10, 11, 12, and 13 present the number of bins, bin values and the probabilities cor-
responding to each bins, for n = 128, 256, 1024 and 4096 respectively. As an example, to
test the randomness of a collection of N binary strings of length n = 128, the first row of
Table 10, that is the line labeled as “Total Runs” suggests the use of 8 bins, and gives the
expected values of the number of total runs to be between 0 and 57 as 0.106982 × N , to be
between 58 and 60 as 0.131978 × N , ... , to be between 72 and 128 as 0.106982 × N .
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The procedure to test a collection of N binary strings of length n, using the R-2
Composition Tests family can be summarized as follows:

1. Depending on n, use the appropriate bin probability table given in the Appendix
(Tables 10, 11, 12, or 13) to determine the corresponding number of bins for each of
the test functions:

• number of all runs,
• number of runs of length 1,
• number of runs of length 2,
• number of runs of length 3,
• number of runs of length 4,
• number of runs of length 5,
• number of runs of length at least 5,
• length of the longest run.

2 Apply χ2 Goodness of Fit Test, that is evaluate

χ2 =
B∑

i=1

(Oi − N · pi)
2

N · pi

and p-value = igamc

(
B − 1

2
,
χ2

2

)

where pi’s are obtained from bin probability Tables 10, 11, 12, and 13.
3 Print the p-value.

Pseudocode of the test is given at Algorithm 2 in the Appendix. The source code is
available online at http://users.metu.edu.tr/muhid/stats.html.

Example 6 We apply R-2 Composition Test with a = 2 as an example to AES algorithm
[18]. First we fix the key as 0. Then, by encrypting the plaintexts corresponding to the
numbers from 0 to 100,000 we generate 100,000 many 128-bit ciphertexts. The observed
number of runs of length a = 2 in each block are given in Table 3. Using these bin values,
we compute the χ2 and p-values as follows.

χ2 =
B∑

i=1

(Oi − N · pi)
2

N · pi

= 2.2682 and p-value = igamc

(
8 − 1

2
,

2.2682

2

)
= 0.9435.

The complete list of p-values for this case is given in the second column of the following
Table 4. The second row in that column shows the p-value for the number of all runs. Next 5
rows of the same column, labeled with numbers “1” to “5” show the p-value for the number
of all runs of length a equal to 1 till 5. The row labeled as “≥ 5” is for the p-value of all

Table 3 Expected and observed values for AES, with n = 128, a = 2, N = 100, 000

Bin 1 Bin 2 Bin 3 Bin 4 Bin 5 Bin 6 Bin 7 Bin 8

0,...,11 12,13 14 15 16 17,18 19,20 21,...,128

Expected 10517.1 14153.2 9444.8 10377.2 10602.3 19119.4 13467.7 12318.3

Observed 10541 14089 9456 10282 10634 19089 13575 12334

http://users.metu.edu.tr/muhid/stats.html
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Table 4 p-values for a, N = 100, 000

a AES with n = 128 SHA-3 with n = 256 π , with n = 1024
√

2 with n = 4096

Total runs 0.731571 0.207460 0.978280 0.312366

1 0.832913 0.219225 0.435394 0.447400

2 0.943515 0.140130 0.446319 0.817061

3 0.118005 0.239282 0.171816 0.234689

4 0.868903 0.661484 0.659976 0.388651

5 0.849717 0.183703 0.949642 0.321176

≥ 5 0.995659 0.797747 0.405766 0.028659

Longest run 0.022376 0.234036 0.462707 0.124030

runs of length a greater than or equal to 5. Finally, the last row shows the p-value for the
longest run test.

8 Application

This section reveals the results obtained from the application of the R-2 Composition Tests
to various collections of strings in order to show the sensitivity of the tests. For this purpose,
we generate pseudorandom and non-random data sets. The details are as follows.

First, we applied the tests to the data set, generated by using the AES algorithm in the
same manner explained in the Example 6 above. For each of the 8 different tests, the p-
values obtained are presented in the first column of the Table 5. As a second application, we
considered the collection of outputs of SHA-3 algorithm, for the case n = 256. Starting with
initial message 0 and recursive application of the algorithm, Si = H(Si−1), we collected
the hash values and evaluated this collection with the 8 different tests introduced. The p-
values obtained are presented in the first column of the Table 6. Then, we applied the R-2
Composition Tests to the binary expansions of π and

√
2. In the case of π , we produced

100,000 many 1024 bit blocks from its binary expansion and applied the tests for the case
n = 1024. Similarly, we applied the test for a collection obtained from the binary expansion
of

√
2, taking n = 4096. The p-values obtained are given in the first columns of the Tables 7

and 8.

Table 5 128 bits
AES (128 bit) p1 = 0.505 p1 = 0.525

Total runs 0.731571 0.249616 0

1 0.832913 0.321419 0

2 0.944 0.910527 0

3 0.118005 0.010618 0

4 0.868903 0.220267 0

5 0.849717 0.985643 0.00014

≥ 5 0.995659 0.42772 0

Longest run 0.022376 0.006053 0
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Table 6 256 bits
SHA-3 (256 bit) p1 = 0.505 p1 = 0.525

Total runs 0.207460 0.116373 0

1 0.219225 0.325781 0

2 0.140130 0.910347 0

3 0.239282 0.567008 0

4 0.661484 0.718012 0

5 0.183703 0.380512 0

≥ 5 0.797747 0.233176 0

Longest run 0.234036 0.023001 0

Second, we applied the tests to the collection of biased binary strings. By setting each bit
ai as 1 when a randomly generated integer between 0 and 999 is greater than 505, and to 0
otherwise, we produced 100,000 weight-biased binary strings of the lengths 128, 256, 1024,
and 4096 with bias 1% (p1 = Pr(ai = 1) = 0.505). We produced another collection with
bias 5% (p1 = Pr(ai = 1) = 0.525) using the same idea. The results are presented in the
second and third columns of the Tables 5, 6, 7, and 8. It is observed that the bias p1 = 0.505
is detected only by the longest runs test for n = 128, n = 256 and n = 1024; and is detected
by five of these tests for n = 4096. The bias p1 = 0.525 is detected by all the tests.

After getting results for the weight-biased data set, we test the sensitivity of the R-2
Composition Tests on the run-biased binary strings. Since there is no canonical method to
introduce a bias to the number of runs, we developed two methods for this purpose. First,
we introduced a bias to the number of runs by flipping the last bit of the first run of length
3 in each sequence of the Example 6. We name the collection obtained by this method as
DataSet-1. Notice that, this manipulation does not change the total number of runs, whereas
it changes the number of runs of length 3. As seen in the Table 9, this bias is not detected by
tests in the NIST test suite, namely the runs test and the test for the longest run of ones when
default parameters are used. On the other hand, all the tests related with the number of runs
of a specified length which are defined in this paper detected this bias. The manipulation is
detected by sstringRun test of TestU01. The p-values are given in the Table 9.

The main advantage of the R-2 composition test is that it can evaluate a collection of
relatively short strings directly as a collection, while the other tests in the literature can

Table 7 1024 bits
π (1024 bit) p1 = 0.505 p1 = 0.525

Total runs 0.978280 0.153411 0

1 0.435394 0.436316 0

2 0.44632 0.001407 0

3 0.171816 0.101505 0

4 0.659976 0.758987 0

5 0.949642 0.117841 0

≥ 5 0.405766 0.031281 0

Longest run 0.462707 0.002161 0
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Table 8 4096 bits √
2 (4096 bit) p1 = 0.505 p1 = 0.525

Total runs 0.312366 0 0

1 0.447400 0.04765 0

2 0.817061 0 0

3 0.234689 0.000636 0

4 0.38865 0.967204 0

5 0.321176 0.599904 0

≥ 5 0.028659 0 0

Longest run 0.124029 0 0

evaluate such a collection only after concatenating them. However, after concatenating the
collection, the defects in the individual strings may not be recognizable by the randomness
tests. This can be a major problem in testing key generators in cryptographic applications.
Moreover, depending on the order they are concatenated may cause different randomness
properties. In order to illustrate this scenario we produced a non-random data set called
DataSet-2 using Algorithm 1 below. First, we take a random collection generated using the
AES algorithm in Example 6. Then, we take a subset of this collection and modify each
string in this subset so that each string starts with 1 and ends with 0. Note that, this collection
can be flagged as non random easily as the number of total runs deviates from the expected
number of total runs. In order make this defect in the individual strings not recognizable after
concatenation, we decrease the number of totals runs by a second operation: if the sequence
starts with 101, replace it by 111 and if it ends with 010, replace it by 000. We determine
the subset of the collection to be modified as every sixth sequence in the collection. In short,
for each of the every 6th sequence {si}127

i=0, we replace the first three bits of the sequence as
follows

000 → 100, 001 → 111, 010 → 110, 011 → 111

Table 9 Results of this work,
NIST and TestU01 on
manipulated data

DataSet-1 DataSet-2

Total runs 0.311464 0

Longest run 0.094459 0.267156

Runs-1 0 0.000895

Runs-2 0 0.476132

Runs-3 0 0.007232

Runs-4 0 0.796350

Runs-5 0 0.768755

Runs>5 0 0.658832

NIST-Longest run 0.54962 0.552450

NIST-Runs 0.861091 0.000008

TestU01 sstringRun1 Failed Passed

TestU01 sstringRun2 Passed Passed



Cryptography and Communications (2019) 11:921–949 943

and do not make any change otherwise, the last three bits of the sequence as follows

001 → 000, 011 → 000, 101 → 100, 111 → 110

and do not make any change otherwise. Algorithm 1 operates on 100,000 strings to generate
DataSet-2.

R-2 Composition Tests detected the manipulation, that is the data set gets relatively low
p-values from the runs of length 1 and the total number of runs tests. This manipulation is
also detected by the NIST Runs test, but not detected by the test for the longest run of ones.
However it is not detected by the run tests in Test U01. The p-values are given in the Table 9.

These experiments show that the new tests can detect some defects that other run tests
do not.

9 Conclusion

In this work, we define a family of randomness tests in the spirit of Golomb’s second
randomness postulate. We give recursive formulas that are feasible to compute the exact
probabilities of different type of runs, namely number of all runs in a binary segment of
length n, that of all runs of length a, all runs of length at least a, and the number of all binary
segments whose longest run has length at most L. Moreover, we find the exact distributions
for all those run types and define new randomness tests. Afterwards, we apply the family of
randomness tests to various collections of strings.

Throughout this work, we naturally consider binary strings where zeros and ones are pro-
duced with equal probabilities. As a future work, the same computations can be generalized
for strings which are produced with unequal probabilities, which can be used for estimating
the entropy of the source.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.
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