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Abstract
Codebooks with low-coherence have wide applications in many fields such as direct spread
code division multiple access communications, compressed sensing, signal processing and
so on. In this paper, we propose two constructions of complex codebooks from the opera-
tions of certain sets. The complex codebooks produced by these constructions are proved to
be asymptotically optimal with respect to the Welch bound. In addition, the parameters of
the complex codebooks presented in this paper are new and flexible in some cases.
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1 Introduction

An (N,K) codebook C (also called a signal set) is a set of N unit-norm complex vectors ci

with length K , where 0 ≤ i ≤ N − 1. For all pairs of distinct vectors in C, the maximum
cross-correlation amplitude of C is defined by

Imax(C) = max
0≤i �=j≤N−1

|cicH
j |,

where cH
j is the conjugate transpose of the complex vector cj . In code division multiple

access (CDMA) systems, codebooks with small Imax(C) are utilized to separate the sig-
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nals of different users. The optimization of various performance indicators such as outage
probability, average signal-to-noise ratio and symbol error probability for multiple-antenna
transmit beamforming from limited-rate feedback can be achieved by minimizing the maxi-
mum cross-correlation amplitude Imax(C) of a codebook C [16, 19]. For a certain length K ,
it is desirable to design a codebook such that the number of the vectorsN is as large as possi-
ble and the maximum cross-correlation amplitude Imax(C) is as small as possible. However,
between the parameters N , K and Imax(C) of a codebook C, there exists a tradeoff, known
as Welch bound [27].

Lemma 1 [27] For any (N,K) codebook C with N ≥ K ,

Imax(C) ≥ IW =
√

N − K

(N − 1)K
.

Moreover, the equality holds if and only if for all pairs of (i, j) with i �= j , it holds that

|cicH
j | =

√
N − K

(N − 1)K
.

We term C a maximum-Welch-bound-equality (MWBE) codebook [23] if C achieves the
Welch bound. MWBE codebooks have many applications in communications [23], CDMA
systems [20], compressed sensing [1], coding theory [6] and quantum computing [22].
MWBE codebooks can also be described by equiangular tight frames [25] or line pack-
ing in Grassmannian spaces [24]. With the wide utilization, the constructions of MWBE
codebooks have attracted much attention and the known classes of MWBE codebooks are
presented as follows:

– (N,N) orthogonal MWBE codebooks for any N > 1 [23, 28];
– (N,N − 1) MWBE codebooks for N > 1 based on discrete Fourier transformation

matrices [23, 28] or m-sequences [23];
– (N,K) MWBE codebooks from conference matrices [2, 24], where N = 2K = 2d+1

for a positive integer d or N = 2K = pd + 1 for a prime p and a positive integer d;
– (N,K) MWBE codebooks based on (N,K, λ) difference sets in cyclic groups [28] and

abelian groups [4, 5];
– (N,K) MWBE codebooks from (2, k, ν)-Steiner systems [7];
– (N,K) MWBE codebooks depended on graph theory and finite geometries [8–10, 21].

Aside from MWBE codebooks, many researchers concern about asymptotically optimal
codebooks C, i.e., the maximum cross-correlation amplitude asymptotically achieves the
Welch bound for the sufficiently large length of the vectors. As a generalization of the
MWBE codebooks derived from difference sets, several classes of asymptotically optimal
codebooks were generated from almost difference sets [11, 15, 30, 31], relative difference
sets [32]. In [3, 12, 29], asymptotically optimal codebooks constructed from binary row
selection sequences were proposed. In [26], Tan et al. proposed a class of asymptotically
optimal codebooks by using Gauss sums. Employing Jacobi sums, Heng et al. [13] presented
two classes of asymptotically optimal codebooks. As generalizations of Heng et al.’s work,
the authors provided several classes of asymptotically optimal codebooks in [14, 17].
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Assume that G1 and G2 are sets. Let D1 and D2 be subsets of G1 and G2, respectively.
We define the operation of D1 and D2 by

D1 � D2 = (D1 × D2) ∪ (D1 × D2),

where D1 = G1 \ D1, D2 = G2 \ D2 and D1 × D2 = {(a, b) : a ∈ D1, b ∈ D2}. When D1
and D2 are difference sets, Hu et al. [11] constructed two classes of asymptotically optimal
codebooks. Motivated by their work, we investigate the case that D1 and D2 are certain sets
and propose two classes of codebooks asymptotically meeting the Welch bound. Notably,
the parameters of our codebooks are new and flexible in some cases. For reference, the
parameters of known classes of codebooks asymptotically achieving the Welch bound and
the new ones are given in Table 1.

This paper is organized as follows. In Section 2, we briefly recall some definitions
and notation which will be needed in our discussion. We devote Sections 3 and 4 to our
constructions of asymptotically optimal codebooks. Finally, Section 5 concludes this paper.

Table 1 The parameters of codebooks asymptotically meeting the Welch bound

Parameters (N,K) Constraints Imax References(
pn,K = p−1

2p (pn + pn/2) + 1
)

p is an odd prime (p+1)pn/2

2pK
[12](

q2,
(q−1)2

2

)
q is a power of an odd prime, q+1

(q−1)2
[30](

q(q + 4), (q+3)(q+1)
2

)
q is a prime power, 1

q+1 [15](
q,

q+1
2

)
q is a prime power,

√
q+1

q−1 [15](
pn − 1, pn−1

2

)
p is an odd prime

√
pn+1

pn−1 [29]

(ql + ql−1 − 1, ql−1) q is a prime power, 1√
ql−1

[32]

and l > 2 is an integer

((q − 1)k + qk−1, qk−1) q ≥ 4 is a prime power
√

qk+1

(q−1)k+(−1)k+1 [13]

and k > 2

((q − 1)k + K,K) K = (q−1)k+(−1)k+1

q
,

√
qk−1

K
[13]

k > 2 and q is a prime power

((qs − 1)n + K,K) K = (qs−1)n+(−1)n+1

q
,

√
qsn+1

(qs−1)n+(−1)n+1 [17]

s > 1, n > 1,

and q is a prime power

((qs − 1)n + qsn−1, qsn−1) s > 1, n > 1,
√

qsn+1

(qs−1)n+(−1)n+1 [17]

and q is a prime power(
N1N2,

N1N2−1
2

)
N1 ≡ 3 mod 4, N2 ≡ 3 mod 4

√
(N1+1)(N2+1)

N1N2−1 [11](
N1 · · ·Nl,

N1···Nl−1
2

)
Ni ≡ 3 mod 4 for any l > 1

√
(N1+1)···(Nl+1)

N1···Nl−1 [11]

(2K + 1,K) K = (2s1−1)n(2s2−1)n−1
2 , 2

s1n+s2n

2

(2s1−1)n(2s2−1)n−1 Theorem 1

n ≥ 1, s1, s2 > 1

(2K + (−1)ln,K) K = (2s1−1)n···(2sl −(−1)ln)n−1
2 , 2(s1n+s2n+···+sl n)/2

2K Theorem 3

n ≥ 1, l > 1,

si > 1 for any 1 ≤ i ≤ l
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2 Preliminaries

Let q = ps and Fq denote the finite field with q elements, where p is a prime number and
s is a positive integer. The trace function from Fq to Fp is defined by

Trq(x) = x + xp + · · · + xps−1
,

where x ∈ Fq .
Denote by F∗

q the multiplicative group of Fq . It is well-known that F∗
q is a cyclic group of

order q−1. A generator of F∗
q is said to be a primitive element of the finite field Fq . Assume

that α is a primitive element of Fq . For each integer i with 0 ≤ i ≤ q − 2, a multiplicative
character ϕi of Fq is defined by

ϕi(α
j ) = ξ

ij

q−1,

where 0 ≤ j ≤ q − 2 and ξq−1 = e2π
√−1/(q−1). Each multiplicative character of Fq

can be obtained in this way. If i = 0, the multiplicative character ϕ0 is called the trivial
multiplicative character of Fq . For any multiplicative character ϕi of Fq , its conjugate ϕi is
given by ϕi(g) = ϕi(g) = ϕi(g

−1), where g ∈ F
∗
q . All the multiplicative characters of Fq

form a cyclic group F̂∗
q under the multiplication of characters defined as follows:

χψ(g) = χ(g)ψ(g),

for every g ∈ F
∗
q , where χ , ψ are multiplicative characters of Fq . The group F̂∗

q is

isomorphic to the multiplicative group F
∗
q . The orthogonal relations of F

∗
q and F̂∗

q are

∑
g∈F∗

q

ϕ(g) =
{
0, if ϕ is a nontrivial multiplicative character of Fq,

q − 1, if ϕ is the trivial multiplicative character of Fq,

and ∑
ϕ∈F̂∗

q

ϕ(g) =
{
0, if g �= 1 ∈ F

∗
q,

q − 1, if g = 1.

For each a ∈ Fq , an additive character of Fq is defined by the function χa(x) = ζ
Trq (ax)
p ,

where ζp = e2π
√−1/p . If a = 1, then χ1(x) is the canonical additive character of Fq . Let

χ0(x) denote the trivial additive character of Fq . The additive character of Fq has the similar
properties as the multiplicative character of Fq . For more details on the character theory
over finite fields, we refer the reader to [18, Chapter. 5].

Luo et al. [17] established the hyper Eisenstein sum over Fq . Let D =
{(x1, x2, · · · , xn) ∈ (F∗

q)n : Trq(x1 + x2 + · · · + xn) = 1} and assume that ϕ1, · · · , ϕn are
multiplicative characters of Fq . Then the hyper Eisenstein sum is given by

Eq(ϕ1, · · · , ϕn) =
∑

(x1,x2,··· ,xn)∈D

ϕ1(x1) · · ·ϕn(xn).

The following two lemmas evaluate the absolute value of the hyper Eisenstein sums.

Lemma 2 [17] For 1 ≤ k < n, assume that ϕ1, · · · , ϕk are nontrivial multiplicative
characters of Fq and ϕk+1, · · · , ϕn are trivial multiplicative characters of Fq . Then

Eq(ϕ1, · · · , ϕn) = (−1)n−kEq(ϕ1, · · · , ϕk).
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Lemma 3 [17] Let ϕ1, · · · , ϕn be nontrivial multiplicative characters of Fq . Denote by
(ϕ1 · · · ϕn)

∗ the restriction of ϕ1 · · ·ϕn to Fp . Then

|Eq(ϕ1, · · · , ϕn)| =
{

p
sn−1
2 , if (ϕ1 · · ·ϕn)

∗ is nontrivial,

p
sn−2
2 , if (ϕ1 · · ·ϕn)

∗ is trivial.

If p = 2, (ϕ1 · · · ϕn)
∗ is always trivial which leads to the following proposition.

Proposition 1 Let q = 2s , where s is a positive integer. Assume that ϕ1, · · · , ϕn are
nontrivial multiplicative characters of Fq . Then

|Eq(ϕ1, · · · , ϕn)| = 2
sn−2
2 .

3 A new construction of asymptotically optimal codebooks

In this section, we propose a construction of asymptotically optimal codebooks by the
operation D1 � D2. We begin with the definitions of two certain sets.

Let n ≥ 1, s1 > 1 and s2 > 1 be positive integers. Throughout the section, we write
q1 = 2s1 and q2 = 2s2 . Put D1 = {(x1, x2, · · · , xn) ∈ (F∗

q1
)n : Trq1(x1+x2+· · ·+xn) = 1}

and D2 = {(x1, x2, · · · , xn) ∈ (F∗
q2

)n : Trq2(x1 + x2 + · · · + xn) = 1}. To determine the
cardinalities of D1 and D2, we need the following lemma.

Lemma 4 [17] Let q = ps , where p is a prime and s > 1 is a positive integer. Assume that
F = {(x1, x2, · · · , xn) ∈ (F∗

q)n : Trq(x1 + x2 + · · · + xn) = a}. Then

#F =
{

(ps−1)n+(−1)n+1

p
, if a ∈ F

∗
p,

(ps−1)n+(−1)n(p−1)
p

, if a = 0.

Applying Lemma 4, we deduce that #D1 = (q1−1)n+(−1)n+1

2 and #D2 = (q2−1)n+(−1)n+1

2 .
Let D = (D1 × D2) ∪ (D1 × D2), where D1 = (F∗

q1
)n \ D1, D2 = (F∗

q2
)n \ D2. It is easy

to check that #D = (q1−1)n(q2−1)n−1
2 . For simplicity, we write K = (q1−1)n(q2−1)n−1

2 .
Assume that ϕ1, · · · , ϕn are multiplicative characters of Fq1 and λ1, · · · , λn are multi-

plicative characters of Fq2 . Then we define a vector of length K by

cU,V = 1√
K

(ϕ1(x1) · · ·ϕn(xn)λ1(y1) · · · λn(yn))X×Y∈D,

where U = (ϕ1, · · · , ϕn), V = (λ1, · · · , λn), X = (x1, · · · , xn) and Y = (y1, · · · , yn).
WhenU and V run over the multiplicative characters groups (̂F∗

q1
)n and (̂F∗

q2
)n, respectively,

we obtain a set C of (q1 − 1)n(q2 − 1)n unit-norm complex vectors as follows:

C = {cU,V : U ∈ (̂F∗
q1

)n, V ∈ (̂F∗
q2

)n}. (1)

Theorem 1 Let s1 > 1 and s2 > 1 be two positive integers. Assume that q1 = 2s1 and q2 =
2s2 . Then the set C defined by (1) is an

(
N = (q1 − 1)n(q2 − 1)n,K = (q1−1)n(q2−1)n−1

2

)
codebook with the maximum cross-correlation amplitude Imax(C) = 2

s1n+s2n

2

(2s1−1)n(2s2−1)n−1 .
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Proof According to the definition of the codebook C, it can be easily shown that N =
(q1 − 1)n(q2 − 1)n and K = (q1−1)n(q2−1)n−1

2 . Our task now is to calculate the maximum
cross-correlation amplitude. For simplicity, we take N1 = (q1 − 1)n, N2 = (q2 − 1)n,

K1 = #D1 = (q1−1)n+(−1)n+1

2 and K2 = #D2 = (q2−1)n+(−1)n+1

2 . Assume that U =
(ϕ1, · · · , ϕn), U

′ = (ϕ′
1, · · · , ϕ′

n) ∈ (̂F∗
q1

)n and V = (λ1, · · · , λn), V
′ = (λ′

1, · · · , λ′
n) ∈

(̂F∗
q2

)n. For any two distinct vectors cU,V and cU ′,V ′ with (U, V ) �= (U ′, V ′), we have

∣∣∣cU,V cH
U ′,V ′

∣∣∣ = 1

K

∣∣∣∣∣∣
∑

(x1,···xn)∈D1

ϕ1ϕ
′
1(x1) · · ·ϕnϕ′

n(xn)
∑

(y1,···yn)∈D2

λ1λ
′
1(y1) · · · λnλ′

n(yn)

+
∑

(x1,···xn)∈D1

ϕ1ϕ
′
1(x1) · · ·ϕnϕ′

n(xn)
∑

(y1,···yn)∈D2

λ1λ
′
1(y1) · · · λnλ′

n(yn)

∣∣∣∣∣∣ .
In the following, we divide the computation of

∣∣∣cU,V cH
U ′,V ′

∣∣∣ into three cases.
(1) If ϕ1ϕ

′
1, · · · , ϕnϕ′

n are trivial, then λ1λ
′
1, · · · , λnλ′

n are not all trivial. Without loss of

generality, we assume that λ1λ
′
1, · · · , λkλ

′
k are nontrivial, where 1 ≤ k ≤ n. So we

obtain

∣∣∣cU,V cH
U ′,V ′

∣∣∣ = 1

K

∣∣∣∣∣∣K1

∑
(y1,···yn)∈D2

λ1λ
′
1(y1) · · · λnλ′

n(yn)

+(N1 − K1)
∑

(y1,···yn)∈D2

λ1λ
′
1(y1) · · · λnλ′

n(yn)

∣∣∣∣∣∣
= |N1 − 2K1|

K

∣∣∣Eq2(λ1λ
′
1, · · · , λnλ′

n)

∣∣∣ ,
where the last equality is derived from the definition of the hyper Eisenstein sums over
Fq2 and the fact that∑

(y1,···yn)∈D2

λ1λ
′
1(y1) · · · λnλ′

n(yn) +
∑

(y1,···yn)∈D2

λ1λ
′
1(y1) · · · λnλ′

n(yn)

=
∑

y1∈F∗
q2

λ1λ
′
1(y1) · · ·

∑
yn∈F∗

q2

λnλ′
n(yn) = 0.

It follows from Lemma 2 and Proposition 1 that

∣∣∣cU,V cH
U ′,V ′

∣∣∣ = 2
s2k−2

2

K
≤ 2

s2n−2
2

K
.

The equality holds if and only if λ1λ
′
1, · · · , λnλ′

n are nontrivial.

(2) If λ1λ
′
1, · · · , λnλ′

n are trivial, using the same argument as in the first case, we can
easily deduce that ∣∣∣cU,V cH

U ′,V ′
∣∣∣ = 2

s1k−2
2

K
≤ 2

s1n−2
2

K
.

The equality holds if and only if ϕ1ϕ
′
1, · · · , ϕnϕ′

n are nontrivial.
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(3) If ϕ1ϕ
′
1, · · · , ϕnϕ′

n are not all trivial and λ1λ
′
1, · · · , λnλ′

n are not all trivial, without

loss of generality, suppose that ϕ1ϕ
′
1, · · · , ϕlϕ

′
l are nontrivial and λ1λ

′
1, · · · , λkλ

′
k are

nontrivial, where 1 ≤ l, k ≤ n. By Lemma 2 and Proposition 1, we have

∣∣∣cU,V cH
U ′,V ′

∣∣∣ = 2

K

∣∣∣Eq1(ϕ1ϕ
′
1, · · · , ϕnϕ′

n)

∣∣∣ ∣∣∣Eq2(λ1λ
′
1, · · · , λnλ′

n)

∣∣∣
= 2

s1 l+s2k−2
2

K
≤ 2

s1n+s2n−2
2

K
.

The equality holds if and only if ϕ1ϕ
′
1, · · · , ϕnϕ′

n, λ1λ
′
1, · · · , λnλ′

n are nontrivial.

Combining three cases above, we see that the maximum cross-correlation amplitude

Imax(C) = 2
s1n+s2n−2

2

K
= 2

s1n+s2n

2

(2s1 − 1)n(2s2 − 1)n − 1
.

Theorem 2 Let the symbols be the same as those in Theorem 1. Then the codebook C
defined by (1) asymptotically achieves the Welch bound.

Proof Since C has parameters (N = (q1 − 1)n(q2 − 1)n, K = (q1−1)n(q2−1)n−1
2 ), the

corresponding Welch bound is

IW =
√

N − K

(N − 1)K
=

√
K + 1

2K2
.

Note that the maximum cross-correlation amplitude of C is Imax(C) = 2
s1n+s2n−2

2

K
.

Therefore,

Imax(C)

IW

=
√
2s1n+s2n−2

K2

2K2

K + 1
=

√
2s1n+s2n

(2s1 − 1)n(2s2 − 1)n + 1
→ 1,

when s1 → +∞ and s2 → +∞.

Remark 1 Let Q1 ≡ 3 mod 4 and Q2 ≡ 3 mod 4. Hu et al. [11, Corollary 1] pro-
posed a (Q1Q2,

Q1Q2−1
2 ) codebook with the maximum cross-correlation amplitude Imax =√

(Q1+1)(Q2+1)
Q1Q2−1 . If n = 1, then the codebooks generated by Theorem 1 have the same

parameters as the codebooks constructed by Hu. If n > 1 is odd, the codebooks gener-
ated by Theorem 1 have the same parameters N,K as the codebooks proposed by Hu.
However, the maximum cross-correlation amplitude of our construction is greater than the
maximum cross-correlation amplitude of Hu’s construction. If n > 1 is even, the code-
books produced by Theorem 1 have the new parameters due to (2s1 − 1)n ≡ 1 mod 4 and
(2s2 − 1)n ≡ 1 mod 4. In Table 2, we list some examples of codebooks generated by The-
orem 1 for n = 2 and some given s1 and s2 such that s = s1 = s2. As can be seen, the
codebook C asymptotically achieves the Welch bound.
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Table 2 Parameters of the (N,K) codebook of Theorem 1 for n = 2 and some given s = s1 = s2

s N K Imax(C) IW
Imax (C)

IW

2 81 40 0.200000 0.113192 1.76690

3 2401 1200 0.0266667 0.0204209 1.30585

4 50625 25312 0.00505689 0.00444458 1.13777

5 923521 461760 0.00110880 0.00104059 1.06556

6 15752961 7876480 0.000260015 0.000251953 1.03200

7 260144641 130072320 6.29803 × 10−5 6.20001 × 10−5 1.01581

8 4228250625 2114125312 1.54996 × 10−5 1.53787 × 10−5 1.00786

9 68184176641 34092088320 3.84465 × 10−6 3.82964 × 10−6 1.00392

10 1095222947841 547611473920 9.57409 × 10−7 9.55541 × 10−7 1.00196

11 17557851463681 8778925731840 2.38885 × 10−7 2.38651 × 10−7 1.00098

12 281200199450625 140600099725312 5.96629 × 10−8 5.96337 × 10−8 1.00049

13 4501401006735361 2250700503367680 1.49084 × 10−8 1.49048 × 10−8 1.00024

14 72040003462430721 36020001731215360 3.72620 × 10−9 3.72575 × 10−9 1.00012

15 1152780773560811521 576390386780405760 9.31436 × 10−10 9.31379 × 10−10 1.00006

4 A recursive construction

Based on the construction of asymptotically optimal codebooks in the previous section, we
study how to recursively construct asymptotically optimal codebooks with large and flexible
parameters.

For convenience, we adopt the following notation throughout this section.

– Let si > 1 be positive integers and qi = 2si , where 1 ≤ i ≤ l and l > 1 is an integer.
– For any 1 ≤ i ≤ l, we write Ni = (qi − 1)n, where n ≥ 1 is an integer.
– Fqi

is a finite filed with qi elements, where 1 ≤ i ≤ l.
– Trqi

(·) is the trace function from Fqi
to F2.

– Di = {(x1, x2, · · · , xn) ∈ (F∗
qi

)n : Trqi
(x1 + x2 + · · · + xn) = 1}, where 1 ≤ i ≤ l.

– Xi = (xi1, xi2, · · · , xin) ∈ (F∗
qi

)n for any 1 ≤ i ≤ l.

In Section 3, we present a construction of asymptotically optimal codebooks from the
operation D1 � D2. Here, we consider the similar operation of D1,D2, · · · , Dl by a recur-
sive method. Let (F∗

q1
)n × (F∗

q2
)n × · · · × (F∗

ql
)n = {(X1, X2, · · · , Xl) : Xi ∈ (F∗

qi
)n, 1 ≤

i ≤ l}. Now we construct a subset D of (F∗
q1

)n × (F∗
q2

)n × · · · × (F∗
ql

)n as follows. Assume

that P1 = D1. For any 1 ≤ i ≤ l − 1, we put Pi+1 = (Pi × Di+1) ∪ (P i × Di+1), where
P i = (F∗

q1
)n × (F∗

q2
)n × · · · × (F∗

qi
)n\Pi . In the end, let D = Pl .

Suppose that ϕi1, ϕi2, · · · , ϕin are multiplicative characters of Fqi
and Ui =

(ϕi1, ϕi2, · · · , ϕin) for any 1 ≤ i ≤ l. For simplicity, denote by Ui(Xi) =
ϕi1(xi1)ϕi2(xi2) · · ·ϕin(xin). Then we define a vector of length K = #D as

c(U1,··· ,Ul) = 1√
K

(U1(X1)U2(X2) · · ·Ul(Xl))(X1,X2,··· ,Xl)∈D,

and define a set C of N = N1N2 · · ·Nl unit-norm complex vectors by

C = {c(U1,··· ,Ul) : Ui ∈ (F̂∗
qi

)n, 1 ≤ i ≤ l}. (2)
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Obviously, the set C is an (N,K) codebook. In order to determine the length K and the
maximum cross-correlation amplitude of C, we need the following two lemmas.

Lemma 5 With the notation as above, #Pi = N1N2···Ni−(−1)in

2 for any 1 ≤ i ≤ l.

Furthermore, K = N1N2···Nl−(−1)ln

2 .

Proof We prove this lemma by mathematical induction. It follows from Lemma 4 that P1 =
D1 = N1−(−1)n

2 . Assume that #Pi = N1N2···Ni−(−1)in

2 for i > 1. Then, by the definition of
the set Pi+1, we have

#Pi+1 = #Pi × (Ni+1 − #Di+1) + (N1N2 · · · Ni − #Pi) × #Di+1

= N1N2 · · ·Ni − (−1)in

2
× Ni+1 + (−1)n

2

+N1N2 · · · Ni + (−1)in

2
× Ni+1 − (−1)n

2

= N1N2 · · ·Ni+1 − (−1)(i+1)n

2
.

Therefore, #Pi = N1N2···Ni−(−1)in

2 for any 1 ≤ i ≤ l and K = #Pl = N1N2···Nl−(−1)ln

2 .

Lemma 6 With the notation as above, for any multiplicative characters Ui ∈ (F̂∗
qi

)n, 1 ≤
i ≤ l, we get ∣∣∣∣∣∣

∑
(X1,X2,··· ,Xl)∈D

U1(X1)U2(X2) · · ·Ul(Xl)

∣∣∣∣∣∣ = K,

if Ui = (1, 1, · · · , 1) for any 1 ≤ i ≤ l. Otherwise,∣∣∣∣∣∣
∑

(X1,X2,··· ,Xl)∈D

U1(X1)U2(X2) · · ·Ul(Xl)

∣∣∣∣∣∣ ≤ 2
s1n+···+sl n−2

2 .

The equality holds if and only if ϕi1, ϕi2, · · · , ϕin are all nontrivial for any 1 ≤ i ≤ l.

Proof If Ui = (1, 1, · · · , 1) for any 1 ≤ i ≤ l, it is easy to show that∣∣∣∣∣∣
∑

(X1,X2,··· ,Xl)∈D

U1(X1)U2(X2) · · · Ul(Xl)

∣∣∣∣∣∣ = #D = K .

Otherwise, we verify
∣∣∣∑(X1,X2,··· ,Xl)∈D U1(X1)U2(X2) · · · Ul(Xl)

∣∣∣ ≤ 2
s1n+···+sl n−2

2 by using

mathematical induction. According to the proof of Theorem 1, the result is correct for l = 2.
If l > 2, assume that∣∣∣∣∣∣

∑
(X1,X2,··· ,Xl−1)∈Pl−1

U1(X1)U2(X2) · · ·Ul−1(Xl−1)

∣∣∣∣∣∣ ≤ 2
s1n+···+sl−1n−2

2 .
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We check that ∣∣∣∣∣∣
∑

(X1,X2,··· ,Xl)∈D

U1(X1)U2(X2) · · ·Ul(Xl)

∣∣∣∣∣∣ ≤ 2
s1n+···+sl n−2

2 ,

and the proof is divided into the following three cases.

(1) If Ul = (1, 1, · · · , 1) and there is at least one Ui �= (1, 1, · · · , 1), where 1 ≤ i < l,
then we obtain∣∣∣∣∣∣

∑
(X1,X2,··· ,Xl)∈D

U1(X1)U2(X2) · · ·Ul(Xl)

∣∣∣∣∣∣
=

∣∣∣∣∣∣(Nl − #Dl)
∑

(X1,X2,··· ,Xl−1)∈Pl−1

U1(X1)U2(X2) · · ·Ul−1(Xl−1)

+ #Dl

∑
(X1,X2,··· ,Xl−1)∈Pl−1

U1(X1)U2(X2) · · ·Ul−1(Xl−1)

∣∣∣∣∣∣
= |Nl − 2#Dl |

∣∣∣∣∣∣
∑

(X1,X2,··· ,Xl−1)∈Pl−1

U1(X1)U2(X2) · · · Ul−1(Xl−1)

∣∣∣∣∣∣
≤ 2

s1n+···+sl−1n−2
2 ,

where the last equality follows from the fact that

∑
(X1,X2,··· ,Xl−1)∈Pl−1

U1(X1)U2(X2) · · ·Ul−1(Xl−1)

+
∑

(X1,X2,··· ,Xl−1)∈Pl−1

U1(X1)U2(X2) · · · Ul−1(Xl−1) = 0.

(2) If Ui = (1, 1, · · · , 1) for any 1 ≤ i ≤ l − 1 and Ul �= (1, 1, · · · , 1), it follows from
Lemma 2 and Proposition 1 that

∣∣∣∣∣∣
∑

(X1,X2,··· ,Xl)∈D

U1(X1)U2(X2) · · · Ul(Xl)

∣∣∣∣∣∣
=

∣∣∣∣∣∣#Pl−1

∑
Xl∈Dl

Ul(Xl) + (N1N2 · · ·Nl−1 − #Pl−1)
∑

Xl∈Dl

Ul(Xl)

∣∣∣∣∣∣
= |N1N2 · · · Nl−1 − 2#Pl−1|

∣∣∣∣∣∣
∑

Xl∈Dl

Ul(Xl)

∣∣∣∣∣∣
≤ 2

sl n−2
2 .
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(3) If Ul �= (1, 1, · · · , 1) and there is at least one Ui �= (1, 1, · · · , 1), where 1 ≤ i < l,
then we obtain∣∣∣∣∣∣

∑
(X1,X2,··· ,Xl)∈D

U1(X1)U2(X2) · · ·Ul(Xl)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑

(X1,X2,··· ,Xl−1)∈Pl−1

U1(X1)U2(X2) · · · Ul−1(Xl−1)
∑

Xl∈Dl

Ul(Xl)

+
∑

(X1,X2,··· ,Xl−1)∈Pl−1

U1(X1)U2(X2) · · · Ul−1(Xl−1)
∑

Xl∈Dl

Ul(Xl)

∣∣∣∣∣∣
= 2

∣∣∣∣∣∣
∑

(X1,X2,··· ,Xl−1)∈Pl−1

U1(X1)U2(X2) · · ·Ul−1(Xl−1)

∣∣∣∣∣∣
∣∣∣∣∣∣

∑
Xl∈Dl

Ul(Xl)

∣∣∣∣∣∣
≤ 2

s1n+···+sl n−2
2 .

Consequently, we infer that∣∣∣∣∣∣
∑

(X1,X2,··· ,Xl)∈D

U1(X1)U2(X2) · · ·Ul(Xl)

∣∣∣∣∣∣ ≤ 2
s1n+···+sl n−2

2 .

By the method analogous to that used above and Proposition 1, we can show that the equality
holds if and only if ϕi1, ϕi2, · · · , ϕin are all nontrivial for any 1 ≤ i ≤ l.

Next, we present our second class of codebooks in the following theorem.

Theorem 3 Let the symbols be the same as above and n ≥ 1, l > 1 be integers. We write

N = N1N2 · · ·Nl and K = N1N2···Nl−(−1)ln

2 . Then the set C defined by (2) is an (N,K)

codebook and its maximum cross-correlation amplitude is Imax(C) = 2(s1n+s2n+···+sl n)/2

N1N2···Nl−(−1)ln
.

Proof From the definition of the set C and Lemma 5, it follows that C has N1N2 · · ·Nl vec-

tors and the length of each vector is N1N2···Nl−(−1)ln

2 . For any two distinct vectors c(U1,··· ,Ul)

and c(V1,··· ,Vl) of C, where Ui = (ϕi1, ϕi2, · · · , ϕin) and Vi = (λi1, λi2, · · · , λin) for any
1 ≤ i ≤ l, we get

∣∣∣c(U1,··· ,Ul)c
H
(V1,··· ,Vl )

∣∣∣ = 1

K

∣∣∣∣∣∣
∑

(X1,X2,··· ,Xl)∈D

U1V
−1
1 (X1)U2V

−1
2 (X2) · · ·UlV

−1
l (Xl)

∣∣∣∣∣∣ ,
where UiV

−1
i (Xi) = ϕi1λ

−1
i1 (xi1)ϕi2λ

−1
i2 (xi2) · · · ϕinλ

−1
in (xin). Due to (U1, · · · , Ul) �=

(V1, · · · , Vl), it follows from Lemma 6 that

∣∣∣c(U1,··· ,Ul)c
H
(V1,··· ,Vl )

∣∣∣ ≤ 2
s1n+···+sl n−2

2

K
= 2(s1n+s2n+···+sln)/2

N1N2 · · ·Nl − (−1)ln
.

The equality holds if and only if ϕi1λ
−1
i1 , ϕi2λ

−1
i2 , · · · , ϕinλ

−1
in are all nontrivial for any

1 ≤ i ≤ l.
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Theorem 4 Let the symbols be the same as those in Theorem 3. Then the codebook C
defined by (2) is asymptotically optimal with respect to the Welch bound.

Proof Observe that C is an
(
N = N1N2 · · ·Nl,K = N1N2···Nl−(−1)ln

2

)
codebook. The

corresponding Welch bound of C is

IW =
√

K + (−1)ln

2K2 + ((−1)ln − 1)K
.

Due to Imax(C) = 2(s1n+s2n+···+sl n)/2

N1N2···Nl−(−1)ln
, it follows that

Imax(C)

IW

=

√√√√ 2
s1n+···sln

(
1+ (−1)ln−1

(2s1−1)n ···(2sl −1)n

)

(2s1 − 1)n · · · (2sl − 1)n + (−1)ln
→ 1,

if si → 1 for any 1 ≤ i ≤ l.

Remark 2 Let l > 1 be an integer and Qi ≡ 3 mod 4, where 1 ≤ i ≤ l. The codebooks
generated by [11, Theorem 2] has parameters N = Q1Q2 · · ·Ql,K = Q1Q2···Ql−1

2 and

the maximum cross-correlation amplitude Imax =
√

(Q1+1)(Q2+1)···(Ql+1)
Q1Q2···Ql−1 . If n = 1, then

the codebooks in Theorem 3 has the same parameters as the codebooks constructed by
[11, Theorem 2]. For any n > 1 such that n is odd, the codebooks produced by Theorem
3 has the same parameters N,K as the codebooks proposed by [11, Theorem 2]. While
the maximum cross-correlation amplitude of our construction is greater than the maximum
cross-correlation amplitude of codebooks generated by [11, Theorem 2]. If n > 1 is even,
the codebooks produced by Theorem 3 has the new parameters due to (2si − 1)n ≡ 1 mod 4
for any 1 ≤ i ≤ l. In Table 3, we provide some explicit examples of the codebook C in
Theorem 3 for n = 2, l = 3 and some given s = s1 = s2 = s3. It is indicated that the
codebook C produced by Theorem 3 is asymptotically optimal with respect to the Welch
bound.

Table 3 Parameters of the (N,K) codebook of Theorem 3 for n = 2, l = 3 and some given s = s1 = s2 = s3

s N K Imax(C) IW
Imax (C)

IW

2 729 364 0.0879121 0.0371134 2.36875

3 117649 58824 0.00435197 0.00291549 1.49270

4 11390625 5695312 0.000359594 0.000296297 1.21363

5 887503681 443751840 3.69215 × 10−5 3.35672 × 10−5 1.09993

6 62523502209 31261751104 4.19273 × 10−6 3.99924 × 10−6 1.04838

7 4195872914689 2097936457344 4.99813 × 10−7 4.88190 × 10−7 1.02381

8 274941996890625 137470998445312 6.10210 × 10−8 6.03086 × 10−8 1.01181

9 17804320388674561 8902160194337280 7.53849 × 10−9 7.49441 × 10−9 1.00588

10 1146182576381093889 573091288190546944 9.36799 × 10−10 9.34056 × 10−10 1.00294
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5 Concluding remarks

In this paper, we investigated the operation of certain sets and its recursive construc-
tion. Based on the operations of sets, we proposed two constructions of codebooks and
determined the maximum cross-correlation amplitude of codebooks generated by these
two constructions. We verified that the codebooks generated by these two constructions
are asymptotically optimal with respect to the Welch bound. Although our constructions
are very similar to the constructions proposed in [11], the codebooks generated by our
constructions have new parameters in some cases.

The technique of compression while sampling, usually referred to as Compressed Sens-
ing, has been the center of attention for a decade. In Compressed Sensing, an (N,K)

codebook can be viewed as a K × N compressed sensing matrix. As an application, we can
employ our codebooks to construct compressed sensing matrices with low coherence.
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