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Abstract We describe a method to decompose any power permutation, as a sequence of
power permutations of lower algebraic degree. As a result we obtain decompositions of the
inversion in GF(2n) for small n from 3 up to 16, as well as for the APN functions, when
n = 5. More precisely, we find decompositions into quadratic power permutations for any
n not multiple of 4 and decompositions into cubic power permutations for n multiple of 4.
Finally, we use the Theorem of Carlitz to prove that for 3 ≤ n ≤ 16 any n-bit permutation
can be decomposed in quadratic and cubic permutations.
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1 Introduction

In order to efficiently implement complex S-boxes or permutations in hardware we need
first to decompose them into simpler maps.
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Definition 1 (Decomposition) A decomposition of a function f : GF(2n) → GF(2n) is a
finite sequence of functions g1, g2, . . . gt such that

f (x) = gt ◦ gt−1 ◦ · · · ◦ g2 ◦ g1(x).

This question has been investigated in the context of Threshold Implementation in [12,
16], where the decomposition and factorization of the Present S-box on quadratic S-boxes
has been proposed. This research has been extended to all 3× 3 and 4× 4 S-boxes in [3, 4].
In the same context it was proven that when n = 4 all S-boxes belonging to the Alternative
group have decomposition into quadratic permutations and all S-boxes not belonging to
the Alternative group have no such decomposition, the inversion is among the latter [3, 4].
Decompositions of permutations into simpler operations, i.e. with less field multiplications,
to enable more efficient side-channel countermeasures have been presented in [7, 8, 11, 17].
The goal of this paper is different - we target a decomposition of permutations into quadratic
or cubic permutations.

Let us recall some well known results, which are used in the paper. There is no n-bit
permutation with degree n [2], i.e. the maximal algebraic degree of a balanced n-variable
Boolean function is n − 1. The inverse of an affine permutation is affine, the (algebraic)
degree of a permutation xd is equal to wt(d) (Hamming weight), hence the permutations xd

and xd ◦ x2i
are affine equivalent since x2i

are linear permutations. It has also been shown
that xd is a permutation of GF(2n) if and only if gcd(d, 2n − 1) = 1 [2]. Note that for
n = 2m there is no quadratic power function which is a permutation. It can easily be seen
that the quadratic function x3 is a permutation whenever n is odd. Indeed, since 2 = −1
mod 3 it follows that 2n − 1 = 1 mod 3 or in other words gcd(3, 2n − 1) = 1. It can also
been seen that x3 is not a permutation when n is even. All involution permutations [15] are
a product of disjoint cycles with 1 or 2 elements only.

Recall that a mapping f from GF(2n) into GF(2m) is called differentially δ-uniform
(or simply δ-uniform) if for all a ∈ GF(2n), a �= 0, and b ∈ GF(2m) we have |{z ∈
GF(2n)|f (z + a) − f (z) = b}| ≤ δ. It is proven in [14] that the inversion mapping f i.e.
x−1 = x2n−2 in GF(2n) has deg(f ) = n − 1, since wt(2n − 2) = n − 1; it has odd parity;
f is differentially 2-uniform if n is odd and it is differentially 4-uniform if n is even.
The functionswhich are 2-uniform are also known asAlmost Perfect Nonlinear (APN) functions.

Theorem 1 ([5]) There are 5 APN permutations in GF(25) up to affine equivalence, all
of those are affine equivalent to power functions APN5

1 = x3, APN5
2 = x5, APN5

3 =
x7, APN5

4 = x11, APN5
5 = x15. Where APN5

5 is equivalent to its inverse, and APN5
1

(respectively APN5
2 ) is equivalent to the inverse of APN5

4 (respectively APN5
3 ). Note that

APN5
1 and APN5

2 are quadratic, APN5
3 and APN5

4 are cubic, and APN5
4 has degree 4.

There is only one known affine equivalence class of 6-bit APN permutations and it has
degree 4. It is known that this permutation can be decomposed into two permutations of
degree three and two, namely APN6 = g ◦ f , where f is cubic and g is quadratic.

Carlitz proved the following important theorem [9].

Theorem 2 Given a finite field GF(q) with q > 2 then all permutation polynomials over
it are generated by the special permutation polynomials xq−2 (the inversion) and ax + b

(affine i.e. a, b ∈ GF(q) and a �= 0).
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In other words any permutation [10, 18] can be presented as decomposition of affine
and inverse permutations. The number of inversions in this decomposition is referred as the
Carlitz rank [1].

Our contribution in this paper is twofold - first, we describe a method to decompose any
power function as a sequence of power permutations of lower algebraic degree. Using this
method we provide decompositions of the inversion in GF(2n) for small n from 3 up to
16, as well as for the APN functions when n = 5. Namely, there exist decompositions into
quadratic power permutations for any n not multiple of 4 and decompositions into cubic
power permutations for n multiple of 4. The second contribution of this paper is to extend
the known, for n = 4, decomposition results to any permutation in GF(2n)with 3 ≤ n ≤ 16.
In other words, we show that any permutation can be decomposed in cubic (or quadratic)
permutations when n is (or not) multiple of 4. This general result is obtained thanks to the
Theorem of Carlitz.

2 Decompositions

We will start with an algorithm which finds decompositions for the inversion into quadratic
or cubic power permutations. Note that it is straightforward to apply the same method to
other well known power functions as we demonstrate later for the APN functions when
n = 5.

Let us recall that for n = 2m there is no quadratic power function which is a permutation,
hence there will be no decomposition of the inversion on quadratic power permutations
for such n. When n = 12 the only quadratic power permutation is x17, but it has even
parity while the inversion has an odd parity, hence no decomposition of the inversion on
quadratic power permutations exists when n = 12. Since we consider 3 ≤ n ≤ 16 then
when n is multiple of 4 (i.e. n = 4, 8, 12, 16) we will look for decompositions on cubic
power permutations, in all the other cases we will search for decompositions on quadratic
power permutations. Let us denote byA(k) the cyclotomic class of a power permutation xk ,
namelyA(k) = {k2i mod (2n −1), such that gcd(k2i , 2n −1) = 1 for i = 0, . . . , n−1}.
Next, we consider the following algorithm (see Fig. 1) in which the first two steps are
pre-computations followed by two alternatives for the search loop.

Since we are looking only for decompositions relevant to the S-boxes used in symmetric
cryptographic primitives the choice of n between 3 and 16 is entirely justified. We would
like to point out as well that the use of cyclotomic classes in the first step of the algorithm
is similar to the algorithms in [7, 8, 11, 17], however our goal and the algorithm steps
afterwards are different. Thus, the algorithm described above is adapted to serve well our
purposes to find all desirable decompositions. Note that the exhaustive search worked out
for all n except n = 13, 15 and 16.

All decompositions we found for the inversion given in Table 1 are with a minimal length.
We applied our algorithm also for APN5

3 = x7, APN5
4 = x11 and APN5

5 = x15 and found
that for APN5

3 = x4 ◦ x5 ◦ x5 i.e. decomposition of length 2; for APN5
4 = x8 ◦ x3 ◦ x5 ◦ x5

i.e. decomposition of length 3; for APN5
5 = x5 ◦ x3 i.e. decomposition of length 2; and

those are the shortest decompositions.
A confirmation of the above results is given by the decompositions of the inversion in

GF(28) i.e. the AES S-box which is of algebraic degree 7, presented in [13]: x−1 = x32◦
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Fig. 1 Algorithm for decompositions of power permutations

x19 ◦ x13 i.e., a composition of 2 permutations of degree 3; x−1 = x16 ◦ x43 ◦ x53 i.e., a
composition of 2 permutations of degree 4; x−1 = x128 ◦ x23 ◦ x11 i.e., a composition of a
permutations of degree 3 with a permutation of degree 4.

Table 1 Decompositions of the inversion

n Decomposition n Decomposition

x−1 Length x−1 Length

3 x2 ◦ x3 1 4 x2 ◦ x7 1

5 x2 ◦ x3 ◦ x5 2 6 x5 ◦ x5 ◦ x5 3

7 x26 ◦ x5 ◦ x5 ◦ x5 3 8 x25 ◦ x13 ◦ x19 2

9 x2 ◦ x17 ◦ x5 ◦ x3 3 10 x17 ◦ ... ◦ x17 15

11 x2 ◦ x5 ◦ x9 ◦ x9 ◦ x9 ◦ x9 ◦ x9 ◦ x9 ◦ x9 8 12 x23 ◦ x97 ◦ x97 ◦ x97 3

13 x210 ◦ x5 ◦ x17 ◦ x17 ◦ x17 4 14 x5 ◦ ... ◦ x5 21

15 x22 ◦ x3 ◦ x9 ◦ x33 ◦ x129 ◦ x129 ◦ x129 6 16 x213 ◦ x11 ◦ x37 ◦ x161 3
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To complete our result we use Theorem 2 (Carlitz) and belowwe state our main Theorem.

Theorem 3 For n ≤ 16 any permutation can be decomposed in quadratic permutations,
when n is not multiple of 4 and in cubic permutations, when n is multiple of 4.

Note that Theorem 2 uses a subset of affine transformations of the type ax + b where
a, b are field elements. Recall that any affine permutation can be written as b +∑n−1

i=0 aix
2i

called also linearized polynomials (plus a constant b) [6], where the coefficients ai are field
elements. Since Carlitz considers only a subset of them by using all affine permutations
instead we can achieve shorter Carlitz rank. Note that the classes with even/odd Carlitz rank
have even/odd parity. We should point out that although the decompositions we have found
for the inversion are with minimal length, the decompositions found in Theorem 3 for any
S-box might not have minimal length.

Another application of our main Theorem relates to the decompositions of the S-boxes
when n = 3 and n = 4. We will use the notations introduced in [3] An

i , Qn
j and Cn

k where
the upper index n indicates that we consider a permutation with 2n elements, the lower
index i, j, k is the number of the considered class among all affine equivalent classes when
they are alphabetically ordered and the letter A,Q, C shows whether this is an Affine,
Quadratic or Cubic class. All single permutation transpositions (0, j) belong to the class
Q3

1 for 3× 3 permutations. Moreover, all 4 classes for n = 3 can be obtained via Inv ◦ A ◦
Inv ◦ B ◦ Inv, where A, B and C are affine permutations i.e. with Carlitz rank at most 3.
Class A3

0 is the affine class, i.e., has rank 0 and the class Q3
3 is the only class with rank 1,

since it contains the inversion. Then the class Q3
2 is with rank 2 and the remaining quadratic

class Q3
1 is with rank 3. Note that, from the construction used in the proof of the Carlitz

Theorem, the single transpositions (i.e. class Q3
1) are with Carlitz rank 3.

All 302 classes for n = 4 can be obtained as follows: Inv ◦ A ◦ Inv ◦ B ◦ Inv◦
C ◦ Inv i.e. with Carlitz rank at most 4. Class A4

0 is the affine class and hence
with rank 0, the cubic class C4

282 is the only class with rank 1 since it contains the
inversion. Then there are 59 classes with rank 2: {010, 016, 024, 041, 049, 050, 052,
053, 060, 061, 063, 064, 066, 067, 070, 071, 073, 074, 076, 081, 083, 089, 092, 095, 096,
099, 107, 118, 126, 127, 130, 131, 138, 140, 142, 150, 151, 164, 165, 168, 171, 172, 174,
180, 192, 201, 202, 211, 212, 217, 236, 249, 254, 262, 268, 270, 273, 281, 287}. Next there
are 150 classes with rank 3 - namely all the classes not belonging to the Alternative
group except C4

282: {001, 003, 005, 007, 009, 011, 013, 015, 017, 019, 021, 023, 025, 027,
029, 030, 032, 035, 037, 039, 040, 042, 045, 047, 048, 051, 054, 056, 058, 059, 062, 065,
068, 069, 072, 075, 077, 079, 080, 082, 084, 087, 088, 090, 091, 093, 094, 097, 098, 100,
102, 105, 106, 108, 109, 112, 113, 116, 117, 119, 122, 125, 128, 129, 132, 133, 135, 137,
139, 141, 143, 144, 146, 149, 152, 153, 156, 157, 160, 163, 166, 167, 169, 170, 173, 175,
177, 179, 181, 182, 185, 186, 188, 190, 191, 193, 195, 197, 199, 200, 203, 204, 206, 207,
209, 210, 213, 216, 218, 220, 222, 224, 226, 227, 229, 230, 232, 235, 237, 239, 241, 242,
245, 246, 248, 250, 251, 253, 255, 256, 257, 261, 263, 265, 267, 269, 271, 272, 274, 276,
279, 283, 284, 285, 289, 290, 291, 295, 298, 301}. From the construction used in
the proof of the Carlitz Theorem, the single transpositions (0, j) (i.e. class C4

1 ) are
with Carlitz rank 3. The remaining 91 classes are with rank 4 and among them are all
the 6 quadratic classes: {002, 004, 006, 008, 012, 014, 018, 020, 022, 026, 028, 031, 033,
034, 036, 038, 043, 044, 046, 055, 057, 078, 085, 086, 101, 103, 104, 110, 111, 114, 115,
120, 121, 123, 124, 134, 136, 145, 147, 148, 154, 155, 158, 159, 161, 162, 176, 178, 183,
184, 187, 189, 194, 196, 198, 205, 208, 214, 215, 219, 221, 223, 225, 228, 231, 233, 234,
238, 240, 243, 244, 247, 252, 258, 259, 260, 264, 266, 275, 277, 278, 280, 286, 288, 292,
293, 294, 296, 297, 299, 300}.
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Five classes {006, 136, 161, 162, 278} will have rank 2 instead of rank 4 if all affine
transformations are used instead of only the ones of the type ax + b.

3 Conclusions

We have shown that any permutation (for 3 ≤ n ≤ 16 ) can be decomposed in quadratic
permutations, when n is not multiple of 4 and in cubic permutations, when n is multiple
of 4. There are still two open problems to be solved: Can the inversion be decomposed in
quadratic permutations when n is multiple of 4 and n > 4? Can we find decompositions
with shorter length?
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