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Abstract Recently, linear codes constructed from defining sets have been investigated
extensively and they have many applications. For an odd prime p, we determine the com-
plete weight enumerator and weight enumerator of a class of p-ary linear codes by choosing
a proper defining set. The results show that they have at most two weights and are suitable
for applications in secret sharing schemes.
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1 Introduction

Throughout this paper, let p be an odd prime and q = pe for a positive integer e. Denote
by Fq a finite field with q elements. An [n, κ, δ] linear code C over Fp is a κ-dimensional
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subspace of Fn
p with minimum distance δ (see [20]). LetAi denote the number of codewords

with Hamming weight i in a linear code C of length n. Then 1+ A1z + A2z
2 + · · · + Anz

n

is defined to be the weight enumerator of C.
The complete weight enumerator of a code enumerates the codewords according to the

number of symbols of each kind contained in each codeword. Let the elements of Fp be
denoted by w0 = 0, w1, · · · , wp−1, in some fixed order. Also, let F∗

p denote Fp\{0}. For a
codeword c = (c0, c1, · · · , cn−1) ∈ F

n
p , let w[c] be the complete weight enumerator of c,

which is defined as
w[c] = w

k0
0 w

k1
1 · · ·wkp−1

p−1 ,

where kj is the number of components of c equal towj ,
∑p−1

j=0 kj = n. The complete weight
enumerator of the code C is then

CWE(C) =
∑

c∈C

w[c].

The weight enumerators of linear codes have been well studied in literature, see, for
example, [11, 12, 22, 29, 30] and references therein. The information of the complete weight
enumerators of linear codes is of vital use because they not only give the weight enumera-
tors but also show the frequency of each symbol appearing in each codeword. Furthermore
the complete weight enumerator has close relation to the deception probabilities of certain
authentication codes [7], and is used to compute the Walsh transform of monomial and
quadratic bent functions over finite fields [13]. Further research can be found in [2, 3, 8, 15,
16, 25, 26].

The authors of [6, 9, 10] gave the following generic construction of linear codes. Set
D = {d1, d2, · · · , dn} ⊆ F

∗
q , where q = pe. Denote by Tr the absolute trace function from

Fq to Fp . A linear code associated with D is defined by

CD = {(Tr(ad1),Tr(ad2), · · · ,Tr(adn)) : a ∈ Fq}.
The set D is called the defining set of CD . This construction technique leads to a new
research and was employed to construct linear codes with a few weights, see [1, 14, 17, 18,
23, 24, 27] for more details.

Motivated by the above construction and the idea of [23], we investigate a class of linear
codes with defining set. Recall q = pe. Let d = gcd(k, e) be the greatest common divisor
of positive integers k and e. Suppose that e/d is even with e = 2m. The code is defined by

CDb
= {(Tr(axpk+1))x∈Db

: a ∈ Fpd }, (1)

with defining set
Db = {x ∈ F

∗
q : Tr(x) = b} for b ∈ Fp.

The remainder of this paper is organized as follows. In Section 2, we describe the main
results of this paper, additionally we give some examples. In Section 3, we briefly recall
some definitions and results on cyclotomic numbers and exponential sums, then prove the
main results. In Section 4, we make a conclusion.

2 Main results

In this section, we only introduce the complete weight enumerator and weight enumerator
of CDb

described in Section 1. The main results of this paper are presented below, whose
proofs will be given in Section 3.
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Theorem 1 If b = 0, then the code CD0 of (1) is a [pe−1 − 1, d] linear code and the
following assertions hold.

(i) When m/d ≡ 1 mod 2 and m/d �≡ 0 mod p, its weight enumerator is

1 + (p − 1)pd−1z(p−1)pe−2 + (pd−1 − 1)z(p−1)(pe−2+pm−1)

and its complete weight enumerator is

w
pe−1−1
0 + p − 1

2
pd−1w

pe−2−1
0

⎛

⎝
∏

ρ∈F∗
p

wpe−2−η(ρ)pm−1

ρ +
∏

ρ∈F∗
p

wpe−2+η(ρ)pm−1

ρ

⎞

⎠

+(pd−1 − 1)wpe−2−(p−1)pm−1−1
0

∏

ρ∈F∗
p

wpe−2+pm−1

ρ .

(ii) When m/d ≡ 1 mod 2 and m/d ≡ 0 mod p, the code CD0 has only one non-zero
weight (p − 1)(pe−2 + pm−1) and its complete weight enumerator is

w
pe−1−1
0 + (pd − 1)wpe−2−(p−1)pm−1−1

0

∏

ρ∈F∗
p

wpe−2+pm−1

ρ .

(iii) When m/d ≡ 0 mod 2 and m/d �≡ 0 mod p, its weight enumerator is

1 + (p − 1)pd−1z(p−1)pe−2 + (pd−1 − 1)z(p−1)(pe−2+pm+d−1)

and its complete weight enumerator is

w
pe−1−1
0 + p − 1

2
pd−1w

pe−2−1
0

⎛

⎝
∏

ρ∈F∗
p

wpe−2−η(ρ)pm+d−1

ρ +
∏

ρ∈F∗
p

wpe−2+η(ρ)pm+d−1

ρ

⎞

⎠

+(pd−1 − 1)wpe−2−(p−1)pm+d−1−1
0

∏

ρ∈F∗
p

wpe−2+pm+d−1

ρ .

(iv) When m/d ≡ 0 mod 2 and m/d ≡ 0 mod p, the code CD0 has only one non-zero
weight (p − 1)(pe−2 + pm+d−1) and its complete weight enumerator is

w
pe−1−1
0 + (pd − 1)wpe−2−(p−1)pm+d−1−1

0

∏

ρ∈F∗
p

wpe−2+pm+d−1

ρ .

Theorem 2 If b ∈ F
∗
p , then the code CDb

of (1) is a [pe−1, d, (p − 1)pe−2] linear code
and the following assertions hold.

(i) When m/d ≡ 1 mod 2 and m/d �≡ 0 mod p, its weight enumerator is

1 + (pd−1 − 1)z(p−1)pe−2 + (p − 1)pd−1z(p−1)pe−2+pm−1

and its complete weight enumerator is

w
pe−1

0 + (pd−1 − 1)
∏

ρ∈Fp

wpe−2

ρ + pd−1w
pe−2−pm−1

0

∑

λ∈F∗
p

∏

ρ∈F∗
p

wpe−2−η(b2−ρλ)pm−1

ρ .

(ii) When m/d ≡ 0 mod 2 and m/d �≡ 0 mod p, its weight enumerator is

1 + (pd−1 − 1)z(p−1)pe−2 + (p − 1)pd−1z(p−1)pe−2+pm+d−1
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and its complete weight enumerator is

w
pe−1

0 +(pd−1−1)
∏

ρ∈Fp

wpe−2

ρ +pd−1w
pe−2−pm+d−1

0

∑

λ∈F∗
p

∏

ρ∈F∗
p

wpe−2−η(b2−ρλ)pm+d−1

ρ .

(iii) When m/d ≡ 0 mod p, the code CDb
has only one non-zero weight (p − 1)pe−2

and its complete weight enumerator is

w
pe−1

0 + (pd − 1)
∏

ρ∈Fp

wpe−2

ρ .

Some concrete examples are provided below to illustrate our results.

Example 1 Let (p,m, k) = (5, 2, 2). Then d = gcd(2m, k) = 2 and s = m/d = 1. If
b = 0, the code CD0 has parameters [124, 2, 100], weight enumerator 1 + 20z100 + 4z120

and complete weight enumerator

w124
0 + 10w24

0 (w1w4)
20(w2w3)

30 + 10w24
0 (w1w4)

30(w2w3)
20 + 4w4

0(w1w2w3w4)
30.

If b = 1, the code CD1 has parameters [125, 2, 100], weight enumerator 1+ 4z100 + 20z105

and complete weight enumerator

w125
0 +4

4∏

ρ=0

w25
ρ +5w20

0

(
w25
1 w20

2 w30
3 w30

4 +w30
1 w25

2 w30
3 w20

4 +w20
1 w30

2 w25
3 w30

4 +w30
1 w30

2 w20
3 w25

4

)
.

These results are checked by Magma.

Example 2 Let (p,m, k) = (3, 3, 1). Then d = gcd(2m, k) = 1 and s = m/d = 3.
If b = 0, the code CD0 has parameters [242, 1, 180], weight enumerator 1 + 2z180

and complete weight enumerator w242
0 + 2w62

0 (w1w2)
90. If b = 1, the code CD1 has

parameters [243, 1, 162], weight enumerator 1 + 2z162 and complete weight enumerator
w243
0 + 2(w0w1w2)

81. These results are checked by Magma.

3 The proofs of the main results

3.1 Auxiliary results

In order to prove the results proposed in Section 2, we will use several results which are
depicted and proved in the sequel. We start with the concepts of cyclotomic numbers and
exponential sums over finite fields. Recall that q = pe. Let θ be a primitive element of Fq

and q = Nh + 1 for integers N > 1, h > 1. The cyclotomic classes of order N in Fq are

the cosets C
(N,q)
i = θi〈θN 〉 for i = 0, 1, · · · , N − 1, where 〈θN 〉 denotes the subgroup of

F
∗
q generated by θN . For fixed i and j , we define the cyclotomic number (i, j)(N, q) to be

the number of solutions of the equation

xi + 1 = xj

(
xi ∈ C

(N, q)
i , xj ∈ C

(N, q)
j

)
,
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where 1 = θ0 is the multiplicative unit of Fq . That is, (i, j)(N, q) is the number of ordered
pairs (u, v) such that

θNu+i + 1 = θNv+j (0 � u, v � h − 1).

Now we review some results on cyclotomic numbers.

Lemma 1 ( [21] ) When N = 2, the cyclotomic numbers are given by

(1) h even: (0, 0)(2, r) = h−2
2 , (0, 1)(2, r) = (1, 0)(2, r) = (1, 1)(2, r) = h

2 .

(2) h odd: (0, 0)(2, r) = (1, 0)(2, r) = (1, 1)(2, r) = h−1
2 , (0, 1)(2, r) = h+1

2 .

Next, let us introduce group characters and exponential sums. For each b ∈ Fq , an

additive character χb of Fq is defined by χb(x) = ζ
Tr(bx)
p for all x ∈ Fq , where ζp =

exp
(
2π

√−1
p

)
and Tr is the simplification of the trace function Tre1 from Fq to Fp . For b = 1,

χ1 is called the canonical additive character of Fq .
Let ηe denote the quadratic character of Fq . The quadratic Gauss sum G(ηe, χ1) is

defined by

G(ηe, χ1) =
∑

x∈F∗
q

ηe(x)χ1(x).

We denote Ge = G(ηe, χ1) and G = G(η, χ ′
1), where η and χ ′

1 are the quadratic character
and canonical additive character of Fp, respectively. Moreover, it is well known that Ge =
(−1)e−1√p∗e and G = √

p∗, where p∗ = η(−1)p. See [10, 19] for more information.
The following lemmas will be of special use in the sequel.

Lemma 2 (Theorem 5.33, [19]) Let q = pe be odd and f (x) = a2x
2 + a1x + a0 ∈ Fq [x]

with a2 �= 0. Then
∑

x∈Fq

ζ
Tr(f (x))
p = ζ

Tr(a0−a21 (4a2)
−1)

p ηe(a2)Ge,

where ηe is the quadratic character of Fq .

For α, β ∈ Fq and any integer k, the exponential sum S(α, β) is defined by

S(α, β) =
∑

x∈Fq

χ1(αxpk+1 + βx).

We recall some results of S(α, β) for α �= 0 and q odd.

Lemma 3 (Theorem 2, [4]) Let d = gcd(k, e) and e/d be even with e = 2m. Then

S(α, 0) =
{

(−1)spm if α(q−1)/(pd+1) �= (−1)s,

(−1)s+1pm+d if α(q−1)/(pd+1) = (−1)s,

where s = m/d .

Lemma 4 (Theorem 4.7, [5]) Let β �= 0 and e/d be even with e = 2m. Set fα(X) =
αpk

Xp2k + αX. Then S(α, β) = 0 unless the equation fα(X) = −βpk
is solvable. There

are two possibilities.
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(i) If α(q−1)/(pd+1) �= (−1)s , then for any choice of β ∈ Fq , the equation has a unique
solution x0 and

S(α, β) = (−1)spmχ1(−αx
pk+1
0 ).

(ii) If α(q−1)/(pd+1) = (−1)s and the equation is solvable with some solution x0 say, then

S(α, β) = (−1)s+1pm+dχ1(−αx
pk+1
0 ).

Lemma 5 (Theorem 4.1, [4]) For e = 2m the equation αpk
Xp2k + αX = 0 is solvable for

X ∈ F
∗
q if and only if e/d is even and

α(q−1)/(pd+1) = (−1)s .

In such cases there are p2d − 1 non-zero solutions.

3.2 The proofs of the theorems in Section 2

In this subsection, we will prove of our main results presented in Section 2. Recall that
q = pe, d = gcd(k, e), e/d is even with e = 2m. The code CDb

with b ∈ Fp , is defined by

CDb
= {(Tr(axpk+1))x∈Db

: a ∈ Fpd },

where Db = {x ∈ F
∗
q : Tr(x) = b}. It is trivial that CDb

has length n0 = pe−1 − 1 if b = 0

and nb = pe−1 otherwise.
Observe that a = 0 gives the zero codeword and the contribution to the complete weight

enumerator is wn
0 . This value occurs only once. Hence, we may assume that a ∈ F

∗
pd in the

rest of this subsection.
For a codeword ca = (Tr(axpk+1))x∈Db

of CDb
and ρ ∈ Fp , let na(b, ρ) denote the

number of components of ca that are equal to ρ, i.e.,

na(b, ρ) = #{x ∈ F
∗
q : Tr(x) = b and Tr(axpk+1) = ρ}.

For convenience, we compute

Na(b, ρ) = #{x ∈ Fq : Tr(x) = b and Tr(axpk+1) = ρ}.
Then we have

Na(b, 0) = pe−1 −
∑

ρ∈F∗
p

Na(b, ρ). (2)

Also it is easy to obtain the Hamming weight of ca , that is

wt(ca) =
∑

ρ∈F∗
p

Na(b, ρ) = pe−1 − Na(b, 0).

So we only consider ρ ∈ F
∗
p and a ∈ F

∗
pd in the sequel.
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Now it comes to determine the value of Na(b, ρ) for ρ ∈ F
∗
p . By definition, we have

Na(b, ρ) = p−2
∑

x∈Fq

∑

y∈Fp

ζ
yTr(x)−by
p

∑

z∈Fp

ζ zTr(axpk+1)−ρz
p

= pe−2 + p−2
∑

z∈F∗
p

∑

x∈Fq

ζ zTr(axpk+1)−ρz
p + p−2

∑

y∈F∗
p

∑

x∈Fq

ζ
yTr(x)−by
p

+p−2
∑

y∈F∗
p

∑

z∈F∗
p

∑

x∈Fq

ζ
Tr(azxpk+1+yx)−by−ρz
p

= pe−2 + p−2Aa(ρ) + p−2Ba(b, ρ), (3)

where

Aa(ρ) :=
∑

z∈F∗
p

∑

x∈Fq

ζ zTr(axpk+1)−ρz
p , (4)

Ba(b, ρ) :=
∑

y∈F∗
p

∑

z∈F∗
p

∑

x∈Fq

ζ
Tr(azxpk+1+yx)−by−ρz
p . (5)

The following lemmas state the evaluations of Aa(ρ) and Ba(b, ρ).

Lemma 6 Let a ∈ F
∗
pd and ρ ∈ F

∗
p. Denote s = m/d . Then

Aa(ρ) =
{

pm if s is odd,
pm+d if s is even.

Proof By (4),

Aa(ρ) =
∑

z∈F∗
p

ζ−ρz
p S(az, 0).

A straightforward calculation gives that (az)(q−1)/(pd+1) = 1 for z ∈ F
∗
p and a ∈ F

∗
pd . Then

the desired conclusion follows from Lemma 3.

For the later use, we set fa(X) = aXp2k + aX ∈ Fq [X] for a ∈ F
∗
pd .

Lemma 7 Let b ∈ Fp and ρ ∈ F
∗
p . Suppose that e/d is even with e = 2m and s = m/d .

Then for each a ∈ F
∗
pd , the equation fa(X) = −1 has a solution γ = −1/(2a) and so

Ba(b, ρ) �= 0. Denote λ := Tr(a−1). The evaluation of Ba(b, ρ) �= 0 partitions into the
following two cases.

(i) If b = 0, then

Ba(0, ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

(p − 1)pm if s is odd and λ = 0,
− (pη(−ρλ) + 1) pm if s is odd and λ �= 0,
(p − 1)pm+d if s is even and λ = 0,
− (pη(−ρλ) + 1) pm+d if s is even and λ �= 0.
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(ii) If b �= 0, then

Ba(b, ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

−pm if s is odd and λ = 0,
− (

pη(b2 − ρλ) + 1
)
pm if s is odd and λ �= 0,

−pm+d if s is even and λ = 0,
− (

pη(b2 − ρλ) + 1
)
pm+d if s is even and λ �= 0.

Proof Let e/d be even. By (5),

Ba(b, ρ) =
∑

y∈F∗
p

ζ
−by
p

∑

z∈F∗
p

ζ−ρz
p S(az, y). (6)

For y, z ∈ F
∗
p, it follows from Lemma 4 that S(az, y) = 0 unless the equation faz(X) =

−ypk
is solvable. But for each a ∈ F

∗
pd , we can verify that γ = −1/(2a) is a solution of

fa(X) = aXp2k + aX = −1 and so z−1γy is a solution of faz(X) = (az)Xp2k + (az)X =
−ypk

. This implies that Ba(b, ρ) �= 0.
For the evaluation of Ba(b, ρ) �= 0, we first consider the case that s is odd. In this case

faz(X) = −ypk
has a unique solution z−1γy because fa(X) = aXp2k +aX is a permutation

polynomial over Fq by Lemma 5 and γ is the unique solution of fa(X) = −1. Thus we
have from Lemma 4 that

S(az, y) = −pmχ1(−az(z−1γy)p
k+1).

Plugging this into Ba(b, ρ) of (6) gives that

Ba(b, ρ) = −pm
∑

y∈F∗
p

∑

z∈F∗
p

ζ
−by−ρz
p χ1(−az(z−1γy)p

k+1)

= −pm
∑

y∈F∗
p

∑

z∈F∗
p

ζ
−by−ρz
p ζ

− λy2

4z
p ,

where λ = Tr(a−1).
If λ = 0, then Ba(b, ρ) = −pm

∑
y∈F∗

p

∑
z∈F∗

p
ζ

−by−ρz
p and the corresponding result

then follows.
Now suppose that λ �= 0 and we consider the following cases separately.

(i) If b = 0, we have from Lemma 4 that

Ba(0, ρ) = −pm
∑

z∈F∗
p

ζ−ρz
p

∑

y∈F∗
p

ζ
− λy2

4z
p

= −pm
∑

z∈F∗
p

ζ−ρz
p

⎛

⎝
∑

y∈Fp

ζ
− λy2

4z
p − 1

⎞

⎠

= −pm
∑

z∈F∗
p

ζ−ρz
p η

(

−λ

z

)

G − pm

= −pmη(ρλ)G2 − pm = − (pη(−ρλ) + 1) pm.
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(ii) If b �= 0, then it follows from Lemma 4 again that

Ba(b, ρ) = −pm
∑

z∈F∗
p

ζ−ρz
p

∑

y∈F∗
p

ζ
− λy2

4z −by

p

= −pm
∑

z∈F∗
p

ζ−ρz
p ζ

b2
λ

z
p η

(

−λ

z

)

G − pm

= −pm
∑

z∈F∗
p

ζ
( b2

λ
−ρ)z

p η

(

−λ

z

)

G − pm

=
{ −pm if b2 = ρλ,

−(pη(b2 − ρλ) + 1)pm if b2 �= ρλ.

Therefore we conclude that Ba(b, ρ) = −(pη(b2 − ρλ) + 1)pm for b �= 0.
We now study the case that s is even. Since z−1γy is a solution to faz(X) = −ypk

, we
have from Lemma 4 that

S(az, y) = −pm+dχ1(−az(z−1γy)p
k+1).

By a similar argument as above, we obtain the desired conclusions and complete the whole
proof of this lemma.

3.2.1 The first case that b = 0

In this subsection, we assume that b = 0. Recall that s = m/d and λ = Tr(a−1) for
a ∈ F

∗
pd . By (2), (3), Lemmas 6 and 7, we have the following two lemmas.

Lemma 8 Let a ∈ F
∗
pd , then

Na(0, 0) =

⎧
⎪⎪⎨

⎪⎪⎩

pe−2 − (p − 1)pm−1 if s is odd and λ = 0,
pe−2 if s is odd and λ �= 0,
pe−2 − (p − 1)pm+d−1 if s is even and λ = 0,
pe−2 if s is even and λ �= 0.

Lemma 9 Let a ∈ F
∗
pd and ρ ∈ F

∗
p, we have

Na(0, ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

pe−2 + pm−1 if s is odd and λ = 0,
pe−2 − η(−ρλ)pm−1 if s is odd and λ �= 0,
pe−2 + pm+d−1 if s is even and λ = 0,
pe−2 − η(−ρλ)pm+d−1 if s is even and λ �= 0.

Now we are in a position to prove Theorem 1.

Proof Denote

w1 = (p − 1)(pe−2 + pm−1),

w2 = (p − 1)pe−2,

w3 = (p − 1)(pe−2 + pm+d−1).

The code CD0 has length n0 = pe−1 − 1 and dimension d, since wt(ca) > 0 for each
a ∈ F

∗
pd . Observe that λ = Tr(a−1) = Tred

(
Trd1(a

−1)
) = 2sTrd1(a

−1), where Tred is the
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trace function from Fpe to Fpd . Therefore the calculation can be divided into four cases
according to the values of p and s. We only give the proof of two cases and the other two
can be similarly treated.

(i) When s is odd and p � s, we have from the above two lemmas that wt(ca) takes
two non-zero values w1 and w2 with frequencies Aw1 = pd−1 − 1 and Aw2 = (p −
1)pd−1, respectively. Hence we get the weight enumerator of CD0 . Note that for λ �=
0, η(−ρλ) = η(ρ) if −λ ∈ C

(2, p)

0 and η(−ρλ) = −η(ρ) otherwise, so it is not hard
to determine its complete weight enumerator from Lemma 9.

(ii) When s is odd and p | s, we have λ = 0 for all a ∈ F
∗
pd and so all codewords

ca , except the zero codeword, have the same weight w1 and the frequency is Aw1 =
pd −1. Hence CD0 has only one non-zero weight and its complete weight enumerator
then follows from Lemma 9.

3.2.2 The second case that b �= 0

In this subsection, we assume that b �= 0. By (3), Lemmas 6 and 7 again, it is easy to get
the value of Na(b, ρ) for ρ �= 0.

Lemma 10 For a ∈ F
∗
pd , b and ρ ∈ F

∗
p, we have

Na(b, ρ) =

⎧
⎪⎪⎨

⎪⎪⎩

pe−2 if s is odd and λ = 0,
pe−2 − η(b2 − ρλ)pm−1 if s is odd and λ �= 0,
pe−2 if s is even and λ = 0,
pe−2 − η(b2 − ρλ)pm+d−1 if s is even and λ �= 0.

In order to evaluate Na(b, 0), we need one more lemma given below.

Lemma 11 Let b and λ ∈ F
∗
p . Then

∑

ρ∈F∗
p

η(b2 − ρλ) = −1.

Proof Write p = 2h + 1 with a positive integer h. For fixed λ ∈ F
∗
p,

η(b2 − ρλ) =

⎧
⎪⎨

⎪⎩

0 if b2 − ρλ = 0,

1 if b2 − ρλ ∈ C
(2, p)

0 ,

−1 if b2 − ρλ ∈ C
(2, p)

1 .

Let d = b2 − ρλ. Then ρλ/d + 1 = b2/d . According to Lemma 1, the number of ρ ∈ F
∗
p

satisfying d ∈ C
(2, p)

0 is

(0, 0)(2, p) + (1, 0)(2, p) = h − 1.

Similarly, the number of ρ ∈ F
∗
p satisfying d ∈ C

(2, p)

1 is

(0, 1)(2, p) + (1, 1)(2, p) = h.
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It then follows that
∑

ρ∈F∗
p

η(b2 − ρλ) = (h − 1) · 1 + h · (−1) = −1,

giving the desired conclusion.

The following lemma follows from (2), Lemmas 10 and 11.

Lemma 12 For a ∈ F
∗
pd and b ∈ F

∗
p , we have

Na(b, 0) =

⎧
⎪⎪⎨

⎪⎪⎩

pe−2 if s is odd and λ = 0,
pe−2 − pm−1 if s is odd and λ �= 0,
pe−2 if s is even and λ = 0,
pe−2 − pm+d−1 if s is even and λ �= 0.

Now we begin to prove Theorem 2.

Proof Suppose that b �= 0. By Lemmas 10 and 12, the proof is similar to that of Theorem 1
and so is omitted here.

4 Concluding remarks

In this paper, we employed exponential sums to present the complete weight enumerators
and weight enumerators of the linear codes CDb

in the two cases b = 0 and b �= 0. As
introduced in [28], any linear code over Fp can be employed to construct secret sharing
schemes with interesting access structures provided that

wmin

wmax

>
p − 1

p
,

where wmin and wmax denote the minimum and maximum non-zero weights in CD , respec-
tively. Assume that p � s. It can be verified that the linear codes in Theorems 1 and 2 satisfy
the property wmin/wmax > (p − 1)/p if m > 1 and s ≡ 1 mod 2, or if m > d + 1 and
s ≡ 0 mod 2. We remark that the dimensions of the codes in this paper are small compared
with their lengths and this makes them suitable for applications in secret sharing schemes
with interesting access structures.
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