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Abstract The multiplicative complexity of a Boolean function is the minimum number
of two-input AND gates that are necessary and sufficient to implement the function over
the basis (AND, XOR, NOT). Finding the multiplicative complexity of a given function is
computationally intractable, even for functions with small number of inputs. Turan et al. [1]
showed that n-variable Boolean functions can be implemented with at most n−1 AND gates
for n ≤ 5. A counting argument can be used to show that, for n ≥ 7, there exist n-variable
Boolean functions with multiplicative complexity of at least n. In this work, we propose
a method to find the multiplicative complexity of Boolean functions by analyzing circuits
with a particular number of AND gates and utilizing the affine equivalence of functions.
We use this method to study the multiplicative complexity of 6-variable Boolean functions,
and calculate the multiplicative complexities of all 150 357 affine equivalence classes. We
show that any 6-variable Boolean function can be implemented using at most 6 AND gates.
Additionally, we exhibit specific 6-variable Boolean functions which have multiplicative
complexity 6.

Keywords Affine equivalence · Boolean functions · Circuit complexity · Cryptography ·
Multiplicative complexity

This article is part of the Topical Collection on Special Issue on Boolean Functions and Their
Applications

� Çağdaş Çalık
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1 Introduction

Multiplicative complexity is a complexity measure defined as the minimum number of mul-
tiplications (AND gates) that are necessary and sufficient to implement a function with a
circuit over the basis (AND, XOR, NOT). In many protocols for multi-party computation
(e.g., [2]), fully homomorphic encryption (e.g., [3]), and zero-knowledge proofs (e.g., [4]),
processing AND gates is more expensive than processing XOR gates. Moreover, the cost
of some of the countermeasures against side channel attacks is related to the number of
two-input AND gates in the implementation. For example, the complexity of higher-order
masking schemes for S-boxes mainly depends on the masking complexity, which is defined
as the minimum number of nonlinear field multiplications required to evaluate a polynomial
representation of an (n, m)-bit S-box over F2n [5].

Determining the multiplicative complexity of a given function is computationally
intractable, even for small number of variables. It is known that if one-way functions exist,
then given a truth table for a Boolean function of n bits, it is not possible to compute the
multiplicative complexity in polynomial time in the size of the truth table [6]. Turan and
Peralta [1] showed that n-variable Boolean functions can be implemented with at most n−1
AND gates for n ≤ 5.

Using a counting argument, Codish et al. [7] showed that there exist n-variable Boolean
functions with multiplicative complexity at least n, for n ≥ 7. It is also known that the
multiplicative complexity of functions having algebraic degree d is at least d − 1. This is
called the degree bound. There are very few classes of functions for which lower bounds
better than the degree bound are known (see [8]). Although the multiplicative complexity of
a random n-variable Boolean function is at least 2n/2 −O(n) with high probability [9], prior
to our present work, no specific n-variable function had been proven to have multiplicative
complexity larger than n − 1.

We propose a method to find the multiplicative complexity of Boolean functions. We
use this method to study the multiplicative complexity of 6-variable Boolean functions.
The method used by Turan and Peralta in [1] uses heuristics that do not provide optimal
solutions for 6-variable Boolean functions. Here, the problem of finding the multiplicative
complexity distribution of 6-variable Boolean functions is reduced to finding the multi-
plicative complexities of the 150 357 affine equivalence classes constructed in [10]. The
multiplicative complexity of each class is determined by processing all circuits with a partic-
ular number of AND gates and then identifying the classes that could be generated by those
circuits. We give a complete distribution of the multiplicative complexities of 6-variable
Boolean functions and show that they can be implemented with at most 6 AND gates. Our
techniques also enable us to exhibit specific 6-variable functions which have multiplicative
complexity 6.

The organization of the paper is as follows. Section 2 gives definitions and preliminary
information about Boolean functions and affine equivalence relations. Section 3 provides
algorithms to construct and evaluate circuits. Section 4 focuses on the multiplicative
complexity of 6-bit Boolean functions. Section 5 concludes the paper.
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2 Preliminaries on Boolean functions

Let F2 be the finite field with two elements and let Fn
2 denote the n-dimensional vector

space over F2. An n-variable Boolean function f is a mapping from F
n
2 to F2. Let Bn be the

set of n-variable Boolean functions, clearly |Bn| = 22n
. A Boolean function f ∈ Bn can be

represented uniquely by the multivariate polynomial defined by

f (x1, . . . , xn) =
⊕

u∈Fn
2

aux
u (1)

where au ∈ F2 and xu = x
u1
1 x

u2
2 · · · xun

n is a monomial composed of the variables for which
ui = 1. This polynomial is called the algebraic normal form (ANF) of f . The degree of a
Boolean function is the highest number of variables in a monomial for which au = 1 in its
ANF representation. The Boolean functions of the form f (x) = a1x1 + . . . + anxn + a0,
where ai ∈ F2, are called affine functions. If a0 = 0, f is called a linear function.

The Walsh transform of an n-variable Boolean Function f at point w∈ F
n
2 is defined as

Wf (w) =
∑

x∈Fn
2

(−1)f (x)⊕w·x, (2)

where w · x is the inner product w1x1 + . . . + wnxn. The vector

[Wf (0), . . . , Wf (2n − 1)]
is called the Walsh spectrum of f .

The autocorrelation of an n-variable Boolean Function f at point w∈ F
n
2 is defined as

Rf (w) =
∑

x∈Fn
2

(−1)f (x)⊕f (x⊕w). (3)

The vector [Rf (0), . . . , Rf (2n − 1)] is called the autocorrelation spectrum of f .

Definition 1 An affine transformation (A, a, b, c) from f to g in Bn is a mapping of the
form g(x) = f (Ax + a) + b · x + c, where A is a non-singular n × n matrix over F2,
and a, b ∈ F

n
2 and c ∈ F2. We call (A, a) the inner transformation and (b, c) the outer

transformation.

Two functions f, g are affine equivalent if there exist affine transformations between
them. Affine equivalence is an equivalence relation. An algorithm to check whether two
functions are equivalent is given in [10]. This algorithm also outputs an affine transformation
between the input functions, if one exists. Constructing all equivalence classes is feasible for
n ≤ 6. In 1972, Berlekamp and Welch [11] described the 48 classes on 5-variable Boolean
functions. In 1991, Maiorana [12] classified the 150 537 classes on 6-variable Boolean
functions. This result was independently verified by Fuller [10] and Braeken et al. [13]. For
n = 7, Hou [14] determined the number of equivalence classes to be ≈265.78.

Properties of Boolean functions such as multiplicative complexity, algebraic degree, the
set of absolute values in the Walsh spectrum, and the set of absolute values in the autocorre-
lation spectrum remain unchanged after applying an affine transformation. These properties
are said to be affine invariant [15] and they provide a useful tool for showing whether two
functions are affine equivalent or not.
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Fig. 1 Canonical form for a circuit computing the function f

3 Boolean circuits and topologies

Definition 2 A Boolean circuit C with n inputs and 1 output is a directed acyclic graph
where the inputs and the gates are the nodes, and the edges correspond to the Boolean-
valued wires. The fan-in and fan-out of a node is the number of wires going in and out of
the node, respectively. The nodes with fan-in zero are called the input nodes and are labeled
with an input variable from Xn = {x1, . . . ,xn}. The circuits we consider here have exactly
one node with fan-out zero, which is called the output node.

Each Boolean circuit C with n input nodes computes a Boolean function f ∈ Bn. When
a Boolean vector x̄ ∈ {0, 1}n is fed to the input nodes, the logic gates compute the function
where the output node gets the value f (x̄). Any Boolean function can be evaluated using
the basis � = {AND (∧), XOR (⊕), NOT (¬) }. Since ¬x = x ⊕ 1, it is also possible to
replace the NOT gates with XOR gates, when the constant 1 is allowed to be used as an
input node. AND gates have fan-in two. XOR gates have fan-in one or more.

It is not hard to verify that a circuit computing the function f can be put in the following
canonical form without changing the number of AND gates (see Fig. 3b for an example).

Unless otherwise specified, we will be assuming that circuits are in canonical form. Let
Si be the set of AND gates that are inputs to the ith XOR gate bi . Let Li be the set of inputs
to bi not in Si . Note that the elements of Li are either input nodes or the constant 1. Note
also that Si’s need not be disjoint. This notation is depicted in Figs. 1 and 2 and will be
useful in the rest of this paper.

Fig. 2 The L and S sets
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Notation Given a set V of nodes, let XV denote the Boolean function computed as⊕
v∈V v.1 The output of the i-th XOR gate is Fbi

= XLi
⊕ XSi

, and the output of the i-th
AND gate is

Fai
= (XL2i−1 ⊕ XS2i−1) ∧ (XL2i

⊕ XS2i
). (4)

Definition 3 Given a circuit, the ordered list (L1, . . . , L2k+1, S1, . . . , S2k+1) is called the
trace of the circuit. The ordered list [(S1, S2), (S3, S4) . . . , (S2k−1, S2k)] shows the rela-
tions between the AND gates, and is called the topology of the circuit. The ordered list
(L1, . . . , L2k+1) shows the linear inputs to the XOR gates, and is called the input to the
topology. S2k+1 is called the output mask.

Note that the trace of a circuit does not contain all the information about the circuit. So
it is not possible to reconstruct a circuit from its trace.

By using the gate numbering given in Fig. 1, the topology of the circuit can be expressed
in graphical form. We use the procedure of Algorithm 1.

input : 2 1 2 1
output: A digraph

1 for from 1 to do
2 add node to graph;
3 if 2 1 is not empty, create an XOR node with output to and inputs the

elements of 2 1;
4 repeat the previous step with 2 ;
5 end
6 bypass XOR gates with fan-in 1.

Algorithm 1 Mapping topologies to directed graphs

Our depictions of topologies will not show the direction of edges (they point down) or
the labels of gates (we are only interested in the structure of each graph). Table 1 contains
topologies with 3 AND gates, along with their graphical representation.

Example 1 The function f = x1x2x3+x1x3+x1x4+x2x3+x4 has multiplicative complexity
2, as is clear from f = x1(x2x3 + x3 + x4) + x2x3 + x4. A circuit in canonical form that
computes f is depicted in Fig. 3b. The trace for that circuit is

({x3}, {x2}, {x3, x4}, {x1}, {x4}, ∅, ∅, {a1}, ∅, {a1, a2}).
The topology of the circuit is [(∅, ∅), ({a1}, ∅)]. The input to the topology is

({x3}, {x2}, {x3, x4}, {x1}, {x4}), and the output mask is {a1, a2}. The graphical representa-
tions of the circuit and its topology are given in Fig. 3.

Definition 4 Given a circuit in canonical form, a numbering of the AND gates is a proper
numbering, if no gate is an ancestor of a lower-numbered gate (i.e. if the numbering does
not violate topological ordering).

1We abuse notation here, identifying a node with the function it computes.
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Table 1 List of topologies with
up to 3 AND gates k Topology Graph representation

1 [(∅,∅)]
2 [(∅,∅), (∅,∅)]

2 [(∅,∅), (∅, {a1})]
3 [(∅,∅), (∅,∅), (∅,∅)]

3 [(∅,∅), (∅,∅), (∅, {a2})]

3 [(∅,∅), (∅,∅), (∅, {a1, a2})]

3 [(∅,∅), (∅,∅), ({a1}, {a2})]

3 [(∅,∅), (∅, {a1}), (∅, {a1})]

3 [(∅,∅), (∅, {a1}), (∅, {a2})]

3 [(∅,∅), (∅, {a1}), (∅, {a1, a2})]

3 [(∅,∅), (∅, {a1}), ({a1}, {a2})]

Definition 5 Two topologies are said to be isomorphic if one results from a proper re-
numbering of the AND gates of the other.

Fig. 3 Circuit and topology computing f
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Definition 6 A Boolean function f is computable by a topology T if it is computable by a
circuit whose topology is T . The set of Boolean functions that are computable by a topology
T is denoted B(T ).

Clearly, if two topologies are isomorphic, then the sets of functions computable by each
are the same. We state this as a proposition.

Proposition 1 If topologies T and T ′ are isomorphic, then B(T ) = B(T ′).

3.1 Evaluating topologies

Without loss of generality, the remainder of this paper only considers functions f for which
f (0) = 0. These functions have negation-free circuits that are optimum with respect to
multiplicative complexity. Any function for which f (0) = 1 is of the form f (x̄) = g(x̄)+1
where g(0) = 0.

The aim of this section is to construct the set of Boolean functions that are computable by
a topology T = [(S1, S2), . . . , (S2k−1, S2k)]. The set B(T ) can be obtained by exhaustively
evaluating the following family of circuit traces

(L∗
1, . . . , L

∗
2k+1, S1, . . . , Sk, S

∗
2k+1),

where L∗
i is any subset of {x1, . . . ,xn} and S∗

2k+1 is any subset of {a1, . . . ,ak}. However,
going over all possible L∗

i ’s for i = 1, . . . , 2k + 1 and S∗
2k+1 quickly becomes inefficient,

since there are (2n)2k+1 × 2k = 22kn+k+n possible choices for these sets (e.g., there are 271

choices for a topology with 5 AND gates when n = 6).

Theorem 1 Let f ∈ Bn be computable by a topology T . If f ′ is affine equivalent to f , then
f ′ is also computable by T .
Proof Let C = (L1, . . . , L2k+1, S1, . . . , S2k+1) be the trace of a circuit with topology T

that computes f . If f ′ is affine equivalent to f , then there exists an affine transformation
(A, a, b, c) satisfying f ′(x) = f (Ax + a) + bx + c. The circuit generated by applying the
inner transformation Ax + a to the inputs {x1, . . . ,xn}, and adding outer transformation
bx + c to L2k+1 constructs f ′. Since the topology of the circuit is not affected by the affine
transformation, f ′ is computable by T .

Theorem 1 implies that either all or none of the functions in an equivalence class are
computable by a topology T . We say that the equivalence class of f ∈ Bn is computable by
a topology T , if f is computable by T . Hence, in order to construct B(T ), we may construct
the list of equivalence classes that are computable by T .

Corollary 1 Consider two circuits with traces

(L1, . . . , L2k+1, S1, . . . , Sk, S2k+1) and

(L′
1, . . . , L

′
2k+1, S1, . . . , Sk, S2k+1).

If there exists an inner transformation (A, a) that transformsXLi
→ XL′

i
for i = 1, . . . , 2k,

then the circuits compute affine equivalent functions.

To see why the corollary holds, note that the outer transformation (b, c) affecting XL′
2k+1

is a specific case of an affine transformation and hence does not change the equivalence
class of a function.
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Call two tuples (L1, . . . , L2k) and (L′
1, . . . , L

′
2k) affine equivalent if there exists an

invertible matrix A such that multiplication of the input vector by A maps one tuple to the
other. This is an equivalence relation and, by Corollary 1, we need only test one tuple from
each equivalence class. Thus, we would like to enumerate a maximal set of tuples no two
of which belong to the same equivalence class. This problem corresponds to enumerating
all m-dimensional subspaces in a 2k-dimensional vector space, where m is the number of
variables of the functions under consideration (see Table 3).

The number of subspaces of dimension m in a vector space of dimension 2k over a
finite field of 2 elements is equal to the Gaussian binomial coefficient2

(2k
m

)
2 [16]. This

is approximately 226 inputs for m = 6, k = 5. The algorithm to construct the subspaces
is given in [17]. In its simplest form, to generate a sufficient set of inputs of dimension
m, for each component in an input we either introduce a new variable, or choose a linear
combination of the previously used variables, by taking into account that the exact number
of variables to be used is m.

Example 2 Consider the vector space consisting of all linear functions on variables
x1, x2, x3, x4. Denote by (a1, a2, a3, a4) the subspace generated by all linear functions∑4

i=1 aixi where ai ∈ {0, 1}. A maximal set of 3-dimensional subspaces in a 4-dimensional
vector space (m = 3, 2k = 4) is as follows:

(a1, a2, a3, 0), (a1, a2, a3, a1), (a1, a2, a3, a2),

(a1, a2, a3, a1 + a2), (a1, a2, a3, a3), (a1, a2, a3, a1 + a3),

(a1, a2, a3, a2 + a3), (a1, a2, a3, a1 + a2 + a3), (a1, a2, 0, a3),

(a1, a2, a1, a3), (a1, a2, a2, a3), (a1, a2, a1 + a2, a3),

(a1, 0, a2, a3), (a1, a1, a2, a3), (0, a1, a2, a3)

Notation In,k denotes the set of subspaces of {0, 1}2k of dimension at most min{n, 2k}

3.2 Constructing topologies

All topologies with k AND gates have the form [(S1, S2), . . . , (S2k−1, S2k)],where
S2i−1, S2i ⊆ {a1, . . . ,ai−1}. The sets S2i−1 and S2i can take 2i−1 different values, so the
total number of topologies with k AND gates is

k∏

i=1

(2i−1)2 = 2
∑k

i=1 2(i−1) = 2k2−k.

However, this formula counts many topologies redundantly in the sense that there are
many topologies computing the same set of Boolean functions. In addition to isomorphic
topologies, redundant topologies can result from some transformations on pairs (S2k−1, S2k)

corresponding to the AND gates that define the output of AND gate ai (see Eq. 4). Next,
we derive some of these transformations.

Notation Given two sets Si, Sj ⊆ {a1, . . . ,ak} of AND gates, we denote by Si ⊕ Sj the
symmetric difference of Si and Sj , i.e., the set of elements that are contained in Si or Sj but
not in both.

2The Gaussian binomial coefficient
(
m
r

)
q

is defined to be (1−qm)(1−qm−1)···(1−qm−r+1)

(1−q)(1−q2)···(1−qr )
for r ≤ m, and zero

otherwise.
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Remark 1 Let h = (f + l1)(g + l2) with f, g, l1, l2 ∈ Bn. Let l3 = 1 + l1 + l2. Then it
follows that

h = (f + l1)(f + g + l3)

h = (f + g + l3)(g + l2)

Proposition 2 Let T = [(S1, S2), . . . , (S2k−1, S2k)] be a topology. Let T ′ be the topology
formed by replacing (S2i−1, S2i ) by (S2i−1, S2i−1 ⊕ S2i ),and let T ′′ be the topology formed
by replacing (S2i−1, S2i ) by (S2i−1 ⊕ S2i , S2i ). Then B(T ) = B(T ′) = B(T ′′).

Proof Let Fai
= (XL2i−1 ⊕ XS2i−1) ∧ (XL2i

⊕ XS2i
) be a function generated by AND gate

ai . Then,

Fa′
i
= (XL2i−1 ⊕ XS2i−1) ∧ (1 ⊕ XL2i

⊕ XL2i−1 ⊕ XS2i
⊕ XS2i−1)

and

Fa′′
i

= (1 ⊕ XL2i
⊕ XL2i−1 ⊕ XS2i

⊕ XS2i−1) ∧ (XL2i
⊕ XS2i

)

are the same functions by Remark 1.

Proposition 2 implies that for any pair (S2i−1, S2i ) in a topology, any choice of two input
pairs from the set {S2i−1, S2i , S2i−1 ⊕ S2i} for AND gate ai will not change the set of
functions computable by the topology. This motivates the following definition.

Definition 7 The following six pairs are said to be equivalent.

(S2i−1, S2i )

(S2i , S2i−1)

(S2i−1, S2i−1 ⊕ S2i )

(S2i−1 ⊕ S2i , S2i−1)

(S2i−1 ⊕ S2i , S2i )

(S2i , S2i−1 ⊕ S2i )

From now on we will identify the pair (S2i−1, S2i ) with AND gate ai where doing so
will not cause confusion.

We represent a set S ⊆ {a1, . . . ,ak} by a k-bit mask (v1, . . . , vk), each vi denoting the
existence of ai in S. Since each gate has two sets of inputs, (S2i−1, S2i ) is represented by a
2k-bit vector.

Definition 8 The minimal representation of an AND gate ai = (S2i−1, S2i ) in a topology
is the lexicographically smallest among the set of equivalent gates listed in Definition 7.

We use Algorithm 2 to construct the set of topologies with k AND gates. The exhaustive
list of topologies having up to 3 AND gates after removing the redundant ones is shown in
Table 2.

Table 2 The number of
topologies up to 6 AND gates k 1 2 3 4 5 6

|Tk | 1 2 8 84 3 170 475 248
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input :
output: Set of topologies with AND gates,

1 0 ;
2 for ( 1 ) do
3 ;
4 for each topology in 1 do
5 for all choices of 2 1 2 do
6 If 2 1 2 is minimal representation;
7 add a 2 1 2 to ;
8 If is not isomorphic to any of the topologies in , ;
9 end

10 .
11 end
12 end

Algorithm 2 Iterative construction of topologies

3.3 Finding the multiplicative complexity of a Boolean function

In this section, we propose an algorithm to find the multiplicative complexity of a given
Boolean function. Let f ∈ Bn be a Boolean function with degree d. It is known that the mul-
tiplicative complexity of f is at least d−1. The first step of the algorithm is to use Algorithm
2 to construct the topologies with k = d − 1 AND gates. Then, the set of

(2k
m

)
2 inputs for

the topologies are constructed as explained in Section 3.1. If f is computable by any of the
topologies, the algorithm outputs k, else k is incremented by one, and a new set of topologies
is evaluated, until f is computable by one of the topologies, as given in Algorithm 3.

input : Boolean function
output: Multiplicative complexity of

1 degree of ;
2 1;
3 while (true) do
4 Construct using Algorithm 2;
5 Construct ;
6 for each topology in do
7 for each input 1 2 in do
8 for each 2 1 a1 a do
9 1 2 0 1 2 1 ;

10 the Boolean function that computes;
11 if is affine equivalent to then
12 return ;
13 end
14 end
15 end
16 end
17 1;
18 end

Algorithm 3 Finding the multiplicative complexity of a Boolean function

102 Cryptogr. Commun. (201 ) 1 :93–1079 1



The algorithm is practical when the number k of AND gates is small. The algorithm
can also be used for providing lower bounds on the multiplicative complexity of a given
function, when it does not find a solution up to a particular value of k, establishing a lower
bound of k + 1.

4 Multiplicative complexity of 6-variable Boolean functions

In this section, our aim is to find the multiplicative complexities of all Boolean functions in
6-variables. The number of affine equivalence classes in B6 is known to be 150 357. In this
work, we use the representative functions computed in [10].

Our method can be summarized as follows: We iteratively construct and evaluate topolo-
gies until at least one function from each affine equivalence class is computed (See
Algorithm 4). The algorithm identifies the set of affine equivalence classes generated by a
topology, by going over all linear inputs and the output masks. Given a topology, a function
is computed by providing a set of linear function inputs to this topology and combining the
outputs of the AND gates with an output mask. For each function that is computed from
a topology, the algorithm checks whether the function is affine equivalent to a Boolean
function from the input set. If so, it means that this is the first time a function from this
equivalence class is computed and the multiplicative complexity of this class is assigned the
value k, and the function is removed from the set of input functions. The construction of
topologies, described in Section 3.2, is independent of the number of variables the topology
will be evaluated for. The input generation and determining the affine equivalence classes
of functions is described in Sections 4.2 and 4.1, respectively.

It should be noted that an equivalence class may be generated by distinct topologies
having a different number of AND gates. An equivalence class is assigned a multiplica-
tive complexity value k, if it was generated by a topology having k AND gates and
was not previously generated with a topology that had less than k AND gates. This is
guaranteed by processing the topologies in order with respect to the number of AND
gates.

4.1 Determining the equivalence classes of functions

An important step in finding the set of equivalence classes that is computable by a topology
is determining the equivalence class of a specific function that is generated from that topol-
ogy. It is crucial that this process be performed efficiently, since it will be repeated for each
set of inputs supplied to a topology. An equivalence class is represented by a representative
function from that class whose selection can be arbitrary.

Deciding on whether or not two given functions are affine equivalent is done by mak-
ing use of the affine transformation invariant properties of functions, i.e., algebraic degree,
absolute Walsh spectrum distribution, and absolute auto-correlation spectrum distribution.
We call the values these three metrics take the signature of a function. For n ≤ 5, the
signature of a function is sufficient to determine its class because the signatures of func-
tions in different classes are different. However, for n = 6 there are a total number of
30 883 distinct signatures, which is less than the number of equivalence classes, implying
that some equivalence classes have the same signature. Indeed, 17 234 of the signatures
belong to a unique class, whereas the remaining 13 649 signatures are shared by two
or more classes, with the maximum number of classes having the same signature being
564.

103Cryptogr. Commun. (201 ) 1 :93–1079 1



input : , Set of representatives of 6 1 150357
output: Multiplicative complexity of

1 1;
2 1 150357 ;
3 while ( ) do
4 Construct using Algorithm 2;
5 Construct ;
6 for each topology 1 2 2 1 2 in do
7 for each input 1 2 in do
8 for each 2 1 A do
9 1 2 0 1 2 1 ;

10 the Boolean function that computes;
11 if is affine equivalent an then
12 ;
13 Remove from ;
14 if then
15 return 1 150357 ;
16 end
17 end
18 end
19 end
20 end
21 1;
22 end

Algorithm 4 Finding multiplicative complexity of 6-bit Boolean functions

Suppose we want to determine the equivalence class of a function f . That is, we want to
know which of the 150 357 representatives is affine equivalent to f . If the signature of f is
among the 17 234 signatures that uniquely identifies its class, then the representative is the
one associated with the signature. Otherwise, it is the case that f is affine equivalent to one
of the representatives, say f1, ..., . . . , fm, m ≥ 2, whose signatures are equal to that of f ’s.
Then, we use the methods described in [10], namely the local connectivity and indicator
functions to eliminate the representatives that could not be affine equivalent to f until we’re
left with a single candidate, which will be the representative that f is affine equivalent to.

Table 3 Size of the input
combinations for evaluating
topologies

k (m, 2k) Number of input vectors

1 (2,2) 1

2 (3,4), (4,4) 16

3 (4,6), (5,6), (6,6) 715

4 (5,8),(6,8) 107 950

5 (6,10) 53 743 987

6 (6,12) 230 674 393 235
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Table 4 Multiplicative
complexity distribution of the
equivalence classes and functions
for n = 6

MC #classes #functions log2(#f unctions)

0 1 128 7.00

1 1 83 328 16.34

2 3 73 757 184 26.13

3 24 281 721 079 808 38.03

4 914 7 944 756 861 878 272 52.81

5 148 483 18 344 082 080 963 133 440 63.99

6 931 94 716 954 089 619 456 56.39

4.2 Evaluating topologies

As described in Section 3.1, for a given n, the inputs to a topology with k AND gates are the
functions that correspond to the subspaces of dimension m in a vector space of dimension
2k, where 1 ≤ m ≤ min(2k, n). In [1], it was shown that any Boolean function on n-
variables has multiplicative complexity at most n−1 for n ≤ 5. This implies that if we want
to evaluate a topology with k ≤ 5 AND gates, we can start from m = k + 1 by skipping the
dimensions up to k because all functions on k or less number of variables should have to be
generated with k−1 AND gates. This observation lets us reduce the number of dimensions m

that must be considered when generating the inputs. Table 3 provides the list of dimensions
m in a vector space of dimension 2k for n = 6.

4.3 Results

The algorithms for constructing and evaluating the topologies have been implemented in
the C++ programming language. The construction of topologies up to 5 AND gates took
less than a minute on a standard desktop PC, whereas topologies with 6 AND gates could
be generated in approximately one day. The task of identifying the equivalence classes gen-
erated by the topologies demanded more computation due to the large number of input
combinations to be evaluated. We exploited the inherent parallelism of this process by run-
ning it on a cluster, with each node processing a certain subset of the topologies. The nodes
in the cluster had dual Intel Xeon E5-2630 v3 processors3 (3.20 GHz, 8 cores) and 64 GB
memory. The total computation took 38 422 core hours.

Table 4 shows the results of the computation. The number of functions having a particu-
lar multiplicative complexity was calculated by adding the total number of functions in each
equivalence class. After running Algorithm 4 up to 5 AND gates, there were still 931 equiv-
alence classes on 6-variables that could not be generated, implying that their multiplicative
complexity should be at least 6. The task of evaluating all topologies having 6 AND gates
with all possible inputs was not feasible due to the large number of topologies and input
combinations. However, it suffices to generate one function from each of the remaining 931
equivalence classes to conclude that these classes have multiplicative complexity 6. There-
fore, a computation was carried out by picking a subset of 10,000 topologies with 6 AND

3Commercial equipment and software referred to in this paper are identified for informational purposes
only, and does not imply recommendation of or endorsement by the National Institute of Standards and
Technology, nor does it imply that the products so identified are necessarily the best available for the purpose.
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gates and evaluating those topologies, which took a few hours to observe a function from
each of the 931 classes.

The results can be accessed online at [18], which contains one representative from each
affine equivalence class, along with a circuit for that function with a minimum number of
multiplications.

Among the set of functions having multiplicative complexity 6, we list below all
representatives with degree 4:
f1 = x3x5 + x3x4 + x2x4 + x2x3x6 + x2x3x4x5 + x1x6 + x1x5 + x1x4x5 + x1x3 + x1x3x4

+x1x3x4x6 + x1x2x5x6

f2 = x4x5 + x3x4x5 + x2x5 + x2x4 + x2x4x6 + x1x5x6 + x1x4 + x1x3 + x1x2x4x5

+x1x2x3x6

f3 = x3x5 + x3x4 + x2x4 + x2x3x6 + x2x3x4x5 + x1x4 + x1x4x5 + x1x3 + x1x3x4

+x1x3x4x6 + x1x2x5x6

f4 = x3x5 + x3x4 + x2x4 + x2x3 + x2x3x6 + x2x3x4x5 + x1x6 + x1x5 + x1x4x5

+x1x3x4 + x1x3x4x6 + x1x2 + x1x2x5x6

f5 = x4x6 + x4x5 + x3x5 + x2x3x6 + x2x3x4x5 + x1x5 + x1x3 + x1x3x5 + x1x3x4

+x1x3x4x6 + x1x2 + x1x2x5x6 + x1x2x4

5 Conclusion

We explored the multiplicative complexity of 6-variable Boolean functions and showed
that they can be implemented using at most 6 AND gates. More specifically, we computed
the multiplicative complexity distribution of affine equivalence classes and the number of
Boolean functions with multiplicative complexity k for k = 0, . . . , 6. We were able to
exhibit specific 6-variable functions which have multiplicative complexity 6.

The number of affine equivalence classes for n = 7 is ≈265.78. Thus, it is not practical
to find the multiplicative complexity distribution of 7-variable Boolean functions using the
proposed enumerative method. Non-enumerative methods, on the other hand, are very hard.
For example, for a 6-variable function f having multiplicative complexity 6, we do not
yet have a proof of the (seemingly obvious) statement that the multiplicative complexity of
g = x7 · f is 7.

On the positive side, the methods in this paper can often be used for finding the multi-
plicative complexity of – or providing lower bounds for – specific Boolean functions even
when n > 6. If a function has multiplicative complexity at most 6, then there exists a circuit
for it with one of the topologies enumerated here.
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