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Abstract Most stream ciphers are vulnerable against generic time-memory-data tradeoff
(TMD-TO) attacks, which reduce their effective key length to the birthday bound n/2,
where n denotes the inner state length of the underlying keystream generator. This implies
the necessity of a comparatively large inner state length for practical stream ciphers (e.g.,
n = 288 and n = 160 for the eSTREAM portfolio members Trivium and Grain v1, respec-
tively). In this paper, we propose and analyze the LIZARD-construction, a new way to build
stream ciphers. We prove a tight 2n/3 bound on its security against TMD-TO key recovery
attacks, where the security lower bound refers to chosen-IV attacks. The security against
TMD-TO distinguishing attacks remains at the birthday-bound level n/2. The lower bound
refers to a random oracle model which allows to derive formal security results w.r.t. generic
TMD-TO attacks. While similar frameworks have already been widely used for analyz-
ing the security of block cipher, MAC, and hash function constructions, to the best of our
knowledge this is the first time that such a model is considered in the context of stream
ciphers. The security analysis presented in this paper is also of immediate practical rele-
vance as, with the stream cipher LIZARD, a first instantiation of our new design principle
(which we hence named LIZARD-construction) was introduced at FSE 2017. LIZARD has
an inner state length of only 121 bits and surpasses Grain v1, the most hardware efficient
member of the eSTREAM portfolio, in important metrics for lightweight ciphers such as
chip area and power consumption.
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1 Introduction

Stream ciphers are, besides block ciphers, the most popular family of modern symmetric
encryption algorithms. They are intended for encrypting, in an online manner, plaintext
bitstreams X which have to pass an insecure channel. The encryption is performed via
bitwise addition of a keystream S to X, which depends on a secret symmetric key k and
a public initial value IV . The legal recipient, who also knows k, decrypts the encrypted
bitstream Y = X ⊕ S by generating S and computing X = Y ⊕ S. An important
use case for stream ciphers is the encryption of over-the-air communication for mobile
devices, which implies that lightweight aspects play a dominant role in the design of stream
ciphers.

In our framework, we suppose that the communication between legal users is organized
in sessions, where in the first phase of each session, the secret session key k is generated by
executing a key establishment protocol. This session key generation phase will not be con-
sidered in this paper. In practice, a session can, e.g., be a phone call, where at the beginning
of the call, a key establishment protocol between the mobile phone and the nearest base
station is performed.

Following [8], each stream cipher is associated with a well-defined set of inner states
and its keystream generation process can be divided into the following two phases: (A) The
key and IV setup phase, where an initial state is derived from the secret session key k and
an initial value IV , and (B) the keystream generation phase, in which the keystream is
generated based on the initial state derived in phase (A).

In this paper, we consider keystream generator-based stream ciphers, for which the main
algorithmic component for performing phases (A) and (B) is a so-called keystream gener-
ator (KSG). KSGs are clock-controlled devices which can be formally specified by finite
automata, defined by an inner state length n, the set of inner states {0, 1}n, a state update
function π : {0, 1}n −→ {0, 1}n, and an output function outbit : {0, 1}n −→ {0, 1}. Start-
ing from an initial state q0, in each clock cycle t ≥ 0, the KSG produces an output bit
zt = outbit(qt ) and changes the inner state according to qt+1 = π(qt ). The keystream
S(q0) corresponding to the initial state q0 is defined by concatenating all the output bits
z0z1z2 · · · .

The key and IV setup phase (A) of a KSG-based stream cipher is typically performed by
a KSG-based state initialization algorithm, which computes the initial state qinit from the
session key k and the initial value IV . It always contains the following two subphases:

(A.1) The loading phase defines how the session key k and the initial value IV are loaded
into the inner state registers and results in a load state qload = qload(k, IV).

(A.2) The mixing phase runs an appropriate KSG-based mixing algorithm MIX :
{0, 1}n −→ {0, 1}n on qload and yields a state qmixed = MIX(qload).

The aim of the mixing phase (A.2) is to ensure that each initial state bit depends on
many session key bits and IV bits and that this dependency, expressed as a multivariate
GF(2)-polynomial over the session key bits and IV bits, has large degree. In many cases,
an essential part of the mixing algorithm consists in running the KSG a certain number of
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times without producing keystream bits. Moreover, for many ciphers (Grain, Trivium, E0,
A5/1 etc.) it holds that qinit = qmixed.

In this paper, with the LIZARD-construction, we propose a state initialization algorithm
of type

qinit = MIX (qload) ⊕ k, (1)

where qload = k ⊕ IV , (see Fig. 1) and show that this state initialization algorithm (together
with a certain mode of operation) guarantees a beyond-the-birthday-bound security against
time-memory-data tradeoff (TMD-TO) attacks.

As in [8, 9], and many other papers, we consider the keystream generation phase (B) of
KSG-based stream ciphers as being defined by the output block function OUTBLOCK :
{0, 1}n −→ {0, 1}n, which assigns each inner state q ∈ {0, 1}n to the first n keystream bits
produced on q. We give now the exact definition of OUTBLOCK:

Definition 1 We consider a KSG with output bit function outbit : {0, 1}n −→ {0, 1} and
state transition function π : {0, 1}n −→ {0, 1}n. For all q ∈ {0, 1}n, let

OUTBLOCK(q) = (z̃0, · · · , z̃n−1),

where for all r , 0 ≤ r ≤ n − 1,

z̃r = outbit(πr(q)).

Here, πr means applying the state transition function r times, so πr(q) denotes the state
obtained from q after clocking the cipher r times.

Note that the keystream S(qinit(k, IV)) = (z0, z1, · · · ) generated on a key-IV pair (k, IV)

can now be expressed as follows (see also Fig. 2). For each n-bit subblock (zr , · · · , zr+n−1),
it holds

(zr , · · · , zr+n−1) = OUTBLOCK
(
πr (qinit)

)
.

One can distinguish the following two operation modes of stream ciphers.
In the one-stream mode, the key and IV setup phase (A) is performed only once at the

beginning of the session and produces an initial state qinit = qinit(k, IV). The corresponding
keystream S = S(qinit) is used for the whole session. Note that due to their extremely
large limits (e.g., 264 bits for Trivium) on the amount of keystream generated under a single
key-IV pair, Trivium [12] and Grain [25] can be considered to work in one-stream mode.

In contrast to this, in the packet mode, the communication and encryption process dur-
ing a session is divided into packet steps i = 1, 2, · · · , where in each packet step, a piece
of message of a certain maximal packet length R is encrypted and sent. Corresponding to
this, the keystream of a session is the concatenation of the keystream packets S1S2S3 · · · ,
where for all i ≥ 1, Si denotes the keystream packet generated in packet step i. The stream
cipher is equipped with an additional mechanism which generates for each packet step i

an initial value IV i . Each packet step i starts with performing the key and IV setup phase

Fig. 1 The key and IV setup phase (A) of the LIZARD-construction. The XOR symbol denotes the addition
of the corresponding n-bit vectors over GF(2)
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Fig. 2 The keystream generation phase (B) in terms of our model

(A), which computes a packet initial state qi
init = qi

init(k, IV i ), followed by the generation
of the keystream packet Si , which is defined to be the prefix of length R of S(qi

init). As
in many communication scenarios data streams are encrypted and transmitted packet-wise
(Bluetooth, WLAN, cellular networks etc.), it seems natural to run a stream cipher in packet
mode. Typical examples are the GSM cipher A5/1 and the Bluetooth cipher E0 (see [22]
for more practical examples of stream ciphers running in packet mode and more informa-
tion about the practical relevance of such ciphers). Clearly, Trivium and Grain could also
be used in packet mode but, in contrast to, e.g., LIZARD [22], their design is not specif-
ically optimized for such scenarios. More precisely, all current small-state stream ciphers
(i.e., stream ciphers targeting beyond-the-birthday-bound security; see [23] for an overview)
impose some additional restriction about their application context in order to reach this
improved security level. For example, Sprout-like small-state stream ciphers (see below)
assume that it is feasible to continuously access the secret key not only during initialization
but also during keystream generation. LIZARD, on the other hand, uses the secret key only
during initialization but assumes that per IV, at most 218 keystream bits need to be generated.
As explained in [22], this limit fits well for many prominent communication scenarios and
allows, due to LIZARD’s beyond-the-birthday-bound security, for a more efficient hardware
implementation (w.r.t. important cost factors such as chip area and power consumptions)
than, e.g., the general-purpose stream ciphers Trivium and Grain. This is particularly rele-
vant in the context of ultra-constrained devices like low-cost radio-frequency identification
(RFID) tags, where virtually every hardware gate matters and corresponding restrictions
often hinder cryptographic schemes from being used in practice (see, e.g., [3]).

During the last decades, many stream ciphers have been suggested and many different
techniques for cryptanalyzing stream ciphers have been developed (correlation attacks, fast
correlation attacks, guess-and-verify attacks, BDD attacks, cube attacks etc.). Attacks on
stream ciphers typically suppose that the attacker knows a piece S′ of keystream which was
generated under a secret session key k and a set of known or actively chosen initial values.
Standard goals of attacks are to distinguish S′ from a truly random bitstream, to recover the
inner states responsible for S′, to predict a new keystream packet on the basis of S′, or to
recover the secret session key.

In this paper, we focus on time-memory-data tradeoff (TMD-TO) attacks, which are for
many stream ciphers the most powerful known attacks. TMD-TO attacks have a generic
nature in the sense that they access the security-relevant componentsMIX and OUTBLOCK
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only in a black-box manner. This implies that from the attacker’s point of view, these com-
ponents are ideally designed in the sense of [19]. Hence, the aim of TMD-TO attacks is
to analyze the way how the components MIX and OUTBLOCK interact in computing the
keystream from the secret session key k and an initial value IV and to check if this way
opens the door for nontrivial attacks.

In consequence, such TMD-TO attacks can usually be formulated for variable inner state
length n. Correspondingly, we express upper and lower security bounds for stream cipher
constructions against TMD-TO attacks in an asymptotic manner. For instance, we say that a
stream cipher construction has, for some number a, 0 ≤ a ≤ 1, the security level a · n w.r.t.
TMD-TO attacks if there is a TMD-TO attack of cost behavior O(2a·n) with significant
success probability and, for all α < a, all TMD-TO attacks of cost behavior O(2α·n) have
only negligibly small success probability. We will discuss the cost behavior of TMD-TO
attacks in more detail at the beginning of Section 3.

The vulnerability against generic TMD-TO attacks such as those of Babbage [5] or
Biryukov and Shamir [9] represents an inherent weakness of KSG-based stream ciphers.
This vulnerability implies that for KSG-based stream ciphers working in one-stream mode,
the effective key length is bounded by n

2 , where n denotes the inner state length of the under-
lying KSG. As a consequence, modern practical stream ciphers have comparatively large
inner state lengths (e.g., 288 bits for the eSTREAM portfolio member Trivium [12] or 160
bits for the eSTREAM portfolio member Grain v1 [25]).

In this paper, we propose a construction principle to design KSG-based stream ciphers
with a provable beyond-the-birthday-bound security of 2

3n against generic TMD-TO key
recovery attacks: taking a stream cipher with a state initialization algorithm as described
in Relation (1) and using it in packet mode. We give this construction principle the name
LIZARD-construction, as it underlies the stream cipher LIZARD [22] introduced at FSE
2017.

The LIZARD-construction can be motivated as follows. Babbage’s TMD-TO attack [5]
implies that if a KSG-based stream cipher runs in one-stream mode, then it is possible to
predict the keystream of the whole session with a TMD-TO attack of cost behavior O(2n/2)

(see Theorem 1 in Section 3). Moreover, if the state initialization algorithm is efficiently
invertible (as it is the case, e.g., with Trivium, Grain v1, A5/1), then this attack even yields
the secret session key.

The question is if KSG-based stream ciphers running in packet mode can have beyond-
the-birthday-bound resistance against TMD-TO attacks. The following observation shows
that packet mode alone is not enough for reaching this goal. Many stream ciphers (e.g.,
A5/1, E0, Trivium, Grain v1) employ a state initialization algorithm of type

qinit = MIX (qload) (2)

with qload = qload(k, IV), instead of

qinit = MIX (qload) ⊕ k

with qload = qload(k, IV) = k ⊕ IV , as used by the LIZARD-construction (cf. Relation (1)).
We show in Theorem 3 that even if a stream cipher runs in packet mode and even if the state
initialization algorithm is not efficiently invertible (as, e.g., that of E0), a state initialization
algorithm of the type in Relation (2) provides only a security level of n

2 w.r.t. session key
recovery attacks.

In contrast to this, we show a tight 2
3n bound on the security of the LIZARD-construction

against TMD-TO attacks. More precisely, in Theorem 4 we describe a TMD-TO session
key recovery attack of TMD-cost Õ(2(2/3)n) against the LIZARD-construction, which is
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based on the Slidex attack of Dunkelman, Keller, and Shamir [16] against the one-key Even-
Mansour cipher [18].

The main contribution of this paper is to show that for the LIZARD-construction, this 2
3n

security bound is sharp.
The proof of the matching security lower bound result is done, in the spirit of [19],

in a random oracle model corresponding to the components MIX and OUTBLOCK of the
LIZARD-construction. We prove an information-theoretic lower bound on the security of
the LIZARD-construction against generic chosen-IV attackers, who have black-box access
to the component primitives MIX and OUTBLOCK, and to the stream cipher construction
itself. Due to their generic nature, all known TMD-TO attacks against stream ciphers can
be formulated as attacks in this model in a straightforward way.

The proof of our security lower bound follows the typical structure of similar
information-theoretic proofs in the context of iterated Even-Mansour ciphers (see, e.g., [2,
11, 13, 14, 18, 26]). In particular, it is inspired by the (much shorter) security lower bound
proof in [18]. As in [18], the lower bound against key recovery attacks follows from a lower
bound against the weaker type of attack in which the goal of the attacker is to predict a new
keystream packet, and which we call packet prediction attack in the following. The rough
idea consists in proving that if Eve poses significantly less than at most 2(2/3)n component
and construction queries, then, with high probability, the entropy of the secret session key
will still be at least n − 1. This immediately implies an exponentially small success proba-
bility for recovering the session key and we will show that this is also the case for predicting
a correct new packet.

Note that the 2
3n security bound for the LIZARD-construction cannot hold against distin-

guishing attacks. We show in Theorem 2 that there is a TMD-TO distinguishing attack of
TMD-cost Õ(2(1/2)n) against any KSG-based stream cipher working in packet mode if the
packet length exceeds the inner state length n.

To the best of our knowledge, this is the first time that a formal random oracle model for
the security of stream ciphers against generic TMD-TO attacks is considered. So far, similar
models were used, e.g., for analyzing the security of operation modes of key-alternating
block cipher constructions (see the framework of iterated Even-Mansour ciphers), or of
cryptographic hash functions, or of MAC algorithms, but not for stream ciphers.

Note that in [8], another way of formally analyzing the security of stream cipher con-
structions was proposed, namely in the complexity-theoretic framework of pseudorandom
number generators and pseudorandom function generators.

In 2015, Armknecht and Mikhalev suggested with Sprout [4] another construction
method for stream ciphers with beyond-the-birthday-bound security against TMD-TO
attacks. In Sprout, the symmetric secret key is not only accessed during the state initializa-
tion but also continuously used as part of the state update during the subsequent keystream
generation phase. The hope here was to obtain stream ciphers with the maximal possible
resistance against TMD-TO attacks.

Although Sprout was broken soon after publication via non-generic attacks (see, e.g., [6,
17, 27, 33]), it has raised interest in the design principle and a number of related ciphers
have been suggested since, including Fruit [20] and Plantlet [30]. Very recently, however, it
has been shown in [23] that this whole class of Sprout-like ciphers is susceptible to generic
TMD-TO distinguishing attacks (with complexity about 2n/2) and, hence, does not meet the
original expectation of providing full TMD-TO security. This emphasizes the importance
of provable resistance against TMD-TO attacks as a design criterion for new stream cipher
constructions.
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As already mentioned, the LIZARD-construction, offering provable beyond-the-birthday-
bound security against TMD-TO key recovery attacks, has inspired the design of the
recently published lightweight stream cipher LIZARD [22]. LIZARD works in packet mode
with a packet length of R ≤ 218 bits, has a state initialization algorithm of type (1), and an
inner state length of 121 bits. The design features of LIZARD presented in [22] show that the
LIZARD-construction allows for practical instantiations which are competitive w.r.t. impor-
tant hardware metrics for lightweight devices such as chip area and power consumption.
The maximum packet length of R ≤ 218 bits was chosen by the designers as large as neces-
sary, but as small as possible. More precisely, in [22], an overview over the most prominent
packet-based (encrypted) communication scenarios (such as cellular networks, Bluetooth,
WLAN, HTTPS etc.) is given. While Bluetooth packets contain at most 212 bits for the so-
called basic rate and in WLAN connections, at most 216 bits are encrypted under the same
key/IV pair, the current TLS version 1.2 [15] (underlying HTTPS) requires to encrypt at
most 217 + 213 < 218 bits per packet, hence the limit of R ≤ 218 for LIZARD. Based on the
principle as small as possible, the limit was not chosen larger in order to keep the impact
of distinguishing attacks to a tolerable level. For an in-depth discussion of this, we refer
the reader to Section 4.2 of [22], where a concrete example based on the maximum packet
length of 218 for LIZARD is given.

Recently, interesting cryptanalytic results for LIZARD have been published in [7, 29, 31].
Please note, however, that none of these papers violates the security claims made in the
LIZARD specification and, hence, breaks the ciphers. In particular, the analysis provided
in [7, 29, 31] does not indicate any weakness of the general LIZARD-construction design
principle. To avoid potential misconceptions, it is especially important to realize that the
algorithms in [7] for computing key-IV pairs which produce identical initial states (and,
hence, identical keystreams) do not lead to actual attacks. This is due to the fact that in these
algorithms, the attacker chooses the keys himself. This way, he is able to invert Phase 3 (the
second key addition) of LIZARD’s state initialization and generate some key-IV pair that
leads to a given initial state. However, the algorithms in [7] do not provide any indication
on how to efficiently find the actual secret key if the attacker is only given an initial state
together with the IV that was used to generate it (under this secret key).

Structure of the paper In Section 2, we discuss security-relevant properties of the stream
cipher components MIX and OUTBLOCK and describe the structure of some existing
stream ciphers in terms of these components. In Section 3, we describe three TMD-TO
attacks against KSG-based stream ciphers, including one against the LIZARD-construction.
In Section 4, we introduce the random oracle model for stream ciphers. Section 5 contains
the corresponding lower bound results. Section 6 concludes the paper by summarizing our
results and showing some directions of further research.

2 More on stream ciphers

In this section, we first discuss some concrete security-relevant issues of the components
MIX and OUTBLOCK of KSG-based stream ciphers. After this, we describe the state
initialization algorithms of some concrete stream ciphers in terms of our formalism.

Let us fix a KSG of inner state length n, and let π and outbit define its state transition and
output bit function, respectively. Observe first that the corresponding function OUTBLOCK
is π -iterative in the following sense:
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Definition 2 A function F : {0, 1}n −→ {0, 1}n is called π -iterative if for all inputs y ∈
{0, 1}n it holds that the suffix of length n − 1 of F(y) equals the prefix of length n − 1 of
F(π(y)).

Observe next that OUTBLOCK should be preimage resistant in the sense that it is infea-
sible to compute, for given z ∈ {0, 1}n, a value y ∈ {0, 1}n fulfilling OUTBLOCK(y) = z.
Otherwise, it would be feasible to predict, on the basis of the first n keystream bits of a
packet, all remaining keystream bits of this packet.

Concerning MIX, observe that standard efficiency and security assumptions on KSGs
imply that MIX should be an efficiently computable function which behaves like a ran-
dom function with respect to important properties such as correlation immunity, algebraic
degree, or resistance against conditional differential cryptanalysis. Moreover, in most stream
ciphers, MIX is bijective and can be inverted efficiently (see the examples below).

These properties will be reflected in our security analysis in the way that OUTBLOCK
is assumed to be a randomly chosen π -iterative function and that MIX is assumed to be a
randomly chosen permutation which can be inverted efficiently.

Note here that for many practical KSG-based stream ciphers, the component
OUTBLOCK may deviate from behaving like a random function in the following respect.
For efficiency reasons, the state transition function π and the output bit function outbit are
oftenly defined to be of low degree. According to Definition 1, this implies that a small num-
ber of output bits of OUTBLOCK (namely the leftmost ones) can have a lower degree than
expected for a random function, and consequently that the stream cipher can have a low-
ered sampling resistance in the sense of [9] and [10]. As described there, this could be used
for reducing the cost of certain TMD-TO attacks in a non-generic manner. This allowed,
e.g., a very efficient attack on the A5/1-cipher (see [10]). As for the asymptotic behavior of
TMD-TO attacks the cost reductions of techniques like BSW-sampling (see [10]) are rather
negligible, we do not consider this effect in our security model. However, the possibility of
a lowered sampling resistance has to be considered in the design of concrete stream ciphers.

We conclude this section by describing the state initialization algorithm of some relevant
stream ciphers and expressing them by our formalism.

Trivium The stream cipher Trivium has an inner state of length 288 bits, distributed over
three nonlinear feedback shift registers (NFSRs) of lengths 93 bits, 84 bits, and 111 bits.
The state update function consists of the corresponding three feedback functions, which in
each case are quadratic and take their inputs from two of the three NFSRs. The linear output
function XORs six inner state bits, two from each NFSR. The loading state qload(k, IV) =
(k||IV||CONST) is defined to be the concatenation of the 80-bit session key k, the 80-bit
IV IV and a predefined 128-bit constant CONST . In the mixing phase, the KSG is clocked
4 · 288 times without producing output (see [12] for more details). Consequently,

qinit = qmixed = MIX(k||IV||CONST). (3)

Grain v1 The stream cipher Grain v1 has an inner state of length 160 bits, distributed over
one NFSR and one linear feedback shift register (LFSR), both of length 80 bits. The state
update function consists of the corresponding two feedback functions, where the NFSR
feedback function depends also on one of the LFSR bits. The output function produces one
keystream bit per clock cycle and depends nonlinearly on five LFSR bits and one NFSR bit
and linearly on further seven NFSR bits. The loading state qload(k, IV,CONST) is defined
to be the concatenation of the 80-bit session key k, a 64-bit IV IV and a predefined 16-bit
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constant CONST . In the mixing phase, the Grain-KSG is clocked 160 times, where, in each
clock cycle, the corresponding output keystream bit is XORed to the result of each of the
two feedback functions (see [25] for more details). Consequently, we have again

qinit = qmixed = MIX(k||IV||CONST). (4)

E0 (Bluetooth) Bluetooth works in packet mode with a packet lengthR ≤ 2745 bits.1 The
inner state length of E0 is 132 bits, distributed over four LFSRs of overall length 128 bits
and an extra finite state machine of inner state length four bits. The state update function
updates all LFSRs separately. The state transition of the 4-bit finite state machine addition-
ally depends on four bits from the LFSRs. The output function XORs the output bits of the
LFSRs with the nonlinear 1-bit output of the finite state machine.

For each packet i, the initial value IV i is composed of the 48-bit Bluetooth address of
the master device, 26 bits of the master’s clock (to which both devices are synchronized)
at the time of the first transmission slot of this packet, and two 3-bit constants. The E0
cipher loads k and IV i stepwise to the register cells of the KSG, resulting in the inner
state qi

load = L(k) ⊕ L̃(IV i ), where L, L̃ denote linear functions defined by the four linear
feedback shift registers of the E0-KSG. Subsequently, the generator is clocked 56 times and
the output is discarded. Based on the resulting inner state of the E0-KSG, 128 keystream
bits are then computed without outputting them. Instead, they are copied into the LFSR
register cells, overwriting the old inner state (see [32] for more details). Consequently, the
state initialization algorithm of E0 can be modeled as

qi
init = qi

mixed = MIX
(
L (k) ⊕ L̃

(
IV i
))

. (5)

For a more precise description of the rather involved structure and key/IV loading of E0, we
refer the reader to, e.g., Section 3.1 of [21]. Note that E0 has to be considered broken as,
e.g., in [28], a key recovery attack which only requires the first 24 bits of 223.8 frames and
238 computations is presented.

LIZARD The definition of LIZARD is inspired by the Grain family [24] of stream ciphers.
It employs 120-bit keys and 64-bit IVs, targeting a security level of 80 bits against key
recovery and 60 bits against distinguishing. In opposite to Grain, LIZARD is designed for
working in packet mode with a packet length of 218 bits. It has an inner state length of
121 bits, distributed over two NFSRs of lengths 90 bits and 31 bits, and a nonlinear output
function (see [22] for more details). The prominent innovation of LIZARD is that the state
initialization algorithm is designed according to the scheme in Relation (1), i.e.,

qi
init = qi

mixed ⊕ k = MIX
(
k ⊕ IV i

)
⊕ k. (6)

Obviously, the above numbers w.r.t. key size, IV size, and inner state size do not directly
match Relation 6. In particular, for efficiency reasons, in LIZARD the IV is only of size
64 bits and corresponds to the 120-bit string IV i

0, . . . , IV
i
63, 0, . . . , 0 in terms of the gen-

eral LIZARD-construction. In Section 4, we explain why the general security promise of
the LIZARD-construction still carries over to its concrete instantiation LIZARD. For further
details, e.g., relating the fact that in LIZARD, the state size is one bit larger than the key size,
we refer the reader to the Section 3.5 of [22].

1More precisely, if the so-called basic rate is used, Bluetooth data packets contain at most 2745 bits of
payload, which are encrypted using the E0 cipher.
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In Table 1, an overview of the above stream ciphers in terms of our model is presented.
For E0 (used in Bluetooth), we give the IV size as 74 bits based on the contained 48-bit
Bluetooth address of the master device and the 26 bits of the master’s clock at the time of
the first transmission slot of the respective packet (as described above). Note, however, that
an attacker targeting a specific connection between two devices will only have to deal with
the changing 26 bits of the master’s clock as part of the IV, as, in this situation, the 48-bit
Bluetooth address of the master device is constant. Furthermore, for E0, we do not list any
security claims in the column Security Level of Table 1, as the Bluetooth specification [32]
does not provide any such specific commitments. However, despite the fact that already non-
generic attacks (such as [28]) exists for E0, through Theorem 3 in Section 3 we emphasize
that, in general, such a construction can only reach a security level of n/2, where n = 132
bits in the case of E0.

3 Time-Memory-Data tradeoff attacks

In this section, we first make some general remarks on TMD-TO attacks against KSG-based
stream ciphers and then describe four such attacks. As already mentioned, we consider
KSG-based stream ciphers to be defined by the inner state length n, the key length KL, the
IV length IVL, and the algorithmic components LOAD : {0, 1}KL × {0, 1}IVL −→ {0, 1}n,
MIX : {0, 1}n −→ {0, 1}n, and OUTBLOCK : {0, 1}n −→ {0, 1}n. A TMD-TO attacker
is supposed to know a certain amount of keystream (usually called data), which has its
origin in one session, i.e., it was generated under one secret session key k. TMD-TO attacks
are generic in the sense that they assume that the security-relevant components MIX and
OUTBLOCK are ideally designed, which is reflected by the assumption that the attacker
has only black-box access to MIX and OUTBLOCK. One distinguishes passive TMD-TO
attacks, in which the attacker knows a certain amount of keystream generated w.r.t. to one or
several IVs known to her, and active TMD-TO attacks, in which the attacker gets keystream
packets generated w.r.t. to IVs of her choice. Note that the TMD-TO attacks discussed in this
section are passive, while our security lower bound in Section 5 refers to active TMD-TO
attacks.

Depending on the goal of the attack, we distinguish four types of TMD-TO attacks,
namely 1.) session key recovery attacks, 2.) inner state recovery attacks, 3.) packet pre-
diction attacks, and 4.) distinguishing attacks. The goal of attacks of type 1.) is to recover
the secret session key under which the given data was generated, where the goal of attacks

Table 1 An overview of the some prominent stream ciphers in terms of our model. Key Rec. stands for key
recovery and Dist. for distinguishing

Cipher Size Security Level State Initialization Broken?

State/Key/IV Key Rec. / Dist.

[bits] [bits]

Trivium 288/80/80 80/80 qinit = qmixed No

Grain v1 160/80/64 80/80 qinit = qmixed No

E0 132/128/74 ?/? qi
init = qi

mixed Yes

LIZARD 121/120/64 80/60 qi
init = qi

mixed ⊕ k No
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of type 2.) is to recover at least one inner state q for which the corresponding piece of
keystream OUTBLOCK(q) belongs to the given data. Attacks of type 3.) refer to ciphers
working in packet mode. Here the goal is to compute a pair (IV , z) ∈ {0, 1}IVL × {0, 1}n,
where IV denotes a new initial value which is not associated with the given data, and
z = OUTBLOCK(qinit(IV , k)) is the prefix of length n of the packet generated on initial
value IV under the given secret session key k. The goal of a distinguishing attack against
a given cipher is to decide if the given data is generated in a pseudorandom scenario or in
a random scenario. In the pseudorandom scenario, the data is generated by the cipher on
the basis of a randomly chosen secret session key, while in the random scenario the data is
generated by a random bit generator. Besides the running time, a relevant cost parameter of
distinguishing attacks is the advantage, which is defined to be the difference of two con-
ditional probabilities, namely that the attacker outputs pseudorandom in the pseudorandom
scenario, and that the attacker outputs pseudorandom in the random scenario. TMD-TO
attacks are usually randomized algorithms. The success probability of an attack is the prob-
ability of the event that the attacker reaches her goal, where the underlying probability space
is defined by the random choice of the secret information and the internal randomization of
the attacker.

Following [9] and [10], TMD-TO attacks are considered to be divided into a (key-
independent) precomputation phase, in which, based on the components of the cipher,
some search data structure is constructed, and the online phase, in which the now given
data (e.g., passively or actively obtained keystream) is used for reaching the attack goal
based on the previously computed search data structure. Corresponding to this, TMD-TO
attacks are associated with the cost metrics P (time of the precomputation phase), M (mem-
ory), T (time of the online phase), and D (data), which are scalable in the sense that a
smaller amount of one resource (e.g., data) can be compensated by a larger amount of other
resources (e.g., memory and time). This implies that the cost behavior of TMD-TO attacks
is usually expressed as a so-called tradeoff curve of type f (P, M, T , D) = B, where f

is some real function depending on P,M, T ,D and B is some real number. The interpre-
tation is that if one invests precomputation time P , online time T , memory M , and data
D such that f (P, M, T , D) = B, then the attack reaches its goal with significant success
probability. For instance, the tradeoff curve of Babbage’s attack is T · D = 2n.

In our context, we concentrate on the overall time P + T needed by both phases. We
understand under the minimum TMD-cost of a TMD-TO attack the minimal number C for
which the relation f (P, M, T , D) = B can be fulfilled under the condition that P +T does
not exceed C. Note that P + T ≤ C implies D ≤ C and M ≤ C. This is due to the fact that
the relations P + T ≥ M and T ≥ D always hold. Note that the tradeoff curve T · D = 2n

of Babbage’s attack implies a minimum TMD-cost of C = 2n/2.
The typical basic operations of TMD-TO attacks are operations over n-bit blocks (inner

states or n-bit blocks of keystream bits) such as comparing them or searching for them in a
data base, where n denotes the inner state length of the underlying cipher. This is the reason
why usually the Õ(·)-notation is used for expressing the asymptotic cost behavior of TMD-
TO attack algorithms. Running time Õ(f (n))means that the attack performsO(f (n)) basic
operations over n-bit blocks.

At some places, we use the relation limN→∞(1 − 1
N

)N = e−1. This relation implies
that the probability that at least one of N independent trials with success probability 1

N
is

successful, is greater than 1
4 if N > 2 and around 1 − e−1 if N is large enough.
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Let us start with the the traditional inner state recovery attack of Babbage in [5]:

Theorem 1 We consider a KSG-based stream cipher of inner state length n working in
packet mode or in one-stream mode. Suppose that attacker Eve knows D different keystream
sequences (which may be from different packets) of length at least n. Then Eve can compute
the initial state of at least one packet in time Õ(2n/D) with success probability greater
than 1

4 if n > 1 (and close to 1 − e−1 if n is large enough), which implies a tradeoff curve
T · D = 2n and minimum TMD-cost 2n/2.

Proof of Theorem 1 Eve generates T = 2n/D times a pair (y,OUTBLOCK(y)) for ran-
domly and independently chosen inner states y ∈ {0, 1}n. As T · D = 2n, with probability
around 1 − e−1 there is some pair (y,OUTBLOCK(y)) such that y equals one of the inner
states behind the D keystream subsequences of length n known to Eve. As the state transi-
tion function π is efficiently invertible, this allows to efficiently compute the secret initial
state qi

init of the corresponding packet, respectively of the only initial state qinit if the cipher
runs in one-stream mode. Setting T = D = 2n/2 implies an attack of time and data
Õ(2n/2).

In one-stream mode, the attack in Theorem 1 discovers the only initial state qinit and,
thus, the whole keystream of this session. In packet mode, the initial state of at least one
packet is discovered and, thus, the whole packet can be computed.

In the following, we show that the attack in Theorem 1 can be converted into a distin-
guishing attack of the same minimal TMD-cost against ciphers working in packet mode if
the packet length is greater than the inner state length.

Theorem 2 We consider a KSG-based stream cipher of inner state length n working in
packet mode with packet length R = n + 1. Suppose that Eve knows data consisting of D

different keystream packets. Then Eve can distinguish the pseudorandom scenario from the
random scenario in time Õ(2n/D) with advantage around

√
e−1 − e−1.

Proof of Theorem 2 For each inner state y ∈ {0, 1}n, we denote by Z(y) ∈ {0, 1}n+1 the
sequence of the first n + 1 keystream bits generated on initial state y. Moreover, let D∗
denote the set of all those packets Z ∈ {0, 1}n+1 contained in the data for which there is
some inner state y ∈ {0, 1}n with Z(y) = Z. We know that in the pseudorandom case all
D packets contained in the data belong toD∗, while in the random case the probability that
|D∗| deviates significantly from D/2 is negligibly small.

Eve now generates at most T = 2n/D times a pair (y, Z(y)) for randomly and indepen-
dently chosen inner states y ∈ {0, 1}n and stops with output pseudorandom if she gets
a collision, i.e., if she generated some y for which Z(y) coincides with one of the D pack-
ets contained in the data. If after T = 2n/D rounds no collision happened, she stops and
outputs random.

By the same arguments as in the proof of Theorem 1 it follows that in the pseudorandom
case the probability that Eve outputs pseudorandom is around 1 − e−1. In the random
case, the probability that Eve outputs pseudorandom is around 1 − (1 − D/2

2n )2
n/D ≈

1 − √
e−1. This implies an advantage of

∣∣∣
(
1 − e−1

)
−
(
1 −

√
e−1

)∣∣∣ =
√

e−1 − e−1.
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Theorem 2 shows that with respect to distinguishing attacks, KSG-based stream ciphers,
even if they run in packet mode, cannot reach beyond-the-birthday-bound security. But what
about the security against attacks with more complex goals such as packet prediction attacks
and session key recovery attacks? Theorem 1 shows that for achieving a higher resistance
than Õ(2n/2) it must be hard to compute the secret session key from a given packet initial
state. Note that this is not true for Trivium, Grain, and A5/1, as for all these ciphersMIX is
efficiently invertible and its result is taken directly as the initial state. The following theorem
shows that even if the mixing algorithm is presumably preimage resistant (as in the case
of the Bluetooth cipher E0), the security against session key recovery attacks will be only
n/2 if the state initialization algorithm implies that the packet initial states are equal to the
packet mixing states (as it is the case for E0).

Theorem 3 We consider a KSG-based stream cipher working in packet mode with a state
initialization for which the packet initial states are equal to the packet mixing states. Then,
with probability around 1 − e−1, Eve can compute the secret session key in time Õ(2n/D)

if she knows D different n-bit keystream packet prefixes (which implies a tradeoff curve
T · D = 2n and minimum TMD-cost 2n/2).

Proof of Theorem 3 By the assumption it holds that

qi
init = MIX

(
qload

(
k, IV i

))

for all packets i.
Eve generates T = 2n/D times a pair (q,OUTBLOCK(MIX(q))) for randomly and

independently chosen inner states q ∈ {0, 1}n. As T · D = 2n, with probability around
1− e−1, for some q,MIX(q) equals the initial state of one of the D prefixes known to Eve,
which implies q = qload(k, IV i ). This allows to compute k from q as IV i is public. Here we
assumed that k can be efficiently computed from qload(k, IV i ) and IV i , which is true for all
KSG-based stream ciphers which are known to us.

Theorem 3 shows that for achieving beyond-the-birthday-bound security against generic
TMD-TO attacks, the state initialization algorithm has to provide

qi
init �= MIX(qload(k, IV i )).

The main result of this paper is to show that beyond-the-birthday-bound security against
packet prediction and session key recovery TMD-TO attacks can be achieved if the packet
initial states are computed according to the LIZARD-construction (see Relation (1)), i.e., as

qi
init = MIX

(
qi
load

)
⊕ k,

where qi
load = k ⊕ IV i . But before we go into the details of the corresponding lower

bound proof, the next theorem will first show a respective upper bound, namely a
session key recovery TMD-TO attack with minimal TMD-cost Õ(2(2/3)n) against the
LIZARD-construction.

Theorem 4 We consider a KSG-based stream cipher working in packet mode for which the
inner state length n equals the initial value length and the session key length, and we assume
that for all i ≥ 1 the packet initial states qi

init are generated according to Relation (1), see
above. Suppose that Eve knows a set of D packet prefixes of length n, i.e., a set of pairs
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{(IV i ,PREFIX(IV i )); i ∈ I ∗} for a set I ∗ ⊆ N, where D = |I ∗| ≥ 2n/2 and, for each
i ∈ I ∗,

PREFIX
(
IV i
)

= OUTBLOCK
(
MIX

(
IV i ⊕ k

)
⊕ k

)
.

Then, with constant positive probability, Eve can compute the secret session key in time

Õ(D + 22n

D2 ), which implies TMD-cost of Õ(2(2/3)n).

Proof of Theorem 4 Our attack uses the idea of the Slidex attack of Dunkelman, Keller,
and Shamir [16] against the one-key Even-Mansour cipher. We describe the attack but only
sketch the analysis of the success probability. For an exact specification of the success
probabilities we refer to [16]. Note that our attack does not have a preprocessing phase.

Let Q∗ denote the set of all initial states corresponding to the indices in I ∗, i.e.,

Q∗ =
{
MIX

(
IV i ⊕ k

)
⊕ k; i ∈ I ∗} .

Observe that before starting the attack, Q∗ is unknown to Eve. The attack now consists of
two phases.

In the first phase, Eve generates D times a pair (q,OUTBLOCK(q)) for randomly and
independently chosen inner states q ∈ {0, 1}n. Whenever q falls into Q∗, which happens
with probability D

2n , Eve sees a collision of OUTBLOCK(q) with PREFIX(IV i ) for some
i ∈ I ∗ and it holds MIX(IV i ⊕ k) ⊕ k = q. Consequently, after the first phase, a standard
Chernoff bound argument yields that Eve knows with constant positive probability a set of

pairs {(IV i , qinit(IV i )); i ∈ I ∗∗} for some I ∗∗ ⊆ I ∗ with |I ∗∗| ≥ D2

2n .

In a second phase, Eve generates 2n

D2/2n = 22n

D2 times a pair (u,MIX(u)) for randomly

and independently chosen inner states u ∈ {0, 1}n. Eve stops with u if

u ⊕ IV i = MIX(u) ⊕ qinit(IV
i ) (7)

for some i ∈ I ∗∗ and publishes the hypothesis that u ⊕ IV i equals the secret session key k.
In [16], it is shown that the event that Relation (7) holds implies the event k = u ⊕ IV i

with positive constant probability if MIX is supposed to behave like a random permutation.

Note further that, as 22n

D2 · |I ∗∗| ≥ 22n

D2 · D2

2n = 2n, the event that Relation (7) is fulfilled during

the second phase happens with probability around 1 − e−1.

4 A random oracle model for the LIZARD-Construction

In this section, we introduce a random oracle model which allows to prove information-
theoretic lower bounds on the security of KSG-based stream ciphers against TMD-TO
attacks. In this model we suppose that the components MIX and OUTBLOCK of a given
KSG-based stream cipher are ideally designed and that an attacker has only black-box oracle
access to these components. In this sense, random oracle models allow to analyze the power
of generic attacks, which do not exploit possible cryptographic weaknesses of the compo-
nents MIX and OUTBLOCK, but concentrate on the way how these components interact in
computing the keystream from the secret session key and public initial values. Note that all
TMD-TO attacks presented in Section 3 have this generic nature and can be formulated in
our random oracle model in a straightforward way.

We start with a formal definition which gives an exact specification of the notion
LIZARD-construction.
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Definition 3 AKSG-based stream cipher is called to be designed according to the LIZARD-
construction if it fulfills the following criteria:

(L1) The construction refers to three auxiliary parameters n, π, R, where n denotes the
inner state length, π : {0, 1}n −→ {0, 1}n denotes the state transition function of
the underlying KSG, and R denotes the packet length. It is required that R ≥ n, that
π is bijective, and that for all inner states q ∈ {0, 1}n the period of the sequence
(πr(q))∞r=0 is greater than R.

(L2) The construction refers to a set of secret session keys and a set of public initial val-
ues, which are both defined to be {0, 1}n. Moreover, the construction refers to an
ideal bijective state mixing function MIX : {0, 1}n −→ {0, 1}n, which behaves like
a random permutation over {0, 1}n, and an ideal π -iterative output block function
OUTBLOCK : {0, 1}n −→ {0, 1}n, which behaves like a random π -iterative func-
tion over {0, 1}n (see Definition 2 for the definition of π -iterativeness). MIX and
OUTBLOCK are considered to be the main components of the cipher.

(L3) The construction consists in the following rules how to generate from a secret
key k ∈ {0, 1}n and a packet initial value IV ∈ {0, 1}n the packet initial state
qinit(k, IV) ∈ {0, 1}n and the corresponding keystream packet PACKET (k, IV) =
PACKET (qinit (k, IV)) ∈ {0, 1}R . Let

qinit (k, IV) = MIX (k ⊕ IV) ⊕ k (8)

and
PACKET (qinit (k, IV)) = (z0, z1, · · · , zR−1) ,

where for all r , 0 ≤ r ≤ R − n, it holds

(zr , zr+1, · · · , zr+n−1) = OUTBLOCK
(
πr (qinit (k, IV))

)
. (9)

Note that Relation (9) corresponds to the usual keystream generation definition (see Sec-
tion 2, especially Definition 1). Note further that the stream cipher LIZARD, as defined in
[22], differs from the design features of the LIZARD-construction in some minor points,
which do not harm our security bounds. For instance, in contrast to condition (L2), the IV
length of LIZARD is smaller than the inner state length. Observe that a smaller IV length
means that an attacker can use only a smaller set of possible IVs as inputs of oracle queries
in his attack. Thus, a smaller IV length lowers the power of a chosen-IV attacker, i.e., our
security lower bounds also hold for a modified LIZARD-construction of IV length smaller
than n.

We model the security of the LIZARD-construction against generic TMD-TO attacks by
the adversary Eve’s success probability to win the following packet prediction game with a
limited number of oracle queries against Alice, who holds a secret session key k. Eve has
black-box access to the ideal components MIX and OUTBLOCK, and is allowed to ask for
keystream packets PACKET(k, IV i ) generated w.r.t. the secret session key k held by Alice
and IVs IV i of Eve’s choice. Eve wins the game if, after asking a certain number of oracle
queries, she is able to predict the keystream packet w.r.t. to a new IV, which has not been
asked before.

From now on, we denote the component functions MIX and OUTBLOCK by P and F ,
respectively, the construction function PACKET by E, and initial values by x ∈ {0, 1}n
(respectively x′, x∗ etc.).
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Definition 4 (The Packet Prediction Game)

(i) The game depends on the global parameters n, π, R, which satisfy the rules in Defi-
nition 3, and a parameter M , which bounds the number of oracle queries. The game
is divided into a query phase and a prediction phase.

(ii) At the beginning, Alice chooses randomly and w.r.t. the uniform distribution a secret
triple ω = (kω, Pω, Fω), where

– kω ∈ {0, 1}n denotes the secret session key,
– Pω : {0, 1}n −→ {0, 1}n denotes a random permutation (corresponding to

MIX),
– Fω : {0, 1}n −→ {0, 1}n denotes a random π -iterative function (corre-

sponding to OUTBLOCK).

We denote by � the corresponding probability space of all such triples together with
the uniform distribution.

(iii) The adversary Eve is a randomized oracle algorithm of potentially unbounded com-
putational power, who is allowed to pose component oracle queries of type P(u) =?,
or P −1(v) =?, or F(y) =? for inputs u, v ∈ {0, 1}n and y ∈ {0, 1}n, which are
correctly answered by Alice by Pω(u), (Pω)−1(v), or Fω(y), respectively.

(iv) Moreover, Eve is allowed to pose construction queries of the form E(x) =?, where
x ∈ {0, 1}n, which will be answered by Alice with the keystream packet Eω(x)

corresponding to the initial state

y := Pω(x ⊕ kω) ⊕ kω

induced by the session key kω and the initial value x (see Relation (8)). Note that this
keystream packet Eω(x) is the concatenation of R/n F -values. In particular,

Eω (x) = Fω (y)

∣∣∣
∣∣∣Fω

(
πn (y)

)∣∣∣
∣∣∣Fω

(
π2n (y)

)∣∣∣
∣∣∣· · ·

∣∣∣
∣∣∣Fω

(
π(R/n−1)n (y)

)
.

W.l.o.g., for the sake of simplicity we assume in our proof that n divides R.
(v) In the query phase, Eve poses exactly M oracle queries. In the prediction phase, Eve

has to submit a pair (x∗, z∗) ∈ {0, 1}n × {0, 1}n, where x∗ does not occur as input of
an E-query in the query phase. Eve wins if z∗ = Fω(Pω(x∗ ⊕ kω) ⊕ kω), i.e., if z∗
equals the block of the first n bits of the keystream packet Eω(x∗) corresponding to
the initial state Pω(x∗ ⊕kω)⊕kω, i.e., the keystream packet corresponding to session
key kω and initial value x∗.

(vi) Besides the number M of oracle queries, the essential cost parameter is the winning
probability of Eve, which is measured with respect to the uniform distribution on �

and the internal randomization of Eve.

Observe that generic TMD-TO attacks (as described in Section 3) against the LIZARD-
construction can be formulated in a straightforward way as packet prediction or key recovery
games in the sense of Definition 4. Here, the cost metric data (i.e., D) corresponds to the
number of E-queries (possibly multiplied by the packet length), while each evaluation of
the cipher components MIX and OUTBLOCK corresponds to a P -, P −1-, or F -query in
the sense of Definition 4. Note here that in a possible precomputation phase of a TMD-
TO attack, only P -, P −1-, or F -queries will be posed. Hence, the overall number of oracle
queries in our game is a lower bound for the cost metric overall time (i.e., T + P ; cf.
Section 3) of the online phase and a possible precomputation phase of a corresponding
generic TMD-TO attack against the LIZARD-construction. Consequently, a lower bound
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on the number of oracle queries also lower bounds the minimum TMD-cost of TMD-TO
attacks against the LIZARD-construction.

Note here that evaluations of the state transition function π by Eve do not count in our
security analysis; it is supposed that π is completely known to Eve. The function π has to
satisfy rule (L1) of Definition 3, but apart from that, no further security-relevant properties
are required. Our lower bound arguments even work in the case that π is linear.

We conclude this section by describing how a random uniformly distributed π -iterative
function can be generated.

Generating a random π-iterative function F Note that, as π is bijective, the
strongly connected components of the directed graph Gπ = ({0, 1}n , Eπ), where Eπ =
{(v, π(v)); v ∈ {0, 1}n}, are simple cycles C1, · · · , Cs of sizes d1, · · · , ds , which we call
π -cycles.

For each π -cycle Cj , 1 ≤ j ≤ s, fix a starting point v
j

0 ∈ Cj . Note that Cj =
{vj

0 , · · · , v
j

dj −1}, where for all i, 1 ≤ i ≤ dj − 1, it holds v
j
i = πi(v

j

0 ).
A uniformly distributed π -iterative function F can be defined by choosing for all j ,

1 ≤ j ≤ s, randomly and independently a uniformly distributed bitstring

bj =
(
b

j

0 , · · · , b
j

dj −1

)
∈ {0, 1}dj

and defining F(v
j
i ) for all i, 0 ≤ i ≤ dj − 1, by

F
(
v

j
i

)
=
(
b

j
i , b

j

(i+1) mod dj
, · · · , b

j

(i+n−1) mod dj

)
.

Here we took into account that, by Definition 3, the sizes of the cycles are each larger than
R ≥ n. Note that the entropy of a random π -iterative function is 2n.

5 The security lower bound proof

5.1 Preliminaries

In this section, we show the main result of this paper, a sharp security lower bound for
the LIZARD-construction. At one essential point, our lower bound proof uses a combinato-
rial result proved by Chen, Lampe, Lee, Seurin, Steinberger in [13], namely Theorem 1 in
Section 3, which is known as Sum-Capture Theorem.

For motivating the use of this result, let us consider the situation that Alice holds a secret
triple ω = (kω, Pω, Fω) and that Eve asked a number of queries, where U, X, Y ⊆ {0, 1}n
denote the sets of inputs of the P -queries, E-queries and F -queries asked by Eve so far,
respectively.

Definition 5 (Critical Triples) A triple (u, x, y) ∈ U × X × Y is called

– ω-critical if x ⊕ u = Pω(u) ⊕ y,
– ω-dangerous if (u, x, y) is ω-critical and (x, y) form an ω-collision in the sense that

Fω(y) equals the prefix of length n of the packet Eω(x), and
– ω-sudden death if x ⊕ u = Pω(u) ⊕ y = kω.

It can be easily derived from Definition 4 that from (u, x, y) is ω-sudden death it follows
that (u, x, y) is ω-dangerous and ω-critical. Note that Eve can immediately check if a given
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triple (u, x, y) ∈ U × X × Y is ω-critical or even ω-dangerous. Note further that in our
lower bound proof we will use a more general definition of collision than in Definition 5.

The following lemma shows that from Eve’s point of view it is desirable that the choice
of U, X, Y implies a sufficiently large set of ω-critical triples.

Lemma 1 For all ω-critical triples (u, x, y) ∈ U × X × Y , it holds that if (u, x, y) is not
ω-dangerous, then x ⊕ u �= kω. If (u, x, y) is ω-dangerous, then x ⊕ u = kω holds with
significant probability.

Consequently, if Eve manages to construct an ω-dangerous triple, then she wins with
significant success probability. Note that the aim of the attack in Theorem 4 against the
LIZARD-construction is to construct an ω-dangerous triple.

Proof of Lemma 1 If x⊕u = Pω(u)⊕y and x⊕u = kω, then y = Pω(x⊕kω)⊕kω, which
implies that, by definition, Fω(y) equals the prefix of length n of Eω(x). Consequently, if
Fω(y) does not equal the prefix of length n of Eω(x), then x ⊕ u �= kω.

For the other direction, we sketch only the proof; the complete proof can be found in [16].
We suppose that x ⊕ u = Pω(u) ⊕ y and that Fω(y) equals the prefix of length n of Eω(x).
As Fω is randomly chosen, it follows with high probability that y = Pω(x ⊕ kω)⊕ kω. Now
let Mω(u) denote the set of all u′ ∈ {0, 1}n for which u′ ⊕ Pω(u′) = u ⊕ Pω(u). As Pω

is randomly chosen, it can be shown that |Mω(u)| ≤ n with high probability. Now observe
that the events x ⊕ u = Pω(u) ⊕ y and y = Pω(x ⊕ kω) ⊕ kω imply that x ⊕ kω ∈ Mω(u).
Consequently, x ⊕ kω = u with probability |Mω(u)|−1.

Note that as Eve knows Pω(u) for all u ∈ U and as Eve has unbounded computational
power, she is able to compute from U, X, Y the set of all ω-critical and all ω-dangerous
triples without further oracle queries.

Lemma 1 shows that Eve wins the game with high probability if she manages to pose
the queries in such a way that for almost all keys k ∈ {0, 1}n there is some ω-critical triple
(u, x, y) ∈ U × X × Y fulfilling x ⊕ u = Pω(u) ⊕ y = k. We mention here that there is
an algorithm which reaches this goal with high probability with Õ(2(2/3)n) oracle queries.
As the time cost of the corresponding TMD-TO attack is much worse than that of the attack
described in Theorem 4, we omit the description of this algorithm.

The Sum-Capture Theorem from [13], which we present in a slightly modified form,
shows that reaching this goal with significantly less than Õ(2(2/3)n) oracle queries succeeds
only with exponentially small success probability.

Theorem 5 Let P denote a uniformly random permutation over {0, 1}n, let N = 2n and
fix an arbitrary number M , 9n ≤ M ≤ N/2. Suppose that Eve (who is supposed to be
a probabilistic algorithm) poses a sequence U = {u1, · · · , uM } of M P -queries. For any
subsets X, Y ⊆ {0, 1}n let

μ(P,U, X, Y ) = |{(u, x, y) ∈ U × X × Y ; x ⊕ u = y ⊕ P(u)}| .
Then the probability for the event that there are subsets X, Y ⊆ {0, 1}n such that

μ(P, U,X, Y ) ≥ M · |X| · |Y |
N

+ 2M2 · √|X| · |Y |
N

+ 3
√

n · M · |X| · |Y | (10)

is at most 2
N
, where the probability is taken over the random choice of P and the internal

randomization of Eve.
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5.2 The main theorem

In this subsection, we formulate our main technical result (Theorem 6) and start with a
technical definition:

Definition 6 (The Number B(M,R, n)) For natural numbers M,R, n, with R ≥ n, let

B(M,R, n) = 2−n · M3 ·
(
R + n − 1 + 2

√
R + n − 1

)
+ 3 ·

√
n · M3 · (R + n − 1).

Note thatB(M,R, n) equals the term on the right-hand side of Relation (10) for |X| = M

and |Y | = (R + n − 1)M .

Theorem 6 (Main Theorem) Suppose that the parameters M , n, R satisfy the following
rules for some number �:

(1) B(M, R, n) + 2 · � · M + (R+n)·M2

�
≤
(
1 − 1√

2

)
· 2n,

(2) 22 · 2−(n−1) · R · M2 +
√

n·M
2 ≤ �−(R+n−1)

R+n−1 ,

(3) � · ((n + R) · M) ≤ ln 2 · 2n−3.

Then Eve’s success probability to win the packet prediction game with parameters �, R, n
with M oracle queries is bounded by

34 · 2−n + M · e−n + M · (� + 2) · 2−(n−1) + 11 · (R + 4n) · M · 2−(n−1).

This implies the following asymptotic lower bound result, which can be derived
straightforwardly from Theorem 6.

Corollary 1 (Main Corollary) Let ε > 0 and a > 1 be constants and suppose that M ≤
2( 23−ε)n, R ≤ na and � = �2 1

3 n�. Then M , R, n, � satisfy all rules in Theorem 6 and
Eve’s success probability to win the packet prediction game with parameters �, R, n with
M oracle queries is bounded by 3 · 2−ε·n, if n is large enough.

The remaining part of this paper is devoted to the proof of Theorem 6.

A first overview over the idea and the structure of the proof We prove the security
bound of Theorem 6 for deterministic adversaries. This is justified by the fact that each
upper bound on the success probability of deterministic adversaries posing M queries also
holds for randomized adversaries posing M queries. We give a proof of this folklore result
at the beginning of Section 5.4. The fact that Eve is assumed to be deterministic allows
to assign to each elementary event ω = (kω, Pω, Fω) a computation τω, which is per-
formed by Eve on ω, and which is either successful (i.e., Eve wins), or not. Let us denote
by �succ ⊆ � the set of all elementary events for which τω is successful. For showing
that Pr�[�succ] fulfills the relation claimed in Theorem 6, we partition � into a set �bad

of bad events and a set �good of good events, where bad events ω will have the property
that the corresponding computation τω yields some nontrivial information on the secret key
kω, which helps Eve to win the game. An elementary event is called to be good if it is not
bad.
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This partition into bad and good elementary events allows to express the success
probability of Eve as

Pr
�

[�succ] = Pr
�

[�succ|�bad] · Pr
�

[�bad] + Pr
�

[�succ|�good] · Pr
�

[�good]
≤ Pr

�
[�bad] + Pr

�
[�succ|�good]. (11)

We prove Theorem 6 by deriving bounds for Pr�[�bad] and Pr�[�succ|�good]. In particular,
we will distinguish four sorts of bad events, namely sudden death events, black events, red
events, and blue events, and denote the remaining sort of good elementary events to be
green events. Corresponding to this, the proof Theorem 6 rests upon four pillars consisting
in proving small upper bounds for the probability of 1.) the set of sudden death events, 2.)
the set of black events, 3.) the event that a green elementary event determines a successful
computation, and 4.) the set of red and blue events.

The proof of Theorem 6 is divided into three phases. In the first phase, which com-
prises Sections 5.3, 5.4, and 5.5, we slightly modify the operation mode of Alice, formalize
the computational behavior of Eve, and discuss a number of basic properties of elemen-
tary events and computations of Eve. This enables us to give a more detailed overview
about the remaining two phases of the proof, and to formulate our main lemma (Lemma 2).
This lemma consists of four items corresponding to the formulation of the concrete bounds
determining the four pillars of the proof mentioned above.

In the second phase, we develop the mathematical tools which are necessary for proving
the items of Lemma 2 (Section 5.6 and Section 5.8). The intention of these tools, which we
call basic methods, is to analyze and formalize Eve’s knowledge about the secret elementary
event held by Alice under the condition that a certain computation τ has already happened,
i.e., that a certain number of oracle queries has been posed and answered. This knowledge
corresponds to the probability space �(τ) formed by all elementary events which are con-
sistent with the computation τ . In the Consistency Lemma (Lemma 3 in Section 5.6) and the
Smoothness Lemma (Lemma 5 in Section 5.8) the structure of this probability space�(τ) is
analyzed, especially that of the induced probability spaceK(τ) of all keys k ∈ {0, 1}n which
are consistent with τ . The six items forming Corollary 2 in Section 5.8, which result from
this analysis, can be seen as a toolbox of methods for handling all the different situations
occurring in the proofs of the items of Lemma 2.

Moreover, in the second phase we give the definitions of sudden death, black, red, blue,
and green elementary events and discuss basic properties of these definitions (Section 5.7).
Informally, an elementary event ω is defined to fulfill the sudden death rule if during the
computation τω an ω-sudden death triple will be generated (see Definition 5 and Lemma 1).
We have seen already in Lemma 1 that a sudden death event allows to determine the secret
key with high probability.

The elementary event ω is defined to be black if during τω too many ω-critical triples are
generated. Lemma 1 showed that black events are dangerous for Alice as a large number
of ω-critical triples implies an ω-dangerous triple (i.e., a sudden death event) with high
probability.

The elementary event ω is called red if during τω too many ω-collisions are generated.
The danger of red events follows by Theorem 4, where it is shown how to recover the secret
key on the basis of a large set of ω-collisions.

Finally, ω is defined to be blue if the probability distribution corresponding to K(τ) dif-
fers too much from the uniform distribution. We have to exclude this case as our techniques
for bounding the probability of certain bad events rest on the assumption that the keys in
K(τ) are nearly uniformly distributed.
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As the proofs of one part of Lemma 5 and some parts of Corollary 2 are quite long
and tedious, we shifted them into Appendix C and B, respectively. In Appendix A, we
derive a further basic method, a modified Chernoff bound technique, which is necessary for
bounding the probability of red and blue elementary events.

In the third phase of the proof of Theorem 6, consisting of the Sections 5.9, 5.10, 5.11,
and 5.12, we prove the four items of Lemma 2. As mentioned above, all these four proofs
use the methods contained in Corollary 2.

We illustrate the modular structure of the proof of Theorem 6 in Fig. 3.

Main Theorem
(Theorem 6)

Main Lemma
(Lemma 2)

Main Toolbox
(Corollary 2)

Smoothness Lemma
(Lemma 5)

Consistency Lemma
(Lemma 3)

sudden

death

events

black

events

success
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Fig. 3 The modular structure of the proof of the Main Theorem (Theorem 6)
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5.3 Structural collisions, the friendly Alice, and sudden death

We will prove our security bound for a modified game, in which Alice is supposed to be
friendly to Eve in the sense that in certain situations Alice provides some additional informa-
tion to Eve. These situations will have to do with collisions, which can occur, e.g., between
E-queries and F -queries, i.e., the E-query with an input x yields the same answer as the
F -query with an input y. The reason for such a collision can be twofold. The first possi-
ble reason is that y = Pω(x ⊕ kω) ⊕ kω. We will call this type of collision a structural
EF -collision. Another reason can be that the values y and Pω(x ⊕ kω) ⊕ kω are a collision
of the function Fω. Note that in the case of a structural collision, Eve obtains the valu-
able information that y = Pω(x ⊕ kω) ⊕ kω. We have seen in Theorem 4 that the secret
key can be computed by Eve on the basis of 2n/2 such pairs (x, y), which highlights the
importance of structural collisions. Another type of collisions are EE-collisions (x, x′) of
E-queries with inputs x �= x′. Here, too, we distinguish between structural collisions, where
Pω(x ⊕ kω) ⊕ kω = Pω(x′ ⊕ kω) ⊕ kω, and non-structural collisions, where this is not the
case but Pω(x ⊕ kω) ⊕ kω and Pω(x′ ⊕ kω) ⊕ kω are a collision of Fω. The friendly Alice
will inform Eve if Eve managed to discover a structural collision. Moreover, she follows a
sudden-death rule (see Definition 9), which has to do with structural collisions.

Definition 7 (Structural Collisions)

– A pair (x, y), where x, y ∈ {0, 1}n, is called a structural EF -collision w.r.t. to an
elementary event ω = (kω, Pω, Fω) if

y = πr(Pω(x ⊕ kω) ⊕ kω), (12)

for some r , −(n − 1) ≤ r ≤ R − 1. Note that this implies that the n-bit block Fω(y) is
a subblock of packet Eω(x) or has at least a nonempty intersection with packet Eω(x).

– If (x, y) is a structural EF -collision w.r.t. ω, then the point ȳ = Pω(x ⊕ kω) ⊕ kω is
called the reference point of this collision.

– A pair (x, x′), where x �= x′ ∈ {0, 1}n, is called a structural EE-collision w.r.t. to ω if
the initial states of the packets Eω(x) and Eω(x′) come so close that these packets have
a nonempty intersection, i.e., there is some number r , 1 ≤ r ≤ R − 1, such that

πr(Pω(x ⊕ kω) ⊕ kω) = Pω(x′ ⊕ kω) ⊕ kω or

πr(Pω(x′ ⊕ kω) ⊕ kω) = Pω(x ⊕ kω) ⊕ kω. (13)

Note that this implies that the suffix of packet Eω(x) starting at position r equals the
prefix of packetEω(x′) ending at positionR−(r−1), or that the suffix of packetEω(x′)
starting at position r equals the prefix of packet Eω(x) ending at position R − (r − 1).

Note here again that structural EF -collisions are exactly those collisions which are
exploited in the TMD tradeoff attacks against the LIZARD-construction described in
Theorem 4.

Suppose that Alice holds the elementary event ω = (kω, Pω, Fω) and communicates
with Eve. Note that if Eve detects a collision in the answers to her questions, she is not able
to decide if it is a structural collision, and, in the case of a structural collision, she is not
able to compute the reference point. The friendly Alice helps her in such situations in the
following way:
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Definition 8 (The Friendly Alice)

– Whenever Eve poses an F -query with some input y ∈ {0, 1}n which forms a structural
EF -collision (x, y) w.r.t. ω for some x ∈ {0, 1}n which already occurred as input of
an E-query posed before, then, besides publishing Fω(y), Alice confirms a structural
collision, publishes a pointer to the input x and publishes the reference point Pω(x ⊕
kω) ⊕ kω of this collision.

– Whenever Eve poses an E-query with some input x ∈ {0, 1}n which forms a structural
EF -collision (x, y) w.r.t. ω for some y which already occurred as input of an F -query
posed before, then, besides publishing Eω(x), Alice confirms a structural collision,
publishes a pointer to y and publishes the reference point Pω(x ⊕ kω) ⊕ kω of this
collision.

– Suppose that Eve poses an E-query with some input x ∈ {0, 1}n which forms a
structural EE-collision (x, x′) w.r.t. ω for some x′ which already occurred as input
of another E-query posed before. Suppose w.l.o.g. that πr(Pω(x ⊕ kω) ⊕ kω) =
Pω(x′ ⊕ kω) ⊕ kω for some r , 1 ≤ r ≤ R − 1. Then, besides publishing Eω(x), Alice
confirms a structural EE-collision and publishes a pointer to x′. Moreover, Alice pub-
lishes the value y = πr(Pω(x⊕kω)⊕kω) = Pω(x′⊕kω)⊕kω, the value Fω(y), and the
reference points ȳ = Pω(x ⊕ kω) ⊕ kω and y of the resulting structural EF -collisions
(x, y) and (x′, ȳ).

Next we formulate the sudden-death rule.

Definition 9 (Sudden Death) Suppose that Alice holds an elementary event ω =
(kω, Pω, Fω) and consider a situation in which Eve already posed a number of queries. A
pair (x, u), where x, u ∈ {0, 1}n, is called a sudden-death pair w.r.t. ω if the following
conditions are fulfilled:

– Eve has already discovered a structural EF-collision (x, y) (which implies that Eve has
asked an E-query with input x).

– Eve has already asked a P -query with input u or a P −1-query with output u.
– It holds x ⊕ u = kω.

Whenever Eve asks a query which causes a sudden-death pair w.r.t. to the secret ω held
by Alice, then Alice immediately gives up, the game stops and Eve wins.

The motivation for considering sudden death pairs is given with Lemma 1. There it is
proved that for each sudden death pair (x, u) it holds with significant probability that x ⊕ u

equals the secret session key kω. Note that the TMD-TO attack described in Theorem 4
consists in generating a sudden-death pair.

Looking at the remarks motivating the consideration of structural collisions and sudden
death pairs, it should be clear the the additional information given by a friendly Alice helps
Eve in winning the game. The friendliness of Alice increases Eve’s chances to win the pre-
diction game (any additional information which is provided for free does so). Consequently,
it is sufficient to show the security lower bound of Theorem 6 for an adversary Eve who
plays the packet prediction game with a friendly Alice. Note that the reason for considering
a friendly Alice instead of an unrestricted one is to simplify the proof of Theorem 6.
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5.4 Formalizing the computational behavior of Eve

First note the well-known fact, proved, e.g., in [13] and many other papers, that it is suf-
ficient to prove our security lower bound for deterministic adversaries. For showing this
suppose that Eve is randomized and that the randomization is organized by a number B of
random bits. Then Eve’s success probability can be written as

Pr[Eve successful] =
∑

b∈{0,1}B
2−B Pr[Eve successful | b], (14)

where Pr[Eve successful | b] denotes the success probability of the deterministic algorithm
obtained by assigning b to Eve’s random bits.

Consequently, if we show an upper bound on the success probability of all deterministic
adversaries then, by (14), this bound also holds for randomized adversaries.

Therefore, we assume from now on that Eve is deterministic.
Remember that, during each computation, Eve poses at most M oracle queries, where

she either wins via sudden death of Alice or she stops after M queries with the publication
of a pair consisting of an initial value x∗ ∈ {0, 1}n and a keystream prefix z∗ ∈ {0, 1}n as
final output.

We identify such computations with transcripts

τ = (
(type1, input1, output1), · · · , (typej , inputj , outputj )

)
,

j ≤ M , which are defined to be sequences of query triples corresponding to the oracle
queries posed during the computation.

Here, typer ∈ {F,P −1, P , E}, inputr , and outputr denote the type, the input, and the
output of the r-th oracle query, r = 1, · · · , j , respectively. Note that the output of an oracle
query can, besides the output function values of Pω, or P −1

ω , or Fω, orEω, contain additional
information about structural collisions discovered by this query (see Definition 8).

If τ has length M , then (x∗(τ ), z∗(τ )) ∈ {0, 1}n × {0, 1}n denotes the (initial value,
keystream prefix) pair published after τ based on τ .

For transcripts τ of length j , 1 ≤ j ≤ M , and numbers i, 1 ≤ i ≤ j , we denote by τ≤i

the subtranscript corresponding to the first i queries along τ .
Each elementary event ω ∈ � defines a unique transcript τω corresponding to the

computation of Eve on ω.
The length of τω can be smaller than M . This is the case if and only if the next query

after the last query of τω produces a sudden-death pair w.r.t. ω (see Definition 9). In this
case, this next query is not counted to be a part of τω.

Let us denote by �s.death the set of all elementary events ω for which τω leads to the
generation of a sudden-death pair w.r.t. ω, and note that this is equivalent to τω having length
smaller than M .

Eve’s computation τω on an elementary event ω is successful if and only if either the
length of τω is smaller than M (i.e., ω ∈ �s.death) or the first n bits of the keystream packet
corresponding to x∗(τω) via ω coincide with z∗(τω), i.e.,

Fω

(
Pω

(
x∗(τω) ⊕ kω

)⊕ kω

) = z∗(τω).

We denote by �succ ⊆ � the set of all elementary events leading to a successful
computation. Note that �s.death ⊆ �succ.
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5.5 Further basic definitions and the idea of the proof of Theorem 6

For all j , 1 ≤ j ≤ M , we denote by T j the set of all transcripts τ of length j (i.e.
consisting of j query triples) which occur with positive probability, i.e., for which there is
some ω ∈ � such that τ is the prefix of length j of τω. With the following definition for
each j , 1 ≤ j ≤ M , and each transcript τ ∈ T j , we define the following sets corresponding
to the queries along τ . Moreover, we define the notions τ -consistent elementary event and
τ -consistent key.

Definition 10 (Components of Transcripts)

– X(τ) = {x ∈ {0, 1}n ; τ contains an E-query with input x},
– Y (τ) = {y ∈ {0, 1}n ; τ contains an F -query with input y}. Note that we put also those

y to Y (τ) which occur at the right side of a structural EF -collision that was disclosed
by Alice as additional information to an EE-collision, see Definition 8.

– U(τ) = {u ∈ {0, 1}n ; τ contains a P -query with input u, or a P −1-query with output
u},

– V (τ) = {v ∈ {0, 1}n ; τ contains a P -query with output v, or a P −1-query with input
v},

– X∗(τ ) = {x ∈ X(τ); x there is a y ∈ Y (τ) such that (x, y) is a structural EF -collision
discovered during τ },

– Ȳ ∗(τ ) = {ȳ ∈ {0, 1}n ; ȳ is the reference point of some structural EF -collision
discovered during τ },

– Coll(τ ) = {(x, ȳ); where x ∈ X∗(τ ), and ȳ ∈ Ȳ ∗(τ ) is the reference point of a
structural EF -collision (x, y) discovered during τ },

– Ȳ (r)(τ ) = {ȳ ∈ {0, 1}n ; πr(ȳ) ∈ Y (τ)},
– Ȳ (τ ) = ⋃R−1

r=−(n−1) Ȳ (r)(τ ).

– For all j , 1 ≤ j ≤ M , and transcripts τ ∈ T j , we denote by �(τ) the set of all
τ -consistent elementary events ω, i.e.,

�(τ) = {ω; τ≤j
ω = τ }.

– �(τ) defines the set K(τ) ⊆ {0, 1}n of τ -consistent keys, i.e.,

K(τ) = {kω; ω ∈ �(τ)}.

Important Note Remember that we suppose Alice to be friendly in the sense of Defini-
tion 8. This implies that the oracle answers of Alice along τ yield the complete knowledge
about possible structural collisions, i.e., this knowledge is part of τ (see Section 5.4). This
implies that if some (x, y) ∈ X(τ) × Y (τ) is a structural EF -collision for some elemen-
tary event in �(τ), then it is a structural EF -collision with the same reference point for all
elementary events in �(τ). The same is true for structural EE-collisions. This justifies the
definitions of Coll(τ ) and Ȳ ∗(τ ) and X∗(τ ).

Observe that X(τ) corresponds to the set of all initial values for which Eve gets the
corresponding keystream packet from Alice during τ , and that X∗(τ ) corresponds to the set
of all those initial values for which Eve even knows the initial state of the corresponding
packet. These known initial states are contained in the set Ȳ ∗(τ ).

The set Ȳ (τ ) corresponds to the set of all initial states for which a part of the
corresponding keystream packet has been discovered during τ .

Note further that Coll(τ ) yields all information also about structural EE-collisions dis-
covered during τ . This is because, due to Definition 8, for each structural EE-collisions
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(x, x′) discovered during τ , there is some y ∈ Y (τ) such that (x, y) and (x′, y) are structural
EF -collisions discovered during τ .

Moreover, Coll(τ ) defines a one-to-one correspondence between X∗(τ ) and Ȳ ∗(τ ),
which is established by the bijection Pω(x ⊕ kω) ⊕ kω for an ω ∈ �(τ). (Note that, by
definition, this bijection is the same for all τ -consistent elements ω ∈ �(τ).)

Note that �(τ) defines a probability distribution Prτ on K(τ). For all k ∈ K(τ), it holds

Pr
τ
[k] = |{ω ∈ �(τ); kω = k}|

|�(τ)| .

After the computation τ has happened, Eve’s knowledge about the secret ω can be identi-
fied with the probability space �(τ) with the uniform distribution. Note that the induced
probability distribution Prτ on K(τ) does not need to be uniform. Actually, the analysis of
the distribution Prτ on K(τ) will be the key ingredient for proving Theorem 6.

For describing the main idea of the proof, let us consider the situation that Alice holds a
secret ω = (kω, Pω, Fω) and that Eve performed M queries without generating a sudden-
death pair. Let us denote by τ the corresponding transcript τω.

Clearly, during τ the set of τ -consistent keys becomes smaller and smaller. For getting
a first impression how key candidates k ∈ {0, 1}n are discarded during τ , suppose that τ

contains query triples (P, u, v), (E, x, p), (F, y, z) for which x ⊕u = k and πr(v⊕k) = y

for some r , 0 ≤ r ≤ R − 1. Then there are three possibilities:

1.) z does not equal the substring of packet p ∈ {0, 1}R starting at position r + 1, or, if
r > R − n, the prefix of z of length R − r does not equal the suffix of length R − r of
packet p. Then k can not be the right key, i.e., k �∈ K(τ).

2.) z equals the substring of packet p ∈ {0, 1}R starting at position r +1, or, if r > R −n,
the prefix of z of lengthR−r equals the suffix of lengthR−r of packet p, but (x, v⊕k)

does not belong to Coll(τ ). This implies that (x, y) does not form a structural EF -
collision (which would be the case if k was the right key kω) and that the collision of z

with p is caused by a (nonstructural) internal collision of Fω. Consequently, k �∈ K(τ).
3.) z equals the substring of packet p ∈ {0, 1}R starting at position r +1, or, if r > R −n,

the prefix of z of length R − r equals the suffix of length R − r of packet p and
(x, v ⊕ k) ∈ Coll(τ ). Then it also holds that k �∈ K(τ). Otherwise, if k = kω, then
(x, u) would form a sudden-death pair and the computation would have stopped before
τ was completed.

After τ is completed, Eve has to choose a pair (x∗(τ ), z∗(τ )). She is in a promising
position if one of the following two conditions is fulfilled.

Condition-1 K(τ) contains only a small number of keys. In this case, Eve can choose one
of the few keys in K(τ), say k′, and check the hypothesis k′ = kω as follows. She looks
for some y ∈ Y (τ) and some r , 0 ≤ r ≤ R − n, such that v = π−1(y) ⊕ k′ ∈ V (τ). In
this case let u = P −1

ω (v). If x = u ⊕ k′ ∈ X(τ), then k′ �= kω, as otherwise Alice would
have indicated before that (x, u) is a sudden-death pair. If there is no such pair (y, r), then
Eve fixes an arbitrary y ∈ Y (τ) and poses one additional P −1 query with input y ⊕ k′ and
obtains u = P −1

ω (y ⊕ k′). If k′ = kω and u ⊕ k′ ∈ X(τ), then (x, u) is a sudden-death
pair and Eve wins immediately. If x = u ⊕ k′ �∈ X(τ) and k′ = kω, then Eve wins with
x∗(τ ) = x and z∗(τ ) = Fω(y).
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Condition-2 The key kω belongs to a small set K ′ ⊆ K(τ) such that Prτ [k′] is nontrivially
large for all k′ ∈ K ′. In this case, Eve tests for all k′ ∈ K ′ the hypothesis k′ = kω as in
Condition-1.

The structure of the remaining part of the proof of Theorem 6 Remember that we
denote by �succ the set of all elementary events ω ∈ � for which the computation τω is suc-
cessful. We have to bound the probability Pr�[�succ] according to the relation in Theorem
6. Our proof starts with a combinatorial characterization of τ -consistency of elementary
events and keys (see Section 5.6). This characterization will lead to the formulation of three
properties of elementary events ω, for which the following holds. Event ω has one of these
properties if and only if K(τω) satisfies Condition-1 or Condition-2 (see Lemma 5). We
will identify these three properties with the colors black, red and blue and denote by �black,
resp. �red, resp. �blue the sets of elementary events having the corresponding property (see
Section 5.7). We will further define an elementary event ω to be green, if it is neither red,
nor black, nor blue, nor belongs to �s.death, and will denote the set of all green elementary
events by �green.

We prove Theorem 6 by using the following relation:

Pr
�

[
�succ] ≤ Pr

�

[
�black ∩ �succ

]
+ Pr

�

[(
�red ∪ �blue

)
∩ �succ

]

+ Pr
�

[(
�s.death \

(
�black ∪ �red ∪ �blue

))
∩ �succ

]

+ Pr
�

[
�green ∩ �succ] .

Consequently, Pr�[�succ] can be upper bounded by
Pr
�

[
�succ] ≤ Pr

�

[
�black

]
+ Pr

�

[
�red ∪ �blue

]

+Pr
�

[
�s.death \

(
�black ∪ �red ∪ �blue

)]

+Pr
�

[
�succ ∩ �green] . (15)

Black and red elementary events will have the important property that for all transcripts
τ the following holds: if one event ω ∈ �(τ) is black (resp. red), then all events in �(τ)

are black (resp. red). This justifies to define transcripts τ to be black (resp. red) if at least
one τ -consistent elementary event is black (resp. red). All transcripts which are neither red
nor black are called to be green. Note that for green transcripts τ , the set �(τ) can contain
green elementary events and blue elementary events.

This allows to rewrite the probability Pr�[�succ ∩ �green] as
Pr
�

[�succ ∩ �green] = Pr
�

[�green] · Pr
�green

[�succ]
≤ Pr

�green
[�succ], (16)

where Pr�green [�succ] can be written as

Pr
�green

[�succ] =
∑

τ∈T M
green

Pr
�green

[�succ ∩ �green(τ )]

=
∑

τ∈T M
green

Pr
�green

[τ ] · Pr
�green(τ )

[�succ]. (17)
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Here, T M
green denotes the set of all green transcripts that have lengthM , and�green(τ ) denotes

the set of all green elementary events in �(τ).
Note that we occasionally use the following denotation for conditional probabilities. Let

A, B be subsets (events) of the probability space �. Then we write

Pr
B

[A] := Pr
�

[A | B] = Pr�[A ∩ B]
Pr�[B] .

By relations (15), (16) and (17), Theorem 6 follows directly from:

Lemma 2 (Main Lemma)

(i) It holds that

Pr
�

[
�s.death \

(
�black ∪ �red ∪ �blue

)]
≤ 2−(n−1) · (� + 2) · M.

(ii) It holds that Pr�[�black] ≤ 34 · 2−n.
(iii) For all τ ∈ T M

green, it holds that

Pr
�green(τ )

[�succ] ≤ 11 · (R + 4n) · M · 2−(n−1).

(iv) It holds that Pr�[�red ∪ �blue] ≤ M · e−n.

We will prove Lemma 2 in Section 5.8 and the sections following it.

5.6 Basic methods I: The characterization of τ -consistency

Definition 11 (Critical Points) Let k ∈ {0, 1}n. A point u ∈ U(τ) is called (τ, k)-critical if
at least one of the following conditions is fulfilled.

C1: u ⊕ k ∈ X(τ) \ X∗(τ ) and Pτ (u) ⊕ k ∈ Ȳ (τ ) \ Ȳ ∗(τ ).
C2: u ⊕ k ∈ X∗(τ ).
C3: Pτ (u) ⊕ k ∈ Ȳ ∗(τ ).

Here, Pτ (u) denotes the output of the P -query on input u along τ , resp. the input of the
P −1-query with output u.

The notion of (τ, k)-critical points allows to characterize τ -consistency.

Lemma 3 (Consistency Lemma) A key k ∈ {0, 1}n is not τ -consistent (i.e., k �∈ K(τ)), if
and only if there is a (τ, k)-critical point u ∈ U(τ).

Proof of Lemma 3 We first prove the if-direction.
Let k ∈ {0, 1}n and suppose that there is some u ∈ U(τ) which is (τ, k)-critical.
For deriving a contradiction we assume that k ∈ K(τ), i.e., that there is some ω ∈ �(τ)

with kω = k.
Suppose first that u is (τ, k)-critical via condition C1 of Definition 11.
By definition, Pτ (u) ⊕ k = Pω(u) ⊕ kω ∈ Ȳ (τ ), which implies the existence of some

r , −(n − 1) ≤ r ≤ R − 1 such that πr(Pω(u) ⊕ kω) ∈ Y (τ). This implies, that (u ⊕
kω, πr(Pω(u) ⊕ kω)) has to be classified as a structural EF -collision with reference point
Pω(u) ⊕ kω along τ . But this can not be true, as, by Definition 9, (u ⊕ k, u) would form a
sudden-death pair w.r.t. ω, which implies that ω �∈ �(τ).
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Suppose now that u is (τ, k)-critical via condition C2 of Definition 11. If u⊕k = u⊕kω ∈
X∗(τ ), then (u ⊕ k, u) is again a sudden-death pair w.r.t. ω, which implies that ω �∈ �(τ).

If Pτ (u) ⊕ k ∈ Ȳ ∗(τ ) (condition C3), then (u ⊕ k, Pτ (u) ⊕ k) ∈ Coll(τ ), which again
implies that (u ⊕ k, u) is a sudden-death pair and that ω �∈ �(τ).

Let us now show the only-if direction of Lemma 3.
We fix some j , 1 ≤ j ≤ M , some transcript τ ∈ T j with Pr�[τ ] > 0 and some key

k ∈ {0, 1}n for which there do not exist (τ, k)-critical points u ∈ U(τ) in the sense of
Definition 11.

We have to show that k is τ -consistent.
We do this by constructing a permutation P ′ over {0, 1}n and a π -iterative function F ′ :

{0, 1}n −→ {0, 1}n such that ω′ = (k, P ′, F ′) ∈ �(τ).
For all inputs x ∈ X(τ), u ∈ U(τ), v ∈ V (τ), y ∈ Y (τ) of oracle queries posed during

τ , we denote by Eτ (x), Pτ (u), P −1
τ (v), and Fτ (y), resp., the corresponding oracle answers

given by Alice during τ . P ′ and F ′ have to satisfy the condition that P ′(u) = Pτ (u) and
F ′(y) = Fτ (u) for all u ∈ U(τ) and y ∈ Y (τ), respectively.

We now have to define P ′ and F ′ outside of U(τ) and Y (τ), respectively, in such a way
that ω′ is τ -consistent.

We do this by defining P ′ and F ′ along the (k, P ′)-paths (u ⊕ k, u, P ′(u) ⊕ k) for all
u ∈ {0, 1}n, where we go with u through {0, 1}n in a certain order.

Hereby, we dynamically maintain a set Target(P ′), which is initially set to {0, 1}n\V (τ).
Whenever we define P ′(u) for a new u, we delete P ′(u) from Target(P ′).

– Phase 1: Here we consider all u ∈ {0, 1}n for which u ⊕ k ∈ X∗(τ ).
Then it holds u �∈ U(τ) as otherwise u would be (τ, k)-critical via condition C2 of

Definition 11.
We define P ′(u) = ȳ ⊕ k, where ȳ denotes the unique point in Ȳ ∗(τ ) for which

(u ⊕ k, ȳ) ∈ Coll(τ ). Note that the point ȳ ⊕ k does not belong to V (τ). Otherwise, if
ȳ ⊕ k would equal Pτ (u

′) for some u′ �= u ∈ U(τ), then u′ would be (τ, k)-critical via
condition C3.

We define F ′ on the set {πr(P ′(u) ⊕ k); r = −(n − 1), · · · , R − 1} according to
the packet Eτ (u ⊕ k). Note here that if −(n − 1) ≤ r < 0, then Eτ (u ⊕ k) determines
only a suffix of F ′(πr(P ′(u)⊕ k)), and that if R −n− 1 < r ≤ R − 1, then Eτ (u⊕ k)

determines only a prefix of F ′(πr(P ′(u) ⊕ k)).
– Phase 2 concerns the (k, P ′)-paths through those u ∈ U(τ) for which u ⊕ k ∈ X(τ) \

X∗(τ ). Note that for these u ∈ U(τ), as they are not (τ, k)-critical, it holds ȳ :=
Pτ (u) ⊕ k �∈ Ȳ (τ ).

This implies that for all r , −(n − 1) ≤ r ≤ R − 1, it holds that πr(ȳ) is not in Y (τ),
which allows us to define F ′(πr(ȳ)) according to the packet Eτ (u ⊕ k).

– Phase 3 considers all u �∈ U(τ) for which u ⊕ k ∈ X(τ) \ X∗(τ ).
Here, P ′(u) has to be chosen in such a way that P ′(u) ⊕ k �∈ Ȳ (τ ). Otherwise, there

would exist some r , −(n− 1) ≤ r ≤ R − 1, such that (u⊕ k, πr(P ′(u)⊕ k)) is an EF-
collision discovered during τ , which would imply that u ⊕ k ∈ X∗(τ ) and contradict
the assumption made for phase 3.

Corresponding to this, we define a set

Forbidden(u) = {v ∈ {0, 1}n ; v ⊕ k ∈ Ȳ (τ )},
and choose

P ′(u) ∈ Target(P ′) \ Forbidden(u).
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Note that for all remaining u ∈ {0, 1}n the values of P ′(u) can be freely chosen in
Target(P ′). For all remaining y ∈ {0, 1}n, the values of F ′(y) can also be freely chosen
{0, 1}n in such a way that the π -iterativeness of F ′ is maintained.

5.7 Assigning colors to elementary events, transcripts, and keys

We will now assign the colors red, black, blue and green to transcripts, elementary events,
and keys. There will be three colors, namely black, red, and blue, which have to be consid-
ered as bad in the sense that if ω has a bad color, then τω yields some nontrivial information
which helps Eve to win the game.

Let us start with the definition of black elementary events, which is partly based on
considering the following equivalence relation ≡P , induced by a permutation P over
{0, 1}n.

Definition 12 (The Relation ≡P ) Let P denote a permutation of {0, 1}n and let U be an
arbitrary subset of {0, 1}n.
– For all u, u′ ∈ U let u ≡P u′ if and only if u ⊕ P(u) = u′ ⊕ P(u′).
– LetMax(P,U) denote the maximal size of an equivalence class w.r.t. ≡P in U .

Definition 13 (Critical Keys) A key k ∈ {0, 1}n is called to be τ -critical if there is some
u ∈ U(τ) such that u ⊕ k ∈ X(τ) and Pτ (u) ⊕ k ∈ Ȳ (τ ).

Note that k ∈ {0, 1}n is called to be τ -critical if there is some u ∈ U(τ) such that u is
(τ, k)-critical with regard to condition C1 in Definition 11.

Definition 14 (Alive Elementary Events) For all numbers j , 1 ≤ j ≤ M , we call an
elementary event ω ∈ � to be j -alive if τω contains at least j queries, i.e., the first j − 1
queries and answers and the j -th query along τω do not generate a sudden death pair with
respect to ω.

Definition 15 (Black Transcripts and Elementary Events)

– For all j , 1 ≤ j ≤ M , we call a transcript τ ∈ T j to be black if the number of τ -critical
keys (see Definition 13) exceeds

B(M,R, n) = 2−n · M3 ·
(
R + n − 1 + 2

√
R + n − 1

)

+ 3
√

n · M3 · (R + n − 1)

or if
Max(Pτ , U(τ)) > 5,

where Pτ : U(τ) −→ {0, 1}n denotes the injective mapping corresponding to the P -
and P −1-queries in τ .

– For all j , 1 ≤ j ≤ M , an elementary event ω is called j -black if ω is j -alive and the
transcript τ≤j

ω , corresponding to the first j queries along τω, is black.
– Let �j

black denote the set of all j -black elementary events and T j

black the set of all black
transcripts τ ∈ T j .

– Let �black = ⋃M
j=1 �

j

black.

Let us next define red transcripts.
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Definition 16 (Red Transcripts and Elementary Events)

– For all j , 1 ≤ j ≤ M , we call a transcript τ ∈ T j to be red if it is not black and
|X∗(τ )| > �. (Remember that � denotes some balancedness parameter, which was
introduced in Theorem 6).

– An elementary event ω is called j -red if ω is j -alive and the transcript τ≤j
ω is red.

– Let �
j

red denote the set of all j -red elementary events and T j

red the set of all red
transcripts τ ∈ T j .

– Let �red = ⋃M
j=1 �

j

red.

Note that one strategy of Eve could be to pose queries in a first phase in such a way that
for the resulting transcript τ it holds that the set K(τ) of τ -consistent keys is small, and
then to try each key in K(τ) if it fits. Redness and blackness of transcripts τ cover exactly
the case in which this strategy could be successful:

Lemma 4 For all j , 1 ≤ j ≤ M , and τ ∈ T j the following holds. If τ is neither red nor
black, then

|K(τ)| ≥ 2n − B(M,R, n) − 2 · � · j.

Proof of Lemma 4 From Definition 11 and Lemma 3 we know that k ∈ {0, 1}n \ K(τ) if
and only if there is some u ∈ U(τ) such that u is (τ, k)-critical via condition C1 or via
condition C2. Condition C1 implies that k is τ -critical in the sense of Definition 13. As τ

is not black, the number of such keys is bounded by B(M,R, n). Condition C2 implies that
k ∈ X∗(τ ) ⊕ U(τ) or k ∈ Ȳ ∗(τ ) ⊕ V (τ). 2

As τ is not red, it holds that |X∗(τ ) ⊕ U(τ)| ≤ � · j and |Ȳ ∗(τ ) ⊕ U(τ)| ≤ � · j .

The motivation for considering blue elementary events is as follows. We have seen above
that �(τ), the set of all possible events if Eve sees τ , defines a probability distribution on
K(τ), the set of all keys which are consistent with τ . This distribution is known to Eve. This
is due to the assumption that Eve has unbounded computational power, i.e., she knows the
complete probability space �(τ) and can compute the corresponding distribution on K(τ).
Thus, Eve can test the hypothesis that the secret key belongs to the set of most probable
keys in K(τ) in the sense of Condition 2 in Section 5.5.

Blue elementary events ω̃ = (kω̃, Pω̃, Fω̃) will have the property that for τ = τω̃ it
holds that Pr�(τ)[kω̃] is large, i.e., if Alice chooses a blue elementary event, then the success
probability of Eve will be nontrivially high.

Definition 17 (Blue Elementary Events)

– For all numbers j , 1 ≤ j ≤ M , we call an elementary event ω ∈ � to be j -blue if ω is
j -alive and not black and if

|(X(τ≤j
ω ) ⊕ kω) ∩ U(τ≤j

ω )| > �

or
|(Ȳ (τ≤j

ω ) ⊕ kω) ∩ V (τ≤j
ω )| > �.

– Let �j

blue denote the set of all j -blue elementary events.

2For nonempty subsets A,B ⊆ {0, 1}n, we denote by A ⊕ B the set {a ⊕ b; a ∈ A, b ∈ B}.
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– Let �blue = ⋃M
j=1 �

j

blue.

Definition 18 (Green Elementary Events and Transcipts)

– For all numbers j , 1 ≤ j ≤ M , an elementary event ω ∈ � is called to be j -green if ω

is j -alive and neither j -blue, nor j -red, nor j -black.
– Let �j

green denote the set of all j -green elementary events.
– Let �green = �M

green.

– For all numbers j , 1 ≤ j ≤ M , a transcript τ ∈ T j is called green, if it is neither red
nor black.

– Let T j
green denote the set of green transcripts in T j .

It is important to note the following difference between red and black events on the one
side, and green and blue events on the other side. If, for a transcript τ , one elementary event
in �(τ) is black (resp. red), then all elementary events in �(τ) are black (resp. red), which
justifies to define τ to be black (resp. red).

On the other side, if a transcript τ is green, then the elementary events in �(τ) are either
blue or green. This is because blueness of an elementary event ω ∈ �(τ) does not only
depend on τ but also on the key-component kω.

We will prove Theorem 6 by showing that the probabilities of black, red, and blue
elementary events are exponentially small, that the probability of sudden-death events is
exponentially small, and that for green transcripts τ ∈ T M

green, the probability that Eve pub-
lishes a correct (initial value, keystream prefix) pair is exponentially small (see Lemma 2 in
Section 5.8).

Therefore, let us take more insight into the structure of �(τ) for green transcripts τ .
We know that for some green transcript τ the decision if an elementary event ω ∈ �(τ)

is green or blue depends only on kω. This justifies the following definition.

Definition 19 (Green Keys)

– Let τ denote a green transcript. We call a τ -consistent key k ∈ K(τ) to be τ -green if
|(X(τ) ⊕ k) ∩ U(τ)| ≤ � and |(Ȳ (τ ) ⊕ k) ∩ V (τ)| ≤ �, and τ -blue otherwise.

– We denote by Kgreen(τ ) (resp. Kblue(τ )) the set of all τ -consistent keys which are
τ -green (resp. τ -blue).

Note that, by definition, for green transcripts τ it holds:

K(τ) = Kgreen(τ ) ∪ Kblue(τ ).

5.8 Basic methods II: Estimating probabilities

Remember that for proving Lemma 2 we have to show the following claims.

(i) It holds that

Pr
�

[
�s.death \

(
�black ∪ �red ∪ �blue

)]
≤ 2−(n−1) · (� + 2) · M.

(ii) It holds that Pr�[�black] ≤ 34 · 2−n.
(iii) For all τ ∈ T M

green, it holds that

Pr
�green(τ )

[�succ] ≤ 11 · (R + 4n) · M · 2−(n−1).
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(iv) It holds that Pr�[�red ∪ �blue] ≤ M · e−n.

The proofs of parts (i), (ii), (iii), and (iv) will be given in Sections 5.10, 5.12, 5.9, and
5.11, respectively.

All these proofs use the following Smoothness Lemma, which shows that for all green
transcripts τ , there is a sufficiently large number of green τ -consistent keys and that the
probabilities of these green keys do not differ too much.

Lemma 5 (Smoothness Lemma) For all green transcripts τ , the following is true if n is
large enough:

(I) |Kgreen(τ )| ≥ 1√
2

· 2n.

(II) For all k, k′ ∈ Kgreen(τ ), it holds that

Pr
�green(τ )

[k] ≤ √
2 · Pr

�green(τ )
[k′].

Lemma 5 implies the following corollary, which will be an important tool for proving
Lemma 2.

Corollary 2 (Main Tool Box) For all green transcripts τ the following is true:

(a) For all k ∈ {0, 1}n it holds
Pr

�green(τ )
[k] ≤ 2−(n−1).

(b) For all x, ȳ ∈ {0, 1}n the following holds:

b.1 If (x, ȳ) ∈ Coll(τ ) then

Pr
�green(τ )

[Pω(x ⊕ kω) ⊕ kω = ȳ] = 1.

b.2 If (x, ȳ) �∈ Coll(τ ) but x ∈ X∗(τ ) or ȳ ∈ Ȳ ∗(τ ) then

Pr
�green(τ )

[Pω(x ⊕ kω) ⊕ kω = ȳ] = 0.

b.3 If x ∈ X(τ) \ X∗(τ ) and ȳ ∈ Ȳ \ Ȳ ∗(τ ) then

Pr
�green(τ )

[Pω(x ⊕ kω) ⊕ kω = ȳ] = 0.

b.4 In all other cases, i.e., if x �∈ X∗(τ ) and ȳ �∈ Ȳ ∗(τ ) and (x �∈ X(τ) or
ȳ �∈ Ȳ (τ )) it holds

Pr
�green(τ )

[Pω(x ⊕ kω) ⊕ kω = ȳ] ≤ 9 · 2−(n−1).

(c) For all x, x′ ∈ {0, 1}n, where x �∈ X(τ) and x′ ∈ X(τ), and all r , −(R + n) ≤ r ≤
R + n, it holds

Pr
�green(τ )

[
πr (Pω(x ⊕ kω) ⊕ kω) = Pω(x′ ⊕ kω) ⊕ kω

] ≤ 11 · 2−(n−1).

Note here that part (a) of Corollary 2 follows directly from Lemma 5. Parts (b.1), (b.2),
(b.3) follow directly from the definition of τ -consistent keys. Parts (b.4) and (c) will be
proved in Appendix B.

In the following, we prove part (I) of Lemma 5. The proof of part (II) is quite technical
and long, thus it was shifted to Appendix C.
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Proof of Part (I) of Lemma 5 We fix some number j , 1 ≤ j ≤ M , and some transcript
τ ∈ T j

green.
By Lemma 4 it holds that

|Kgreen(τ )| = |K(τ)| − |Kblue(τ )| ≥ 2n − B(M,R, n) − 2 · � · j − |Kblue(τ )|.
We show that

|Kblue(τ )| ≤ (R + n) · j2

�
.

This is because
∑

k∈{0,1}n
|(X(τ) ⊕ k) ∩ U(τ)| =

∑

k∈{0,1}n
|{(x, u) ∈ X(τ) × U(τ); x ⊕ u = k}|

= |X(τ) × U(τ)| = |X(τ)| · |U(τ)|,
which implies that

∣
∣{k ∈ {0, 1}n; |(X(τ) ⊕ k) ∩ U(τ)| > �

}∣∣ ≤ |X(τ)| · |U(τ)|
�

≤ j2

�
.

In exactly the same way one can prove that

∣∣{k ∈ {0, 1}n; ∣∣(Ȳ (τ ) ⊕ k
) ∩ V (τ)

∣∣ > �
}∣∣ ≤ |Ȳ (τ )| · |V (τ)|

�

≤ (R + n − 1) · j2

�
.

Consequently,

|Kgreen(τ )| ≥ 2n − B(M,R, n) − 2 · � · j − (R + n)j2

�
≥ 1√

2
· 2n

if n is large enough. The last inequation follows from Theorem 6, (1).

5.9 Bounding the probability of sudden death (part (i) of Lemma 2)

In this subsection, we prove part (i) of Lemma 2, namely that

Pr
�

[
�s.death \

(
�black ∪ �red ∪ �blue

)]
≤ 2−(n−1) · (� + 2) · M.

Let us denote by T all
green = ⋃M

j=1 T
j
green the set of all green transcripts which occur with

nonzero probability. Note that T all
green has the structure of a partially ordered set, where a

transcript τ is smaller than τ ′ if τ is a prefix of τ ′.
We denote by T ∗

green the set of maximal elements in this partially ordered set T all
green.

Observe that

T ∗
green = T M

green ∪ T strange
green ,

where T strange
green contains all green transcripts τ of length smaller than M for which all

transcripts τ ′ which contain τ as a prefix are black or red.
Let us denote by �̃ the set

�̃ =
(
�s.death \

(
�black ∪ �red ∪ �blue

))
∪

⋃

τ∈T ∗
green

�green(τ ),



Cryptogr. Commun. (2018) 10:959–1012 993

where for all j , 1 ≤ j ≤ M , and all τ ∈ T j
green it holds

�green(τ ) = {ω ∈ �
j
green; τ≤j

ω = τ }.
For all τ ∈ T all

green, we denote by �s.death
green (τ ) the set of all elementary events ω ∈

�green(τ ) for which the next query after τ generates a sudden-death pair w.r.t. ω. Note that
�s.death

green (τ ) = ∅ if the length of τ is M .

Observe that ω ∈ �s.death \(�black ∪ �red ∪ �blue
)
if and only if there is some τ ∈ T all

green

such that ω ∈ �s.death
green (τ ). Consequently,

Pr
�

[
�s.death \

(
�black ∪ �red ∪ �blue

)]

≤ Pr
�̃

[
�s.death \

(
�black ∪ �red ∪ �blue

)]
=

∑

τ∈T all
green

Pr
�̃

[�s.death
green (τ )].

We fix for all transcripts τ ∈ T ∗
green a natural number i(τ ), 1 ≤ i(τ ) ≤ j , where j

denotes the length of τ . We do this in such a way that the sets

T (τ) = {τ≤i(τ ), τ≤i(τ )+1, · · · , τ≤j }
form a partition of the set T all

green into pairwise disjoints subsets.3 Note that the sets T (τ)

correspond to prefixes of the transcript τ .
Now define for all transcripts τ ∈ T ∗

green subsets A(τ) and B(τ) of �̃:

A(τ) =
⋃

τ̃∈T (τ)

�s.death
green (τ̃ ),

B(τ) = �green(τ ) ∪ A(τ).

Note that the set system {B(τ); τ ∈ T ∗
green} defines a partition of �̃ into pairwise dis-

joint subsets, that the set system {A(τ); τ ∈ T ∗
green} defines a partition of the set �s.death \

(
�black ∪ �red ∪ �blue

)
into pairwise disjoint subsets, and that for all τ ∈ T ∗

green it holds
A(τ) ⊆ B(τ). Consequently,

Pr
�̃

[
�s.death \

(
�black ∪ �red ∪ �blue

)]
=

∑

τ∈T ∗
green

Pr
�̃

[A(τ) ∩ B(τ)]

=
∑

τ∈T ∗
green

Pr
�̃

[B(τ)] · Pr
B(τ)

[A(τ)]

≤ max
τ∈T ∗

green

Pr
B(τ)

[A(τ)]. (18)

We fix some arbitrary τ ∈ T ∗
green and denote by j the length of τ . Note that for all

transcripts τ̃ ∈ T (τ) it holds that ω ∈ �s.death
green (τ̃ ) if and only if ω ∈ �green(τ̃ ) and the key

kω falls into the set D(τ̃ ), which is defined as follows:

D(τ̃ ) = (
X∗
new(τ̃ ) ⊕ Unew(τ̃ )

) \ (X∗(τ̃ ) ⊕ U(τ̃ )
)
,

where X∗
new(τ̃ ) and Unew(τ̃ ) denote the new sets X∗(·) and U(·) after posing the uniquely

determined next query after τ̃ .

3One way of constructing the numbers i(τ ) is as follows. We enumerate the transcripts in T ∗
green, take the

first transcript τ , set i(τ ) = 1, and label all transcripts τ≤s , for s = i(τ ), · · · , j , where j denotes the length
of τ . For all other transcripts in τ ∈ T ∗

green, define i(τ ) to be the smallest number i for which τ≤i has not
been labeled so far and label all transcripts in the corresponding set T (τ).
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According to Corollary 2, part (a), the probability of this event is bounded by 2−(n−1) ·
|D(τ̃ )|.

Now observe that
⋃

τ̃∈T (τ) D(τ̃ ) is a subset of X∗
new(τ ) ⊕ Unew(τ ) if j < M and of

X∗(τ ) ⊕ U(τ) if j = M .
If j < M , then |X∗

new(τ )| ≤ |X∗(τ )| + 2 ≤ � + 2, as τ is green, and |Unew(τ )| ≤
|U(τ)| + 1 ≤ M . We obtain that

Pr
B(τ)

[A(τ)] ≤ 2−(n−1) · |X∗
new(τ ) ⊕ Unew(τ )| ≤ 2−(n−1) · (� + 2) · M,

which proves part (i) of Lemma 2 by Relation (18).

5.10 Bounding the probability of black transcripts (part (ii) of Lemma 2)

In this subsection, we prove part (ii) of Lemma 2, namely that

Pr
�

[
�black

]
≤ 34 · 2−n. (19)

Proof of Relation (19) From Definition 15, it follows straightforwardly that for any ele-
mentary event ω ∈ �, it holds that the transcript τω is black if and only if it has some black
prefix (where τω is considered to be its own prefix). This, in turn, implies that ω ∈ �black

if and only if τω is black. Consequently, it is sufficient here to assess the probability that
for an ω ∈ � chosen uniformly and at random (see Definition 4), the number of τω-critical
keys exceeds B(M,R, n) or it holdsMax(Pτω , U(τω)) > 5.

Remember from Definition 13 that a key k ∈ {0, 1}n is called τω-critical if there is some
u ∈ U(τω) such that x := u ⊕ k ∈ X(τω) and y := Pτω(u) ⊕ k ∈ Ȳ (τω), which implies
that for the corresponding triple (u, x, y) it holds that x ⊕ u = y ⊕ Pτω(u). Moreover,
remember from Theorem 5 the definition of μ(P, U,X, Y ) for permutations P over {0, 1}n
and subsets U, X, Y of {0, 1}n:

μ(P, U, X, Y ) = |{(u, x, y) ∈ U × X × Y ; x ⊕ u = y ⊕ P(u)}| . (20)

Consequently,μ(Pτω , U(τω),X(τω), Ȳ (τω)) is an upper bound for the number of τω-critical
keys.

Theorem 5 implies that the probability that for a randomly chosen ω ∈ �, it holds that

μ(Pτω , U(τω),X(τω), Ȳ (τω)) ≥ B(M,R, n),

is at most 2 · 2−n. Here, we took into account that |U(τω)| ≤ M , |X(τω)| ≤ M , and
|Ȳ (τω)| ≤ M · (R + n − 1).

So, the probability that for a randomly chosen ω ∈ �, ω falls into �black because the
number of τω-critical keys exceeds B(M,R, n), is bounded from above by 2 · 2−n.

We complete the proof by showing that

Pr
�

[
Max

(
Pτω , U(τω)

) ≥ 6
] ≤ 32 · 2−n.

According to Definition 12, the event Max(Pτω , U(τω)) ≥ 6 implies the existence of some
U ′ ⊆ U(τω), |U ′| = 6, such that u′

1 ⊕ Pτω(u′
1) = u′

2 ⊕ Pτω(u′
2) for all u

′
1, u

′
2 ∈ U ′. Given a

subset U ′ ⊆ U(τω), |U ′| = 6, the probability that u′
1 ⊕ Pτω(u′

1) = u′
2 ⊕ Pτω(u′

2) holds for
all u′

1, u
′
2 ∈ U ′, equals

5∏

i=1

1

2n − i
≤
(

1

1/2 · 2n

)5

= 25 · 2−5·n.
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Consequently,

Pr
�

[
Max

(
Pτω , U(τω)

) ≥ 6
] ≤ |U(τω)|6 · 25 · 2−5·n

≤ 26·(2/3)n · 25 · 2−5·n = 32 · 2−n.

Here, for the sake of simplicity, we upper bounded the number of subsets with six ele-
ments of U(τω) by |U(τω)|6. |U(τω)|, in turn, is upper bounded by 2(2/3)n as the underlying
transcript τω consists of at most 2(2/3)n queries.

5.11 Bounding the success probability on green elementary events (part (iii)
of Lemma 2)

Let τ be a green transcript of length M , i.e., τ ∈ T M
green. We have to bound the probability

that Eve is successful under the condition that Alice has chosen a green elementary event
ω = (kω, Pω, Fω) ∈ �green(τ ).

Depending on τ , Eve publishes a pair (x∗(τ ), z∗(τ )) ∈ {0, 1}n × {0, 1}n, where x∗(τ ) �∈
X(τ). Eve wins if and only if z∗(τ ) equals the block of the first n keystream bits of the
packet generated on input x∗(τ ) under ω, i.e.,

z∗(τ ) = Fω(Pω(x∗(τ ) ⊕ kω) ⊕ kω).

For all ω ∈ �green(τ ), let yω denote the value

yω = Pω(x∗(τ ) ⊕ kω) ⊕ kω.

We have to bound the probability

Pr
�green(τ )

[Fω(yω) = z∗(τ )].

We do this by dividing �green(τ ) into two disjoint subsets IND and DEP, where IND con-
tains all those elementary events ω ∈ �green(τ ) for which Fω(yω) is independent from the
queries and answers contained in τ , and DEP = �green(τ ) \ IND.

Note that ω ∈ DEP if and only if

(I) there is some i, −(n − 1) ≤ i ≤ n − 1, such that πi(yω) ∈ Y (τ), or
(II) there is some i, −(n − 1) ≤ i ≤ n − 1, some x ∈ X(τ), and some r , 0 ≤ r ≤ R − 1,

such that πi(yω) = πr(Pω(x ⊕ kω) ⊕ kω).

In case (I), Fω(yω) is not independent from the answer of the F -query with input πi(yω);
in case (II), Fω(yω) is not independent from the answer of the E-query with input x (in
particular, from the block starting at position r in packet Eω(x)).

Corresponding to this, DEP can be written as

DEP = DEP1 ∪ DEP2,

where DEP1 contains all ω ∈ �green(τ ) for which case (I) is fulfilled and DEP2 contains all
ω ∈ �green(τ ) for which case (II) is fulfilled.

Note that

Pr
�green(τ )

[Fω(yω) = z∗(τ )] = Pr
�green(τ )

[DEP] · Pr
�green(τ )

[Fω(yω) = z∗(τ ) | DEP]
+ Pr

�green(τ )
[IND] · Pr

�green(τ )
[Fω(yω) = z∗(τ ) | IND]

≤ Pr
�green(τ )

[DEP] + Pr
�green(τ )

[Fω(yω) = z∗(τ ) | IND],
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i.e.,

Pr
�green(τ )

[Fω(yω) = z∗(τ )] ≤ Pr
�green(τ )

[DEP1] + Pr
�green(τ )

[DEP2]
+ Pr

�green(τ )
[Fω(yω) = z∗(τ ) | IND]. (21)

It is quite obvious that

Pr
�green(τ )

[Fω(yω) = z∗(τ ) | IND] = 2−n, (22)

as ω ∈ IND implies that Fω(yω) can take all values in {0, 1}n with the same probability.
Next observe that for all ω ∈ �green(τ ) it holds that ω ∈ DEP1 if and only if

yω ∈
⋃

y∈Y (τ)

{πi(y);−(n − 1) ≤ i ≤ n − 1},

where the set at the right hand side has size at most (2n − 1)M .
As x∗(τ ) �∈ X(τ), it follows by Corollary 2, part (b), that

Pr
�green(τ )

[DEP1] ≤ (2n − 1) · M · 9 · 2−(n−1). (23)

Observe further that for all ω ∈ �green(τ ) it holds that ω ∈ DEP2 if and only if

πi
(
Pω(x∗(τ ) ⊕ kω) ⊕ kω

) = Pω(x ⊕ kω) ⊕ kω

for some x ∈ X(τ) and number i, −(R + n − 2) ≤ i ≤ n − 1.
As x∗(τ ) �∈ X(τ), it follows by Corollary 2, part (c), that

Pr
�green(τ )

[DEP2] ≤ (R + 2n − 2) · M · 11 · 2−(n−1). (24)

Putting relations (21), (22), (23), and (24) together yields

Pr
�green(τ )

[�succ] ≤ (2 + (2n − 1) · M · 9 + (R + 2n − 2) · M · 11) · 2−(n−1)

< 11 · (R + 4n) · M · 2−(n−1).

5.12 Bounding the probability of red and blue transcripts (part (iv) of Lemma 2)

We have to show that

Pr
�

[
�red ∪ �blue

]
≤ M · e−n. (25)

In the proof, we will use a Chernoff bound argument, which is described in Appendix A.

Proof of Relation (25) Note first that for all ω ∈ �red∪�blue, there is some j , 1 ≤ j ≤ M ,
such that the j -th query makes ω red or blue. Consequently,

�red ∪ �blue =
M⋃

j=1

�
j−1
green ∩

(
�

j

red ∪ �
j

blue

)
,
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which implies

Pr
�

[
�red ∪ �blue

]
≤

M∑

j=1

Pr
�

[
�

j−1
green ∩

(
�

j

red ∪ �
j

blue

)]

=
M∑

j=1

Pr
�

[
�

j

red ∪ �
j

blue | �
j−1
green

]
· Pr

�

[
�

j−1
green

]

≤
M∑

j=1

Pr
�

[
�

j

red ∪ �
j

blue | �
j−1
green

]
.

Hence, for proving Relation (25), it is sufficient to show that for all j , 1 ≤ j ≤ M , it holds

Pr
�

j−1
green

[
�

j

red ∪ �
j

blue

]
= Pr

�

[
�

j

red ∪ �
j

blue | �
j−1
green

]
< e−n. (26)

We show Relation (26): Note first that Relation (26) is true if j < �
R+n−1 , as then for all

transcripts τ with j queries it holds that the cardinalities of X(τ) and Ȳ (τ ) are smaller than
�.

We fix some arbitrary number j , �
R+n−1 ≤ j ≤ M .

For all J , 1 ≤ J ≤ j − 1, we define a random variable DBJ ∈ {0, 1} over �, where
DBJ (ω) = 1 if and only if ω is J -alive and the J -th query along τω increases (X(τω) ⊕
kω) ∩ U(τω) or increases (Ȳ (τω) ⊕ kω) ∩ V (τω) or increases X∗(τω). Formally,

DBJ (ω) = 1 ⇐⇒
|(X(τ≤J

ω ) ⊕ kω) ∩ U(τ≤J
ω )| > |(X(τ≤J−1

ω ) ⊕ kω) ∩ U(τ≤J−1
ω )| or

|(Ȳ (τ≤J
ω ) ⊕ kω) ∩ V (τ≤J

ω )| > |(Ȳ (τ≤J−1
ω ) ⊕ kω) ∩ V (τ≤J−1

ω )| or
|X∗(τ≤J

ω )| > |X∗(τ≤J−1
ω )|.

Note that the event ω ∈ �
j

red ∩ �
j

blue implies the event that

j−1∑

J=1

DBJ (ω) ≥ � − (R + n − 1)

R + n − 1
. (27)

This is because each query along τω increases (X(τω) ⊕ kω) ∩ U(τω) by at most one and
(Ȳ (τω) ⊕ kω) ∩ V (τω) by at most R + n − 1 and X∗(τω) by at most two.

In particular, each E-query can increases (X(τω) ⊕ kω) ∩ U(τω) by at most one and
X∗(τω) by at most two, each P - or P −1-query can increase (X(τω) ⊕ kω) ∩ U(τω) and
(Ȳ (τω)⊕kω)∩V (τω) by at most one, and each F -query can increase (Ȳ (τω)⊕kω)∩V (τω)

by at most R + n − 1 and X∗(τω) by at most one.
We bound the probability of the event in Relation (27) over �

j−1
green. We do this by bound-

ing the probability of the event DBJ (ω) = 1 over �
j−1
green for all J = 1, · · · , j − 1. Let us

fix a number J , 1 ≤ J ≤ j − 1.
Note that

Pr
�

j−1
green

[DBJ (ω) = 1] =
∑

τ∈T J
green

Pr
�

j−1
green

[τ ] · Pr
�

j−1
green(τ )

[DBJ (ω) = 1].

Note further that for all τ ∈ T J
green and ω ∈ �

j−1
green(τ ) it holds that DBJ (ω) = 1 if and

only if at least one of the following conditions is fulfilled.
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(A) The J -th query in τ is a P -query with input u or a P −1-query with output u and
kω ∈ u ⊕ X(τ).

(B) The J -th query in τ is a P -query with output v or a P −1-query with input v and
kω ∈ v ⊕ Ȳ (τ ).

(C) The J -th query in τ is an F -query with input y and there is some r , −(n − 1) ≤ r ≤
R − 1, such that kω ∈ π−r (y) ⊕ V (τ).

(D) The J -th query in τ is an E-query with input x and kω ∈ x ⊕ U(τ).
(E) The J -th query in τ is an E-query with input x and Pω(x ⊕ kω) ⊕ kω = ȳ for some

ȳ ∈ Ȳ (τ ).
(F) The J -th query in τ is an F -query with input y and y = πr(Pω(x ⊕ kω) ⊕ kω) for

some x ∈ X(τ) \ X∗(τ ) and some number r , −(n − 1) ≤ r ≤ R − 1.
(G) The J -th query in τ is an E-query with input x and there is some r , −(R − 1) ≤ r ≤

R − 1, and some x′ ∈ X(τ) such that πr(Pω(x ⊕ kω) ⊕ kω) = Pω(x′ ⊕ kω) ⊕ kω.

Note that (A) and (D) are the situations in which query J increases (X(τω)⊕kω)∩U(τω),
that (B) and (C) are the situations in which query J increases (Ȳ (τω) ⊕ kω) ∩ V (τω), that
(E) and (F) are the situations in which query J generates a new structural EF-collision (i.e.,
increases X∗(τω) by one), and that (G) is the situation in which query J generates a new
structural EE-collision (i.e., increases X∗(τω) by one or two).

Note further that conditions (A,D) imply that kω belongs to a set of at most J − 1 ele-
ments. Conditions (B,C) imply that kω belongs to a set of at most (R + n − 1) · (J − 1)
elements. From Corollary 2, part (a), it follows that these events have probability at most
2−(n−1) · (R + n − 1) · (J − 1).

From Corollary 2, part (b), it follows that condition (E) has probability at most 9·|Ȳ (τω)|·
2−(n−1) ≤ 9 · (R + n − 1) · (J − 1) · 2−(n−1), and that condition (F ) has probability at most
9 · (R + n − 1) · |X(τω)| · 2−(n−1) ≤ 9 · (R + n − 1) · (J − 1) · 2−(n−1).

From Corollary 2, part (c), it follows that condition (G) has probability at most 11·(2R−
1) · |X(τω)| · 2−(n−1) ≤ 11 · (2R − 1) · (J − 1) · 2−(n−1).

We obtain that for all J , 1 ≤ J ≤ j − 1,

Pr
�

j−1
green

[DBJ (ω) = 1] ≤ 11 · 2−(n−1) · (2R − 1) · (J − 1)

< 22 · 2−(n−1) · R · (j − 1). (28)

Relation (28) now enables us to apply the Chernoff bound method from Lemma 7 in
Appendix A with N = j − 1, p = 22 · 2−(n−1) · R · (j − 1) and D = n, and to obtain
directly that

Pr
�

j−1
green

⎡

⎣
j−1∑

J=1

DBJ (ω) > 22 · 2−(n−1) · R · (j − 1)2 +
√

n · (j − 1)

2

⎤

⎦ < e−n. (29)

Note that item (2) of Theorem 6 yields that

22 · 2−(n−1) · R · (j − 1)2 +
√

n · (j − 1)

2

< 22 · 2−(n−1) · R · M2 +
√

n · M

2

≤ � − (R + n − 1)

R + n − 1
. (30)
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Thus, Relation (29) together with Relation (30) proves relations (26) and (25), and,
consequently, Lemma 2, part (iv).

6 Conclusion

In this paper, we introduced for the first time a random oracle model for KSG-based
stream ciphers and proved a sharp asymptotic (2/3)n bound on the security of the LIZARD-
construction, which underlies the stream cipher LIZARD [22], against generic chosen-IV
key recovery and packet prediction TMD tradeoff attacks. We hope that the security model
and the lower bound techniques developed in this paper help to prove similar sharp security
bounds for other stream cipher constructions such as the concatenation method underly-
ing the state initialization of Trivium and Grain (see relations (3) and (4)). We have further
shown that for a packet length R > n, where n denotes the inner state length of the under-
lying KSG, KSG-based stream ciphers can be only n/2-secure w.r.t. generic TMD tradeoff
distinguishing attacks (see Corollary 2). From a theoretical point of view, it would be inter-
esting to analyze the caseR = n. Our conjecture is that forR = n, the LIZARD-construction
is (2/3)n-secure even against distinguishing attacks.

Appendix A: Basic Methods III: A Short Excursion to Chernoff Bounds

At several places of our proof, we have to apply a technique called Chernoff bounds in the
literature. The basic Chernoff bound argument is the following.

Theorem 7 Let N be a positive integer, p ∈ (0, 1), and A1, · · · , AN be a set of mutually
independent random variables, where, for all i = 1, · · · , N , it holds that Pr[Ai = 1−p] =
p and Pr[Ai = −p] = 1 − p. Let A = ∑N

i=1 Ai . Then

Pr[A > a] < e−2·a2/N

for all a > 0.

For a proof see, e.g., Alon, Spencer, Erdos, The Probabilistic Method, Wiley Interscience
1992, Theorem A4 on page 235 [1].

We derive from Theorem 7 a corresponding result for random {0, 1}-variables.

Lemma 6 Let p,N , and Ai for i = 1, · · · , N be defined as in Theorem 7, and let Bi =
Ai + p. Note that Bi ∈ {0, 1} and Pr[Bi = 1] = p. Let B = ∑N

i=1 Bi . Then, for all d > 0,
it holds

Pr[B > (p + d)N ] < e−2·d2·N .

Proof of Lemma 6 By definition, B = A + N · p. The proof is completed by putting
a = d · N into the relation in Theorem 7.

We will apply Chernoff bound arguments in the following modified scenario. Before
doing this we introduce a denotation.
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Definition 20 Let N ≥ 1 and X1, · · · , XN denote a collection of random {0, 1}-variables.
For all i, 1 ≤ i ≤ N , and for all b = (b1, · · · , bi) ∈ {0, 1}i let X(b) denote the event that
Xj = bj for all j = 1, · · · , i.

Lemma 7 Let C1, · · · , CN denote a collection of random {0, 1}-variables fulfilling the
following two conditions for some probability bound p, 0 < p < 1:

(a) Pr[C1 = 1] = p1 < p.
(b) For all i, 2 ≤ i ≤ N , and all b ∈ {0, 1}i−1, there is some number p(b) < p, which

can be computed from b, and for which it holds that

Pr[Ci = 1 | C(b)] = p(b).

Let C = ∑N
i=1Ci . Then, for all d > 0, it holds

Pr[C > (p + d)N ] < e−2·d2·N . (31)

Comment 1 Note that C1, · · · , CN are allowed to be statistically dependent. However,
conditions (a) and (b) imply that only a weak sort of dependence is allowed.

For illustrating this, observe that for satisfying Relation (31) it is not sufficient to require
condition

(a’) Pr[Cj = 1] < p for all j = 1, · · · , N .

A counterexample is given by the case that C1 = C2 = · · · = CN , which satisfies (a’) if
Pr[C1 = 1] < p, but which does not satisfies Relation (31).

Condition (a’) only implies condition (a) and the condition

(b’) For all i, 2 ≤ i ≤ N ,
∑

b∈{0,1}i−1

Pr[C(b)] · Pr[Ci = 1 | C(b)] < p.

Note that condition (b’) is much weaker than condition (b), as condition (b) requires that
Pr[Ci = 1 | C(b)] < p holds not only in the average but for all b ∈ {0, 1}i−1.

Comment 2 At several places we will take d = √
D/(2N) and obtain

Pr[C > (p + d)N ] = Pr

[

C > pN +
√

D · N

2

]

< e−D.

Proof of Lemma 7 We construct a collection of mutually independent binary random
variables B1, · · · , BN satisfying

– Ci = 1 implies Bi = 1,
– Pr[Bi = 1] = p

for all i, 1 ≤ i ≤ N .
This proves our Lemma 7, as

∑N
i=1Ci ≤ ∑N

i=1Bi with probability one, and as Lemma 6
can be applied to B = ∑N

i=1Bi .
We first describe the experiment behind the random {0, 1}-variables C1, · · · , CN and

B1, · · · , BN . Suppose that the experiments behind C1, · · · , CN and B1, · · · , BN are per-
formed by a person named Tom. Tom uses a device with the following input/output
behavior: If Tom inputs a number q, 0 ≤ q ≤ 1, into the device, then the device outputs a
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random bit D ∈ {0, 1} with Pr[D = 1] = q. The device has no memory, i.e., if we contact
the device at different times, then the corresponding outputs are mutually independent.

The experiments behind C1, · · · , CN and B1, · · · , BN refer to a probability bound p,
0 < p < 1, a probability value p1 < p, and an algorithm which assigns for each j ,
1 ≤ j ≤ N − 1, and each {0, 1}-vector b ∈ {0, 1}j a probability value p(b) < p.

The generation of the random {0, 1}-values C1, · · · , CN Tom generates C1 by
inputting p1 into the device and taking the output as C1. This implies Pr[C1 = 1] = p1.
Moreover, Tom stores the result C1 in his personal memory.

Now fix some j , 2 ≤ j ≤ N , and suppose that Tom has already generated the random
{0, 1}-values C1, · · · , Cj−1 and stored the outcomes C1 = b1, · · · , Cj−1 = bj−1 in his
personal memory. This defines the {0, 1}-vector b = (b1, · · · , bj−1) ∈ {0, 1}j−1.

Then Tom computes the probability value p(b) < p, inputs p(b) to the device, takes the
output as Cj , and stores the result for Cj in his personal memory.

This implies Pr[Cj = 1 | C(b)] = p(b).
Moreover, this implies that

Pr[Cj = 1] =
∑

b∈{0,1}j−1

Pr[C(b)] · p(b) < p.

Note that there may exist {0, 1}-vectors b ∈ {0, 1}j−1 such that Pr[Cj = 1] �= Pr[Cj =
1 | C(b)] = p(b), i.e., it may happen that Cj is not statistically independent from
C1, · · · , Cj−1.

However, if the p(b)-values are equal for all b ∈ {0, 1}j−1, then Cj is statistically
independent from C1, · · · , Cj−1.

The generation of the random {0, 1}-values B1, · · · , BN Tom generates B1 as fol-
lows. First, he generates again C1 by inputting p1 into the device, taking the output as C1,
and stores C1 in his personal memory. If C1 = 1, then he defines B1 = 1. If C1 = 0, then
Tom inputs the probability value p−p1

1−p1
into the device and takes the output as B1.

Note that

Pr[B1 = 1] = Pr[C1 = 1] + Pr[C1 = 0] · p − p1

1 − p1
= p1 + (1 − p1)

p − p1

1 − p1
= p. (32)

Now we fix some j , 2 ≤ j ≤ N , and describe how Tom generates Bj . Suppose
that Tom has already generated the random {0, 1}-values C1, · · · , Cj−1 and the {0, 1}-
values B1, · · · , Bj−1, and that he has stored the outcomes C1 = b1, · · · , Cj−1 = bj−1,
corresponding to the {0, 1}-vector b = (b1, · · · , bj−1) ∈ {0, 1}j−1, in his personal memory.

Then Tom first generates Cj by computing the probability value p(b) < p, inputting
p(b) to the device, taking the output as Cj , and stores the result for Cj in his personal
memory.

If Cj = 1, then he defines Bj = 1.

If Cj = 0, then Tom inputs the probability value p−p(b)
1−p(b)

into the device and takes the
output as Bj .

By the same argument as in Relation (32), it holds that

Pr[Bj = 1 | C(b)] = Pr[Cj = 1 | C(b)] + Pr[Cj = 0 | C(b)] · p − p(b)

1 − p(b)

= p(b) + (1 − p(b))
p − p(b)

1 − p(b)
= p. (33)
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This implies that

Pr[Bj = 1] =
∑

b∈{0,1}j−1

Pr[C(b)] · Pr[Bj = 1 | C(b)] =
∑

b∈{0,1}j−1

(Pr[C(b)] · p)

= p ·
∑

b∈{0,1}j−1

Pr[C(b)] = p · 1 = p.

The proof that B1, · · · , BN are mutually independent For all j , 1 ≤ j ≤ N , and
{0, 1}-vectors b, b′ ∈ {0, 1}j , we write b′ ≤ b if b′

i ≤ bi for all i = 1, · · · , j .
The way the random variables Bj and Cj , 1 ≤ j ≤ N , are generated, implies the

following two facts:

(1) For all j , 2 ≤ j ≤ N , and {0, 1}-vectors b ∈ {0, 1}j−1, the event B(b) implies the
event

⋃
b′∈{0,1}j−1,b′≤b C(b′). This implies that

Pr[B(b)] =
∑

b′∈{0,1}j−1,b′≤b

Pr[B(b) ∧ C(b′)].

(2) For all j , 2 ≤ j ≤ N , and {0, 1}-vectors b, b′ ∈ {0, 1}j−1 with b′ ≤ b, it holds that

Pr[Bj = 1 | B(b) ∧ C(b′)] = Pr[Bj = 1 | C(b′)] = p.

Item (2) follows from the fact that the behavior of Tom when generating Bj depends only
on b′.

For showing the mutual independence of B1, · · · , BN , it is sufficient to show that for all
j , 2 ≤ j ≤ N , and all {0, 1}-vectors b ∈ {0, 1}j−1, it holds

Pr[Bj = 1 | B(b)] = Pr[Bj = 1] = p.

Note that

Pr[Bj = 1 | B(b)] = Pr[Bj = 1 ∧ B(b)]
Pr[B(b)]

=
∑

b′∈{0,1}j−1,b′≤b

Pr[Bj = 1 ∧ B(b) ∧ C(b′)]
Pr[B(b)]

=
∑

b′∈{0,1}j−1,b′≤b

Pr[B(b) ∧ C(b′)]
Pr[B(b)] · Pr[Bj = 1 ∧ B(b) ∧ C(b′)]

Pr[B(b) ∧ C(b′)]

=
∑

b′∈{0,1}j−1,b′≤b

Pr[B(b) ∧ C(b′)]
Pr[B(b)] · Pr[Bj = 1 | B(b) ∧ C(b′)]

= p · 1

Pr[B(b)] ·
∑

b′∈{0,1}j−1,b′≤b

Pr[B(b) ∧ C(b′)] = p.
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Appendix B: The Proof of Corollary 2, Parts (b.4) and (c)

Let us fix an arbitrary number j , 1 ≤ j ≤ M , and a green transcript τ ∈ T j
green. We assume

that part (a) of Corollary 2 holds, i.e., that for all k ∈ Kgreen(τ )

Pr
�green(τ )

[k] ≤ 2−(n−1). (34)

Let us first prove part (b.4) of Corollary 2. We fix some x, ȳ ∈ {0, 1}n, where x �∈ X∗(τ )

and ȳ �∈ Ȳ ∗(τ ) and (x �∈ X(τ) or ȳ �∈ Ȳ (τ )). We have to show

Pr
�green(τ )

[Pω(x ⊕ kω) ⊕ kω = ȳ] ≤ 9 · 2−(n−1). (35)

Proof of Relation (35) We divide �green(τ ) into two subsets �1 and �2, where

�1 = {ω ∈ �green(τ ); x ⊕ kω �∈ U(τ)},
�2 = {ω ∈ �green(τ ); x ⊕ kω ∈ U(τ)} (36)

and denote

K1 = {k ∈ Kgreen(τ ); x ⊕ k �∈ U(τ)},
K2 = {k ∈ Kgreen(τ ); x ⊕ k ∈ U(τ)}. (37)

The sets �2 and K2 define another set W ⊆ {0, 1}n by

W = {Pω(x ⊕ kω) ⊕ kω; ω ∈ �2} = {Pτ (x ⊕ k) ⊕ k; k ∈ K2}.
Here, Pτ denotes the restriction of Pω to U(τ) which, by definition, is equal for all ω ∈
�(τ).

Note that |W | ≤ |K2| ≤ |U(τ)| ≤ j ≤ M .
Let us now define an equivalence relation on K2. For keys k, k′ ∈ K2 we define that

k ≡ k′ if Pτ (x ⊕ k) ⊕ k = Pτ (x ⊕ k′) ⊕ k′.
Let L1, · · · , Ls denote the equivalence classes corresponding to the equivalence relation

≡ on K2.
Clearly, s = |W | and for each class Ll , 1 ≤ l ≤ s, there is exactly one w ∈ W such that

Pτ (x ⊕ k) ⊕ k = w for all k ∈ Ll .
Note that k ≡ k′ implies that x⊕k ≡Pτ x⊕k′ in the sense of Definition 12 and remember

that, as τ is not black, Max(Pτ , U(τ)) ≤ 5. This implies that for all w ∈ W

|{k ∈ K2; Pτ (x ⊕ k) ⊕ k = w}| ≤ 5. (38)

Note that

Pr
�green(τ )

[Pω(x ⊕ kω) ⊕ kω = ȳ]
= Pr

�green(τ )
[�1] · Pr

�green(τ )
[Pω(x ⊕ kω) ⊕ kω = ȳ | �1]

+ Pr
�green(τ )

[�2] · Pr
�green(τ )

[Pω(x ⊕ kω) ⊕ kω = ȳ | �2],
i.e.,

Pr
�green(τ )

[Pω(x ⊕ kω) ⊕ kω = ȳ]
≤ Pr

�green(τ )
[Pω(x ⊕ kω) ⊕ kω = ȳ | �1]

+ Pr
�green(τ )

[�2] · Pr
�green(τ )

[Pω(x ⊕ kω) ⊕ kω = ȳ | �2]. (39)
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For estimating Pr�green(τ )[Pω(x ⊕ kω) ⊕ kω = ȳ | �1] note that if x ⊕ kω �∈ U(τ)

and x ∈ X(τ), then Pω(x ⊕ kω) takes all values in {0, 1}n which are outside of V (τ) and
which are outside of Ȳ (τ ) ⊕ kω with the same probability (see the proof of Lemma 3).4 If
x �∈ X(τ) then Pω(x ⊕ kω) takes all values in {0, 1}n, which are outside of V (τ) with the
same probability (see the proof of Lemma 3).

This implies that

Pr
�green(τ )

[Pω(x ⊕ kω) ⊕ kω = ȳ | �1] ≤ 1

2n − (R + n)M
≤ 2−(n−1) (40)

if n is large enough.
Observe next that by Relation (34) it holds that

Pr
�green(τ )

[�2] ≤ 2−(n−1) · |K2|. (41)

For estimating Pr�green(τ )[Pω(x ⊕ kω) ⊕ kω = ȳ | �2] we first consider the case that
ȳ �∈ W . Then, by the definition of W , it holds that

Pr
�green(τ )

[Pω(x ⊕ kω) ⊕ kω = ȳ | �2] = 0.

Assume now that ȳ ∈ W . From Relation 38 and the Smoothness Lemma (Lemma 5) it
follows that

Pr
�green(τ )

[Pω(x ⊕ kω) ⊕ kω = ȳ | �2] ≤ √
2

5

|K2| ≤ 8

|K2| . (42)

Inserting relations (40), (41), and (42) into Relation (39) yields

Pr
�green(τ )

[Pω(x ⊕ kω) ⊕ kω = ȳ] ≤ 2−(n−1) + 2−(n−1) · |K2| · 8

|K2|
= 9 · 2−(n−1).

Let us now prove part (c) of Corollary 2. We fix some x �= x′ ∈ {0, 1}n, where x �∈ X(τ)

and x′ ∈ X(τ), and some number i, −(R + n) ≤ i ≤ R + n. We have to show

Pr
�green(τ )

[Ev(x, x′, i)] ≤ 11 · 2−(n−1), (43)

where the event Ev(x, x′, i) ⊆ �green(τ ) is defined to be

Ev(x, x′, i) =
{
ω ∈ �green(τ );πi (Pω(x ⊕ kω) ⊕ kω) = Pω(x′ ⊕ kω) ⊕ kω

}
.

Proof of Relation (43) Let us first handle the case that x′ ∈ X∗(τ ) and denote by y′
the unique value for which (x′, y′) ∈ Coll(τ ). Then, by the definition of structural
EF-collisions, it holds that

Pω(x′ ⊕ kω) ⊕ kω = y′

for all ω ∈ �green(τ ).
Consequently, for all ω ∈ �green(τ ) it holds that ω ∈ Ev(x, x′, i) if and only if

Pω(x ⊕ kω) ⊕ kω = π−i (y′).

4Here, Pω(x ⊕ kω) ∈ Ȳ (τ ) ⊕ kω would imply that x ∈ X∗(τ ), which contradicts the assumption.
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From part (b) of Corollary 2 it follows that if x′ ∈ X∗(τ ), then

Pr
�green(τ )

[Ev(x, x′, i)] ≤ 9 · 2−(n−1) < 11 · 2−(n−1).

Now let us consider the case that x′ ∈ X(τ) \ X∗(τ ).
For arbitrary points z ∈ {0, 1}n we define

�green(τ, z) = {ω ∈ �green(τ );Pω(x ⊕ kω) ⊕ kω = z}
and

Kgreen(τ, z) = {k ∈ {0, 1}n ; ∃ω ∈ �green(τ, z) : kω = k}.
Moreover, for b ∈ {1, 2} we define

�b(z) = �green(τ, z) ∩ �b

and

Kb(z) = Kgreen(τ, z) ∩ Kb,

where the sets �1 and �2 and the sets K1 and K2 are defined as in relations (36) and (37).
Let us clarify how the keys in elementary events in �1(z) and �2(z) and the keys in

K1(z) and K2(z) look like.
It can be easily checked that for all ω = (kω, Pω, Fω) ∈ �1 it holds ω ∈ �1(z) if and

only if z ⊕ kω �∈ V (τ) and Pω(x ⊕ kω) = z ⊕ kω.
Moreover, for all ω = (kω, Pω, Fω) ∈ �2 it holds ω ∈ �2(z) if and only if Pτ (x ⊕kω)⊕

kω = z, which implies by Relation 38 that

|K2(z)| ≤ 5. (44)

We obtain that

|Kgreen(τ, z)| ≥ |K1(z)| ≥ |K1| − |V (τ)|
= |Kgreen(τ )| − |K2| − |V (τ)|
≥ |Kgreen(τ )| − 2 · |V (τ)|
≥ |Kgreen(τ )| − 2M ≥ 1√

2
· 2n (45)

if n is large enough. The last inequation follows from M < 2(2/3)n and the proof of the
Smoothness Lemma (Lemma 5): It is a straightforward consequence of relations (52) and
(53) in Appendix C that for all green transcripts τ and all constants δ < 1 it holds that
|Kgreen(τ )| ≥ δ · 2n if n is large enough. Lemma 5 states this only for δ = 1√

2
.

By exactly the same arguments as in the Smoothness Lemma (Lemma 5) one can show
that for all k, k′ ∈ Kgreen(τ, z) it holds that

Pr
�green(τ,z)

[k] ≤ √
2 · Pr

�green(τ,z)
[k′]. (46)

if n is large enough.
Relations (45) and (46) imply directly that for all k ∈ Kgreen(τ, z) it holds

Pr
�green(τ,z)

[k] ≤ 2−(n−1) (47)

if n is large enough.
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Note that
Pr

�green(τ )
[Ev(x, x′, i)]

=
∑

z∈{0,1}n
Pr

�green(τ )
[Pω(x ⊕ kω) ⊕ kω = z] · Pr

�green(τ,z)
[Ev(x, x′, i)]. (48)

For deriving an upper bound for Pr�green(τ,z)[Ev(x, x′, i)] we write
Pr

�green(τ,z)
[Ev(x, x′, i)] = Pr

�green(τ,z)
[�1(z)] · Pr

�1(z)
[Ev(x, x′, i)]

+ Pr
�green(τ,z)

[�2(z)] · Pr
�2(z)

[Ev(x, x′, i)]
≤ Pr

�1(z)
[Ev(x, x′, i)] + Pr

�green(τ,z)
[�2(z)]

≤ Pr
�1(z)

[Ev(x, x′, i)] + 5 · 2−(n−1), (49)

where the last inequality follows from relations (44) and (47).
We write K1(z) as

K1(z) = K3(z) ∪ K4(z) ∪ K5(z),

where

– K3(z) = {k ∈ K1(z); x′ ⊕ k ∈ U(τ), Pτ (x
′ ⊕ k) ⊕ k = πi(z)},

– K4(z) = {k ∈ K1(z); x′ ⊕ k ∈ U(τ), Pτ (x
′ ⊕ k) ⊕ k �= πi(z)},

– K5(z) = {k ∈ K1(z); x′ ⊕ k �∈ U(τ)}.
From Relation 38 we know that |K3(z)| ≤ 5. Moreover, for all k ∈ K4(z) it holds

Pr
�1(z)

[Ev(x, x′, i) ∩ (kω ∈ K4(z))] = 0.

Consequently,

Pr
�1(z)

[Ev(x, x′, i)] ≤ Pr
�5(z)

[Ev(x, x′, i)] + 5 · 2−(n−1), (50)

where �5(z) = {ω ∈ �1(z); kω ∈ K5(z)}.
Note that for all ω ∈ �5(z), the condition that ω ∈ Ev(x, x′, i) is equivalent to

Pω(x′ ⊕ kω) = πi(z) ⊕ kω,

which has probability 0 if πi(z) ⊕ kω ∈ V (τ) and probability at most

1

2n − (|V (τ)| + 1) − |Ȳ (τ )| ≤ 2−(n−1)

if πi(z) ⊕ kω �∈ V (τ) and n is large enough, see Relation (40) and the comment before
Relation (40).

We obtain that
Pr

�5(z)
[Ev(x, x′, i)] ≤ 2−(n−1) (51)

if n is large enough.
Putting relations (51), (50), and (49) together, we obtain that for all z ∈ {0, 1}n

Pr
�green(τ,z)

[Ev(x, x′, i)] ≤ 11 · 2−(n−1),

which implies by Relation (48) that

Pr
�green(τ )

[Ev(x, x′, i)] ≤ 11 · 2−(n−1).
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Appendix C: The Proof of the Smoothness Lemma (Lemma 5), Part (II)

We fix an arbitrary number j , 1 ≤ j ≤ M , and a green transcript τ ∈ T j
green. We analyze the

probability distribution Pr�(τ) on Kgreen(τ ) by showing that for all k ∈ Kgreen(τ ) it holds
that this distribution is close to the uniform distribution on Kgreen(τ ). More precisely,

Pr
�(τ)

[k] ≤ δ · |Kgreen(τ )|−1

for δ =
(

2n−1

2n−1 − (R + n)j

)2�

. (52)

Note that part (3) of Theorem 6 implies δ ≤ √
2. This is because for θ = (R + n)j and

N = 2n−1 we can write δ as

δ =
(

N

N − θ

)2�

=
(

1

1 − θ/N

)2�

=
((

1

1 − θ/N

)N/θ
) 2�θ

N

≈ e
2�θ
N . (53)

Part (3) of Theorem 6 implies that � · θ ≤ ln(2)·N
4 , which is equivalent to

2�θ

N
≤ ln 2

2
.

The Proof of Relation (52) The proof of Lemma 3 shows how, for keys k ∈ K(τ), com-
pletions P ′ of Pτ on {0, 1}n \ U(τ) and F ′ of Fτ on {0, 1}n \ Y (τ) have to be constructed
such that (k, P ′, F ′) belongs to �(τ). In particular:

(1) The function values of P ′ on X∗(τ ) ⊕ k, a set of size |X∗(τ )|, are determined.
(2) The function values of P ′ on the set ((X(τ)\X∗(τ ))⊕ k)\U(τ) are forbidden to fall

into the set Ȳ (τ ) ⊕ k.
(3) We assume that P ′ is an arbitrarily fixed completion of Pτ satisfying (1) and (2)

and describe how a completion F ′ of Fτ has to be constructed in such a way that
(k, P ′, F ′) belongs to�(τ). The function values F ′(y) are determined or partly deter-
mined on a set Z(k) = Z1(k) ∪ Z2(k), where Z1(k) contains all those y ∈ {0, 1}n for
which there is some r , −(n − 1) ≤ r ≤ R − 1, such that π−r (y) = P ′(x ⊕ k) ⊕ k for
some x ∈ X(τ) \ X∗(τ ), and Z2(k) contains all those y ∈ {0, 1}n for which there is
some i, −(n − 1) ≤ i ≤ n − 1, such that πi(y) ∈ Y (τ). Note that Z1(k) ∩ Z2(k) = ∅
and |Z1(k)| = |Z1(k

′)| and |Z2(k)| = |Z2(k
′)| for all k, k′ ∈ Kgreen(τ ). This implies

that Z(k) has the same size for all k ∈ Kgreen(τ ).

We use the following fact. Let A1, B1, A2, B2 be finite sets fulfilling A1 ∩ A2 = B1 ∩
B2 = ∅, |A1 ∪A2| = |B1 ∪B2|, |A2| < |B1| and |B2| < |A1|. Then the number of bijective
mappings f : A1 ∪ A2 −→ B1 ∪ B2 for which f (A2) ⊆ B1 is

|A1|! · |B1|!
(|A1| − |B2|)! = |A1|! · |B1|!

(|B1| − |A2|)! . (54)

In the following, A1 corresponds to the set {0, 1}n \ (U(τ) ∪ (X(τ) ⊕ k)), A2 to the set
((X(τ) \ X∗(τ )) ⊕ k) \ U(τ), B1 to the set {0, 1}n \ (V (τ) ∪ (Ȳ (τ ) ⊕ k)) and B2 to the set
((Ȳ (τ ) \ Ȳ ∗(τ )) ⊕ k) \ V (τ). We denote

– T = 2n − |X(τ)| − |U(τ)|,
– t = |X(τ) \ X∗(τ )|,
– S = 2n − |Ȳ (τ )| − |V (τ)|,
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– s = |Ȳ (τ ) \ Ȳ ∗(τ )|.
It holds that S > 2n−1 and T > 2n−1 if n is large enough.

Note that for proving Lemma 5 it is sufficient to show that for all pairs k, k′ ∈ Kgreen(τ )

Pr�(τ)[k]
Pr�(τ)[k′] ≤ δ.

This is because τ is green, which, together with Pr�blue(τ )[k] = Pr�blue(τ )[k′] = 0 for k, k′ ∈
Kgreen(τ ), implies

Pr�(τ)[k]
Pr�(τ)[k′] = Pr�(τ)[�green(τ )] · Pr�green(τ )[k] + Pr�(τ)[�blue(τ )] · Pr�blue(τ )[k]

Pr�(τ)[�green(τ )] · Pr�green(τ )[k′] + Pr�(τ)[�blue(τ )] · Pr�blue(τ )[k′]
= Pr�green(τ )[k]

Pr�green(τ )[k′] .

For this purpose, let us denote by ConsPτ (k) the set of all τ -consistent completions P ′
of Pτ on {0, 1}n \U(τ), i.e., of all completions P ′ of Pτ for which there is some completion
F ′ of Fτ on {0, 1}n \ Y (τ) such that (k, P ′, F ′) ∈ �(τ).

The above statement (3) implies that for all k ∈ K(τ) and completions P ′ ∈ ConsPτ (k),
the number of such completions F ′ is the same, i.e., does not depend on k.

This implies that

Pr�(τ)[k]
Pr�(τ)[k′] = |ConsPτ (k)|

|ConsPτ (k′)| .

Note that due to requirement (2) (see above), the size of ConsPτ (k) depends on the
sizes of the sets ((X(τ) \ X∗(τ )) ⊕ k) \ U(τ) and ((Ȳ (τ ) \ Ȳ ∗(τ )) ⊕ k) \ V (τ). As k is
not blue, the sizes of the corresponding intersections ((X(τ) \ X∗(τ )) ⊕ k) ∩ U(τ) and
((Ȳ (τ ) \ Ȳ ∗(τ )) ⊕ k) ∩ V (τ) can vary only between 0 and � (see Definition 19).

Thus, for k ∈ Kgreen(τ ), the value |ConsPτ (k)| is minimal if

|((X(τ) \ X∗(τ )) ⊕ k) ∩ U(τ)| = |((Ȳ (τ ) \ Ȳ ∗(τ )) ⊕ k) ∩ V (τ)| = 0.

By Relation (54) this implies

|ConsPτ (k)| = S! · T !
(T − s)! = S! · T !

(S − t)! . (55)

The value |ConsPτ (k)| is maximal if

|((X(τ) \ X∗(τ )) ⊕ k) ∩ U(τ)| = min{�, t}
and |((Ȳ (τ ) \ Ȳ ∗(τ )) ⊕ k) ∩ V (τ)| = min{�, s}. (56)

We now have to distinguish three cases corresponding to whether |X(τ) \ X∗(τ )| > �

or not and whether |Ȳ (τ ) \ Ȳ ∗(τ )| > � or not.

Case 1 |X(τ) \ X∗(τ )| > � and |Ȳ (τ ) \ Ȳ ∗(τ )| > �.
In this case, it follows from relations (54) and (56) that

|ConsPτ (k)| ≤ (S + �)! · (T + �)!
(S + � − (t − �))! = (S + �)! · (T + �)!

(S + 2� − t)! . (57)
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Relations (55) and (57) imply that the Pr�(τ)-values of elements from Kgreen(τ ) can
differ by a factor δ which is at most δ1 · δ2, where

δ1 = (T + 1)(T + 2) · · · (T + �)

(S − (t − 1))(S − (t − 1) + 1) · · · (S − (t − 1) + � − 1)

≤
(

T

S − t

)�

(58)

and

δ2 = (S + 1)(S + 2) · · · (S + �)

(S − (t − 1) + �)(S − (t − 1) + � + 1) · · · (S − (t − 1) + 2� − 1)

≤
(

S

S − (t − �)

)�

≤
(

S

S − j

)�

≤
(

2n−1

2n−1 − j

)�

.

Here we used the fact that from a ≥ b it follows that a
b

≥ a+1
b+1 .

For upper bounding δ1 we have to distinguish the two cases S ≥ T and S < T .
If S ≥ T , then, by Relation (58),

δ1 ≤
(

S

S − t

)�

≤
(

2n−1

2n−1 − j

)�

. (59)

If S < T , then observe that S ≥ T − (R + n − 1)j . This holds because |Ȳ (τ )| ≤
(R + n − 1)j . Consequently,

δ1 ≤
(

T

T − t − (R + n − 1)j

)�

≤
(

T

T − j − (R + n − 1)j

)�

=
(

T

T − (R + n)j

)�

≤
(

2n−1

2n−1 − (R + n)j

)�

. (60)

Case 2 |X(τ) \ X∗(τ )| ≤ �, i.e., t ≤ �.
Here, |ConsPτ (k)| is maximal if (X(τ)\X∗(τ ))⊕k is a subset of U(τ), which implies

that |ConsPτ (k)| is (T + t)! and that, by Relation (55), the |ConsPτ (k)|-values for k ∈
Kgreen(τ ) cannot differ by a factor larger than

(T + t)! · (S − t)!
T ! · S! = (T + 1) · . . . · (T + t)

(S − t + 1) · . . . · S

≤
(

T

S − t

)t

≤
(

T

S − t

)�

≤
(

2n−1

2n−1 − (R + n)j

)�

.

Note that the last inequation follows from the same case distinction (i.e., S ≥ T and
S < T ) that was already performed as part of Case 1 above (see relations (59) and (60)).

Case 3 |Ȳ (τ ) \ Ȳ ∗(τ )| ≤ �, i.e., s ≤ �.
Here, |ConsPτ (k)| is maximal if (Ȳ (τ )\ Ȳ ∗(τ ))⊕k is a subset of V (τ), which implies

that |ConsPτ (k)| is (S + s)! and that, by Relation (55), the |ConsPτ (k)|-values for k ∈
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Kgreen(τ ) cannot differ by a factor larger than

(S + s)! · (T − s)!
T ! · S! = (S + 1) · . . . · (S + s)

(T − s + 1) · . . . · T

≤
(

S

T − s

)s

≤
(

S

T − s

)�

≤
(

S

S − j − s

)�

≤
(

S

S − j − (R + n − 1)j

)�

=
(

S

S − (R + n)j

)�

≤
(

2n−1

2n−1 − (R + n)j

)�

.

Summarizing all three cases we obtain that

δ ≤
(

2n−1

2n−1 − (R + n)j

)2�

.

Appendix D: A List of Denotations used in the Proof of Theorem 6

– Elementary Events ω = (kω, Pω, Fω) and the Probability Space �: Definition 4 in
Section 4.

– ω-critical Triples: Definition 5 in Section 5.1.
– ω-dangerous Triples: Definition 5 in Section 5.1.
– ω-sudden death Triples: Definition 5 in Section 5.1.
– The number B(M,R, n): Definition 6 in Section 5.2.
– Chernoff Bounds: Appendix A.
– Structural EF - and EE-Collisions: Definition 7 in Section 5.3.
– The Friendly Alice: Definition 8 in Section 5.3.
– Sudden Death: Definition 9 in Section 5.3.
– Transcripts τ : Section 5.4.
– �succ, �s.death: Section 5.4.
– Set of transcripts T j : beginning of Section 5.5.
– The sets X(τ), Y (τ), U(τ), V (τ), X∗(τ ), Ȳ ∗(τ ), Ȳ (r)(τ ), Ȳ (τ ), Coll(τ ), �(τ), K(τ)

for transcripts τ : Definition 10 in Section 5.5.
– τ -consistency: Definition 10 in Section 5.5.
– (τ, k)-critical Points: Definition 11 in Section 5.6.
– The relation ≡P : Definition 12 in Section 5.7.
– τ -critical Keys: Definition 13 in Section 5.7.
– Black Transcripts and Events, �j

black, �
black, T j

black: Definition 15 in Section 5.7.

– Restrictions τ
≤j
ω of transcripts: Definition 15 in Section 5.7.

– Red Transcripts and Events: Definition 16 in Section 5.7.
– Blue Events: Definition 17 in Section 5.7.
– j -alive Elementary Events: Definition 14 in Section 5.7.
– Green and j -green Elementary Events and Green Transcripts: Definition 18 in Sec-

tion 5.7.
– τ -green resp. τ -blue Keys, Kgreen(τ ) resp. Kblue(τ ): Definition 19 in Section 5.7.
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