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Abstract Very recently, Carlet, Méaux and Rotella have studied the main cryptographic
features of Boolean functions when, for a given number n of variables, the input to these
functions is restricted to some subset E of Fn

2. Their study includes the particular case when
E equals the set of vectors of fixed Hamming weight, which is important in the robustness
of the Boolean function involved in the FLIP stream cipher. In this paper we focus on the
nonlinearity of Boolean functions with restricted input and present new results related to the
analysis of this nonlinearity improving the upper bound given by Carlet et al.
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1 Introduction

The cryptographic criterion of interest in this manuscript is that of nonlinearity which char-
acterizes the distance between a Boolean function and the set of affine functions (i.e. those
of algebraic degree 0 or 1) and is naturally defined using the Hamming distance. More
precisely, the nonlinearity of f is the minimum distance to affine functions (in terms of
Reed-Muller codes, it is equal to the minimum distance of the linear code Reed-Muller code
RM(1, n) ∪ (f + RM(1, n)) where RM(1, n) denotes the Reed-Muller code of order 1 and
length 2n). It can be shown that the nonlinearity of a Boolean function in n variables is upper
bounded by 2n−1 − 2n/2−1. In order to provide confusion, cryptographic functions must lie
at large Hamming distance (in the sense, close to the maximum value 2n−1 − 2n/2−1) to
all affine functions, equivalently must be of a large nonlinearity (in the sense, close to the
upper bound 2n−1 − 2n/2−1). Boolean functions achieving maximal nonlinearity are called
bent functions introduced by Rothaus [8] in 1976 but already studied by Dillon [5] since
1974. For of their own sake as interesting combinatorial objects, but also for their relations
to coding theory (Reed-Muller codes), combinatorics (difference sets) and applications in
cryptography (design of stream ciphers), they have attracted a lot of research for more than
four decades. Two references devoted especially to bent functions and containing a com-
plete survey on bent functions are [3, 7]. It is important to point out that bent functions
can not be directly used in the filter and combiner models; in particular, they are not bal-
anced and their algebraic degree does not exceed n

2 , which make them weak against fast
algebraic attacks [9] even after modifying a number of values small enough to keep good
nonlinearity.

In 2016, Méaux, Journault, Standaert and Carlet [6] introduced the cipher FLIP in the
context of homomorphic encryption. FLIP is one of the encryption schemes specifically
designed to be combined with an homomorphic encryption scheme to improve the efficiency
of somewhat homomorphic encryption frameworks. It has been shown that in the context of
the FLIP cipher, the important criteria of Boolean functions are the classical ones (balanced-
ness, nonlinearity, algebraic immunity) when, for a given number n of variables, the input
to these functions is restricted to some subset E of Fn

2. In 2017, Carlet, Méaux and Rotella
[4] studied Boolean functions with restricted input and their robustness in the framework of
FLIP cipher. In this manuscript, we focus on one parameter of Boolean functions: the non-
linearity with restricted input. We derive new results on the analysis of the nonlinearity with
restricted input improving the upper bound given by Carlet, Méaux and Rotella. The paper
is organized as follows. In Section 2, we recall some background related to Boolean func-
tions as well as some preliminaries on the nonlinearity of Boolean functions. In Section 3,
we focus ourselves on the nonlinearity of Boolean functions with restricted input. Using
the moments of the Walsh transform, we first derive in Section 3.1 an upper bound on that
nonlinearity (Theorem 7). Next, we push further the analysis of the power sums involved in
Theorem 7 and establish a new upper bound on the nonlinearity of Boolean functions with
constant weight inputs improving the results of Carlet et al. (Theorem 16).

2 Preliminaries

We denote by |I | the cardinality of a finite set I . Let n be any positive integer. In this paper,
we shall denote byBn the set of all n-variable Boolean functions over Fn

2 [1]. Any n-variable
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Boolean function f (that is, a mapping from F
n
2 to F2) admits a unique algebraic normal

form (ANF), that is, a representation as a multivariate polynomial over F2:

f (x1, . . . , xn) =
⊕

I⊆{1,...,n}
aI

∏

i∈I

xi,

where the aI ’s are in F2. The terms
∏

i∈I xi are called monomials. The algebraic degree
deg(f ) of a Boolean function f equals the maximum degree of those monomials whose
coefficients are nonzero in its algebraic normal form. A slightly different form for the alge-
braic normal form is f (x) = ⊕

u∈Fn
2
aux

u, where au ∈ F2 and where xu = ∏n
i=1 x

ui

i .
Then deg(f ) equals max

au �=0
wt(u), where wt(u) denotes the Hamming weight of u, that is,

wt(u) = |{i = 1, . . . , n | ui = 1}|. Given a positive integer r , we make an abuse of nota-
tion and denote by RM(r, n) the set of all n-variable Boolean functions of algebraic degrees
at most r , that is, the so-called r-th order Reed-Muller code of length 2n. We recall that

RM(r, n) is a vector subspace over F2 of dimension
∑r

i=0

(
n

i

)
.

The Hamming weight wt(f ) of a Boolean function is the size of its support {x ∈
F

n
2 | f (x) = 1} that we denote by supp(f ). The Hamming distance between two

n-variable Boolean functions is the Hamming weight of f ⊕ g, that is dist(f, g) =
|{x ∈ F

n
2 | f (x) �= g(x)}|.

Definition 1 (rth-order nonlinearity) Let f be an n-variable Boolean function. Let r be a
positive integer such that r ≤ n. The r-th order nonlinearity of f is the minimum Hamming
distance between f and all n-variable Boolean functions from RM(r, n). We shall denote
the r-th order nonlinearity of f by nlr (f ).

We have

nlr (f ) = 2n−1 − 1

2
max

g∈RM(r,n)

∣∣∣∣∣∣

∑

x∈Fn
2

(−1)f (x)+g(x)

∣∣∣∣∣∣
. (1)

The first-order nonlinearity of f is simply called the nonlinearity of f and is denoted
by nl(f ) (instead of nl1(f )). Clearly we have nlr (f ) = 0 if and only if f has degree at
most r . So, the knowledge of the nonlinearity profile (i.e. of all the nonlinearities of orders
r ≥ 1) of a Boolean function includes the knowledge of its algebraic degree. It is in fact a
much more complete cryptographic parameter than the single (first-order) nonlinearity and
the algebraic degree. The best known upper bound on nlr (f ) has an asymptotic version [2]:

nlr (f ) ≤ 2n−1 −
√
15

2
(1 + √

2)r−22
n
2 + O(nr−2)

for every n-variable Boolean function f .

3 Results on the nonlinearity with restricted input

3.1 An upper bound derived from power sums of Walsh transform

Let n be a positive integer. Let E be any subset of Fn
2 and let f be any Boolean function

defined over E. We define

χ̂f,E(a) =
∑

x∈E

(−1)f (x)+a·x, a ∈ F
n
2,
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where “·” denotes the standard inner product in F
n
2. In [4], the authors have introduced the

following definition of the nonlinearity of a Boolean function with restricted input:

NLE(f ) = |E|
2

− 1

2
max
a∈Fn

2

|χ̂f,E(a)|.

Clearly, NLE is invariant under the addition by a Boolean function g whose restriction
to E is affine, that is, g(x) = γ · x + β. Indeed,

χ̂f +g,E(a) =
∑

x∈E

(−1)f (x)+γ ·x+β+a·x =(−1)β
∑

x∈E

(−1)f (x)+x·(a+γ ) =(−1)β χ̂f,E(a + γ ).

Thus, we have the following.

Lemma 2 Let g : Fn
2 → F2 such that g(x) = γ · x + β for every x ∈ E where γ ∈ F

n
2 and

β ∈ F2. Then NLE(f + g) = NLE(f ).

In [4], it is established the following upper bound on this nonlinearity.

Theorem 3 ([4, Proposition 6]) We have

NLE(f ) ≤ |E|
2

−
√|E| + λ

2
,

where

λ = max
F∈F

∣∣∣∣∣∣∣∣∣

∑

(x,y)∈E2

x+y∈F⊥\{0}

(−1)f (x)+f (y)

∣∣∣∣∣∣∣∣∣

.

Herein F is a family of vector spaces F for each of which there exists v ∈ F
n
2 such that

v · (x + y) = 1 for all (x, y) ∈ E2 such that x + y ∈ F⊥ \ {0}. Herein and hereafter, F⊥
denotes the dual space of the vector space F .

Remark 4 If E = F
n
2, Theorem 3 is the classical “covering radius bound” 2n−1 − 2

n
2 −1

(since F⊥ = {0}).

Remark 5 Without giving the calculation, we indicate that the theorem above is a direct
consequence of the following identity where F is a vector space:

∑

a∈F

(
χ̂f,E(a)

)2 = |F |
∑

(x,y)∈E2

x+y∈F⊥

(−1)f (x)+f (y).

The most important feature is that Theorem 3 does not relies on any property on E but
only on the fact that we sum over a vector space.

Considering the case where F is a hyperplane (in that case, the condition of Theorem 3
is satisfied), we have the following most simple bound established in [4]:

Corollary 6 We have

NLE(f ) ≤ |E|
2

− 1

2

√|E| + λ,
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where

λ = max
a∈Fn

2 , a �=0

∣∣∣∣∣∣∣∣

∑

x,y∈E

x+y=a

(−1)Daf (x)

∣∣∣∣∣∣∣∣

and Daf is the derivative of f in the direction of a whose expression is given as follows:

Daf (x) = f (x + a) + f (x).

We are going to show that Theorem 3 is a particular case of a more general result. To this
end, set

S�(f,E, F ) =
∑

a∈F

(
χ̂f,E(a)

)�
.

Observe that S�(f,E, F ) = 0 if and only if χ̂f,E vanishes on F when � is even. Next,

S2�+2(f,E, F ) =
∑

a∈F

(
χ̂f,E(a)

)2�+2

≤
(
max
a∈F

|χ̂f,E(a)|
)2∑

a∈F

(
χ̂f,E(a)

)2�

=
(
max
a∈F

|χ̂f,E(a)|
)2

S2�(f,E, F )

Thus we arrive at

S2�+2(f,E, F )

S2�(f,E, F )
≤
(
max
a∈F

|χ̂f,E(a)|
)2

(2)

A direct generalization of Theorem 3 is therefore the following upper bound.

Theorem 7 Let f be a Boolean function over Fn
2 . Let F be a vectorspace of Fn

2 such that
χ̂f,E does not vanish on F . Then, every positive integer �,

NLE(f ) ≤ |E|
2

− 1

2

√
S2�+2(f,E, F )

S2�(f,E, F )
. (3)

Remark 8 With our framework, the approach of [4] corresponds to take � = 0 in (2) and to
consider particular subspaces F . Indeed, if � = 0, one has

S2�+2(f,E, F )

S2�(f,E, F )
= 1

|F |
∑

a∈F

(
χ̂f,E(a)

)2

=
∑

(x,y)∈E2,x+y∈F⊥
(−1)f (x)+f (y).
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To get the absolute value, it suffices to use Lemma 2 with fv(x) = f (x)+v·x. According
to Lemma 2, one has NLE(f ) = NLE(fv) On the other hand,

∑

(x,y)∈E2

x+y∈F⊥

(−1)fv(x)+fv(y) =
∑

(x,y)∈E2

x+y∈F⊥

(−1)f (x)+f (y)+v·(x+y)

= |E| +
∑

(x,y)∈E2

x+y∈F⊥\{0}

(−1)f (x)+f (y)+v·(x+y).

Now, if v is chosen such that v · (x +y) = 1 for every (x, y) ∈ E2 such that x +y ∈ F⊥,
then

∑

(x,y)∈E2

x+y∈F⊥

(−1)fv(x)+fv(y) = |E| −
∑

(x,y)∈E2

x+y∈F⊥\{0}

(−1)f (x)+f (y).

Remark 9 Another approach would have been to use the following naive upper bound:

S2�(f,E, F ) ≤ |F |
(
max
a∈F

|χ̂f,E(a)|
)2�

. (4)

But it will not give a better upper bound. Indeed, using the Hölder inequality (that is,
∑

a∈F |uava | ≤ (∑
a∈F |ua |p

) 1
p
(∑

a∈F |ua |q
) 1

q , where 1
p

+ 1
q

= 1) with p = �+1
�

and
q = � + 1, we get

S2�(f,E, F ) =
∑

a∈F

(
χ̂f,E(a)

)2� ≤
(
∑

a∈F

(
χ̂f,E(a)

)2�+2

) �
�+1
(
∑

a∈F

1

) 1
�+1

.

That implies that

|F | (S2�+2(f,E, F ))� ≥ (S2�(f,E, F ))�+1 ,

that is,

S2�+2(f,E, F )

S2�(f,E, F )
≥
(

1

|F |S2�(f,E, F )

) 1
�

.

Remark 10 An important feature of Theorem 7 is that the right-hand side is a decreasing
sequence. Indeed, by the Cauchy-Schwarz inequality,

(S2�+2(f,E, F ))2 ≤ S2�(f,E, F )S2�+4(f,E, F )

which implies that the sequence
(

S2�+2(f,E,F )

S2�(f,E,F )

)

�∈N�
is an increasing sequence. Since Theo-

rem 3 corresponds to the case where � = 0, that says that (3) may be a better upper bound
than Theorem 3 for every positive integers � and the particular subspaces F considered in
that Theorem.

But above, it is known that
∑

i λk+1
i∑

i λk
i

tends to maxi λi as k tends to infinity for any finite

sequence of positive numbers λi . That says that, the right-hand side of (4) is a decreasing
sequence which tends to |E|

2 − 1
2 maxa∈F |χ̂f,E(a)| as � tends to infinity.

At this stage, Theorem 7 does not give enough insight on NLE because it does not rely
on the structure of E. To understand more deeply what restricting inputs implies on the
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nonlinearity of a Boolean function, we shall consider particular subsets E in the sequel.
But before doing this, we shall push further a bit more the analysis of the power sums
S2�(f,E, F ) involved in Theorem 7 in the next subsection.

3.2 Analysis of the power sums involved in Theorem 7

3.2.1 A decomposition formula

We begin with a classical calculation:

S2�(f,E, F ) =
∑

a∈F

∑

x1,...,x2�∈E

(−1)
∑2�

i=1 f (xi )+a·
(∑2�

i=1 xi

)

=
∑

x1,...,x2�∈E

(−1)
∑2�

i=1 f (xi )
∑

a∈F

(−1)
a·
(∑2�

i=1 xi

)

= |F |
∑

x1,...,x2�∈E

x1+···+x2�∈F⊥

(−1)
∑2�

i=1 f (xi ). (5)

Let us now split the latter sum as follows

S2�(f,E, F ) = |F |
∑

x1,...,x2�∈E

x1+x2,x3+···+x2�∈F⊥

(−1)
∑2�

i=1 f (xi )+|F |
∑

x1,...,x2�∈E

x1+x2,x3+···+x2� �∈F⊥
x1+···+x2�∈F⊥

(−1)
∑2�

i=1 f (xi )

= |F |

⎛

⎜⎜⎜⎝
∑

x1,x2∈E

x1+x2∈F⊥

(−1)f (x1)+f (x2)

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝
∑

x1,...,x2�−2∈E

x1+···+x2�−2∈F⊥

(−1)
∑2�−2

i=1 f (xi )

⎞

⎟⎟⎟⎠

+|F |
∑

x1,...,x2�∈E

x1+x2,x3+···+x2� �∈F⊥
x1+···+x2�∈F⊥

(−1)
∑2�

i=1 f (xi ). (6)

We then deduce from the above calculation

Proposition 11 Let f be a Boolean function over Fn
2 . Let F be a vectorspace of Fn

2 such
that χ̂f,E does not vanish on F . Let � be a positive integer. Then

S2�+2(f,E, F )

S2�(f,E, F )
=
∑

u∈F⊥
T2(f,E, u) + R�(f,E, F ), (7)

where

R�(f,E, F ) =

∑

u+v∈F⊥
u,v �∈F⊥

T2(f,E, u)T2�(f,E, v)

∑
u∈F⊥ T2�(f,E, u)

≥ 0
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and

T2�(f,E, u) =
∑

x1,...,x2�∈E

x1+···+x2�=u

(−1)
∑2�

i=1 f (xi ).

Proof Let � be a positive integer. Equation (6) implies that

S2�+2(f, E, F )=

⎛

⎜⎜⎜⎝
∑

x1,x2∈E

x1+x2∈F⊥

(−1)f (x1)+f (x2)

⎞

⎟⎟⎟⎠S2�(f, E, F )+|F |
∑

x1,...,x2�+2∈E

x1+x2,x3+···+x2�+2 �∈F⊥
x1+···+x2�+2∈F⊥

(−1)
∑2�

i=1 f (xi ).

Decomposition (7) follows then from (5) and
∑

x1,...,x2�+2∈E

x1+x2,x3+···+x2�+2 �∈F⊥
x1+···+x2�+2∈F⊥

(−1)
∑2�

i=1 f (xi ) =
∑

u+v∈F⊥
u,v �∈F⊥

T2(f,E, u)T2�(f,E, v),

where T2(f,E, u) = ∑
x1,x2∈E
x1+x2=u

(−1)f (x1)+f (x2). Now, according to Remark 10,

S2�+2(f,E,F )

S2�(f,E,F )
≥ S2(f,E,F )

S0(f,E,F )
= ∑

x1,x2∈E
x1+x2∈F⊥

(−1)f (x1)+f (x2) which implies that R�(f,E, F )

≥ 0.

Remark 12 Remark 10 implies also that the sequence (R�(f,E, F ))�∈N is a non-decreasing
sequence. Note that the sum

∑
u+v∈F⊥
u,v �∈F⊥

T2(f,E, u)T2�(f,E, v) is also nonnegative because

∑
u∈F⊥ T2�(f,E, u) = 1

|F |S2�(f,E, F ) > 0 when χ̂f,E does not vanish on F . Furthermore,

if
∑

u+v∈F⊥
u,v �∈F⊥

T2(f,E, u)T2�(f,E, v) = 0, then we have S2�+2(f,E,F )

S2�(f,E,F )
= S2(f,E,F )

S0(f,E,F )
. Thus,

according to Remark 10, the preceding equality implies that S4(f,E,F )
S2(f,E,F )

= S2(f,E,F )
S0(f,E,F )

. Next,
since equality is achieved in Cauchy-Schwarz inequality if and only the two sequences
involved in the inequality are proportional, (χ̂f,E)2 is therefore constant on F . The converse
is also true. Hence,

∑

u+v∈F⊥
u,v �∈F⊥

T2(f,E, u)T2�(f,E, v) = 0 ⇐⇒ (χ̂f,E)2 is constant on F.

3.2.2 The case � = 1

We are now going to turn our attention to the case where � = 1. As in Section 3.2.1, in the
sequel, F denotes a vectorspace of Fn

2 such that χ̂f,E does not vanish on F . In that case,
Proposition 11 says that:

S4(f,E, F )

S2(f,E, F )
=
∑

u∈F⊥
T2(f,E, u) +

∑
u+v∈F⊥
u,v �∈F⊥

T2(f,E, u)T2(f,E, v)

∑
u∈F⊥ T2(f,E, u)

, (8)
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where

T2(f,E, u) =
∑

x,y∈E

x+y=u

(−1)f (x)+f (y), (9)

∑

u+v∈F⊥
u,v �∈F⊥

T2(f,E, u)T2(f,E, v) ≥ 0.

Observe next that

∑

u∈F⊥
T2(f,E, u) = |E| +

∑

u∈F⊥\{0}
T2(f,E, u). (10)

Note that this term is involved in the upper bound stated by Theorem 3. At this stage, we
observe that one should deduce from Equation (8) an upper bound on NLE and this upper
bound should be better than Theorem 3 provided that the second-term at the right-hand side
is positive. Thus, we are now going to study when this term vanishes, that is, when

∑

u+v∈F⊥
u,v �∈F⊥

T2(f,E, u)T2(f,E, v) = 0. (11)

We have restricted ourselves to suppose that χ̂f,E does not vanish on F . We therefore
indicate that (11) is always true when F is a vectorspace such that χ̂f,E vanishes on F

according to Remark 12. We have

Proposition 13 Let n > 1 be a positive integer. Let F be a vector space of Fn
2 and E be a

subset of Fn
2 . Let R1(f,E, F ) be defined in Proposition 11. Then R1(f,E, F ) = 0 for every

hyperplane F if and only if T2(f,E, u) = 0 for every u �= 0.

Proof Clearly, if T2(f,E, u) = 0 for every u �= 0, (11) holds. Suppose now that (11) holds.
Every hyperplane F can be written as F = {0, γ }⊥. Therefore, (11) rewrites as

∑

u+v∈{0,γ }
u,v �∈{0,γ }

T2(f,E, u)T2(f,E, v) = 0.

Now

∑

u+v∈{0,γ }
u,v �∈{0,γ }

T2(f,E, u)T2(f,E, v)

=
∑

u�∈{0,γ }
(T2(f,E, u))2 +

∑

u�∈{0,γ }
T2(f,E, u)T2(f,E, u + γ ). (12)
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Suppose that (12) holds for every γ �= 0. Then

0 =
∑

γ �=0

∑

u�∈{0,γ }
(T2(f,E, u))2 +

∑

γ �=0

∑

u�∈{0,γ }
T2(f,E, u)T2(f,E, u + γ )

=
∑

u�=0

(T2(f,E, u))2
∑

γ �∈{0,u}
1 +

∑

u�=0

T2(f,E, u)
∑

γ �∈{0,u}
T2(f,E, u + γ )

= (2n − 2)
∑

u�=0

(T2(f,E, u))2 +
∑

u�=0

T2(f,E, u)
∑

γ �∈{0,u}
T2(f,E, γ )

= (2n − 2)
∑

u�=0

(T2(f,E, u))2+
⎛

⎝
∑

u�=0

T2(f,E, u)
∑

γ �=0

T2(f,E, γ )−
∑

u�=0

(T2(f,E, u))2

⎞

⎠

= (2n − 3)
∑

u�=0

(T2(f,E, u))2 +
⎛

⎝
∑

u�=0

T2(f,E, u)

⎞

⎠
2

.

Hence,
∑

u�=0 (T2(f,E, u))2 = 0 implying that T2(f,E, u) = 0 for every u �= 0.

We immediately deduce the following corollary.

Corollary 14 Let n > 1 be a positive integer. Let F be a vector space of Fn
2 and E be a

subset of Fn
2 . Let R�(f,E, F ) be defined in Proposition 11. Then R�(f,E, F ) = 0 for every

hyperplane F if and only if T2(f,E, u) = 0 for every u �= 0.

Proof Clearly, if T2(f,E, u) = 0 for every u �= 0 , then R�(f,E, F ) = 0 for any hyper-
plane F . Conversely, suppose that R�(f,E, F ) = 0 for every hyperplane F . According to
Remark 12, we have 0 ≤ R1(f,E, F ) ≤ R�(f,E, F ) = 0. We then conclude thanks to
Proposition 13 that T2(f,E, u) = 0 for every u �= 0.

4 Boolean functions with constant weight inputs

In this subsection, we shall consider the subsets E = {x ∈ F
n
2 | wt(x) = k} for 0 ≤ k ≤ n.

In the sequel, when x and y are in F
n
2, we shall denote by z = xy the element of Fn

2 such
that zi = xiyi for every 1 ≤ i ≤ n. Set E + E = {x + y, (x, y) ∈ E2}.

Let us investigate the particular cases where k ∈ {0, 1, n − 1, n}. If k = 0, χ̂f,E(a) =
(−1)f (0) while, if k = n, χ̂f,E(a) = (−1)f (1)+wt(a). In both cases, it implies that
NLE(f ) = 0. On the other hand, denote ei the element of Fn

2 whose all coordinates are
equal to 0 except the ith coordinate. Then, if k = 1, χ̂f,E(a) =∑n

i=1(−1)ai+f (ei ) where ai

stands for the ith-coordinate of a. Now, if ai = f (ei) for every 1 ≤ i ≤ n, then χ̂f,E(a) = n

and thus NLE(f ) = n
2 − 1

2 maxa∈Fn
2
|χ̂f,E(a)| ≤ 0. If k = n−1, given x ∈ F

n
2, we denote x̄

the element of Fn
2 such that x̄i = 1 + xi . Then, χ̂f,E(a) =∑n

i=1(−1)ai+wt(a)+f (ēi ). Hence,
if ai = f (ēi) + wt(a) mod 2 for every 1 ≤ i ≤ n then, we can conclude as precedingly
that NLE(f ) = 0. In the sequel, we shall therefore suppose that 2 ≤ k ≤ n − 2.

Let us now prove the following.
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Lemma 15 E + E = {x + y, (x, y) ∈ E2} = {a ∈ F
n
2 | wt(a) ≤ min(2k, n), wt(a) = 0

mod 2}. Furthermore, for every a ∈ F
n
2 , x and x + a are both in E if and only if wt(x) = k

and wt(ax) = wt(a)
2 .

Proof Recall that wt(x + y) = wt(x) + wt(y) − 2wt(xy). Now the latter equation in x has
a solution in E for every a of even hamming weight at most 2k.

According to the above proposition, if u is of even Hamming weight at most 2k,

T2(f,E, u) =
∑

x,y∈E

x+y=u

(−1)f (x)+f (y) =
∑

x∈E

wt(ux)=wt(u)
2

(−1)Duf (x), (13)

while T2(f,E, u) = 0 if wt(u) is odd or greater than 2k. Note, that if u = 0 then
T2(f,E, 0) = |E|.

We then establish the following new upper bound on NLE .

Theorem 16 Let 2 ≤ k ≤ n − 2. Set E = {x ∈ F
n
2 | wt(x) = k}. Let f be a Boolean

function over Fn
2 . Then,

NLE(f ) ≤
(

n

k

)

2
− 1

2

√√√√√√
(

n

k

)
+ λ + max

⎛

⎜⎝θ,
1
(

n

k

)γ − λ

⎞

⎟⎠, (14)

where

λ = max
u�=0

wt(u)≡0 ( mod 2)

∣∣∣∣∣∣∣∣∣

∑

x∈E

wt(ux)=wt(u)
2

(−1)Duf (x)

∣∣∣∣∣∣∣∣∣

, (15)

γ =
∑

u�=0
wt(u)≡0 ( mod 2)

⎛

⎜⎜⎜⎝
∑

x∈E

wt(ux)=wt(u)
2

(−1)Duf (x)

⎞

⎟⎟⎟⎠

2

(16)

and

θ = 1
(

n

k

)
+ λ

(
γ − λ2

)
≥ 0. (17)

Proof Let γ �= 0 be such that |T2(f,E, γ )| = λ. According to Equation (8), when F =
{0, γ }⊥:

S4(f,E, F )

S2(f,E, F )
= |E| + T2(f,E, γ ) +

∑
u+v∈{0,γ }

u,v �∈{0,γ }
T2(f,E, u)T2(f,E, v)

|E| + T2(f,E, γ )

We have to distinguish two cases depending on the sign of T2(f,E, γ ):
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• If T2(f,E, γ ) is nonnegative, then

S4(f,E, F )

S2(f,E, F )
= |E| + λ +

∑
u+v∈{0,γ }

u,v �∈{0,γ }
T2(f,E, u)T2(f,E, v)

|E| + λ

Now

∑

u+v∈{0,γ }
u,v �∈{0,γ }

T2(f,E, u)T2(f,E, v)=
∑

u�∈{0,γ }
(T2(f,E, u))2+

∑

u�∈{0,γ }
T2(f,E, u)T2(f,E, u+γ )

and therefore

S4(f,E, F )

S2(f,E, F )
= |E| + λ +

∑
u�∈{0,γ } (T2(f,E, u))2 +∑u�∈{0,γ } T2(f,E, u)T2(f, E, u + γ )

|E| + λ

• If T2(f,E, γ ) is negative, that is, T2(f,E, γ ) = −λ. Set fv(x) = f (x) + v · x with
v �= 0. Observe that T2(fv, E, u) = ∑

x,y∈E

x+y=u

(−1)fv(x)+fv(y) = (−1)v·uT2(f,E, u) for

every u ∈ F
n
2. If we choose v such that v · γ = 1 (such v exists since γ �= 0), then we

have T2(fv, E, γ ) = −T2(f,E, γ ) = λ. Furthermore,

S4(fv, E, F )

S2(fv, E, F )
=|E| + λ +

∑
u�∈{0,γ } (T2(f,E, u))2 −∑u�∈{0,γ } T2(f,E, u)T2(f,E, u+ γ )

|E| + λ

Now

(|E| − 2NLE(f ))2 ≥ S4(f,E, F )

S2(f,E, F )

and, according to Lemma 2, NLE(fv) = NLE(f ). Thus

(|E| − 2NLE(f ))2 ≥ S4(fv, E, F )

S2(fv, E, F )

We therefore conclude from the two above decompositions of S4(f,E,F )
S2(f,E,F )

and S4(fv,E,F )
S2(fv,E,F )

that:

(|E| − 2NLE(f ))2 ≥ |E| + λ +
∑

u�∈{0,γ } (T2(f,E, u))2

|E| + λ

proving

NLE(f ) ≤ |E|
2

− 1

2

√

|E| + λ +
∑

u�∈{0,γ } (T2(f,E, u))2

|E| + λ
. (18)

Next, according to (10), when F = {0, γ }⊥ with γ of odd weight,

S4(f,E, F )

S2(f,E, F )
= |E| +

∑
u+v∈{0,γ }
u,v �∈{0,γ }

T2(f,E, u)T2(f,E, v)

|E| ,

since T2(f,E, γ ) = 0. Now, if γ is of odd weight, then, for every u �∈ {0, γ }, the weights
of u and u + γ are of different parity since wt(u + γ ) = wt(u) + wt(γ ) − 2wt(uγ ). Thus
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T2(f,E, u)T2(f,E, u + γ ) = 0 for every u �∈ {0, γ } according to Lemma 15. Then, we
simply get in that case (since T2(f,E, γ ) = 0)

S4(f,E, F )

S2(f,E, F )
= |E| + 1

|E|
∑

u�=0

(T2(f,E, u))2 .

yielding that

NLE(f ) ≤ |E|
2

− 1

2

√√√√|E| + 1

|E|
∑

u�=0

(T2(f,E, u))2 (19)

Proposition 16 follows then from (18) and (19).

Remark 17 Observe that

θ −
⎛

⎜⎝
1
(

n

k

)γ − λ

⎞

⎟⎠ = 1
(

n

k

)
+ λ

(
γ − λ2

)
−
⎛

⎜⎝
1
(

n

k

)γ − λ

⎞

⎟⎠

= λ
(

n

k

) ((
n

k

)
+ λ
)
((

n

k

)2
− γ

)
.

Thus

max

⎛

⎜⎝θ,
1
(

n

k

)γ − λ

⎞

⎟⎠ =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ if γ ≤
(

n

k

)2

1(
n

k

)γ − λ if γ >
(

n

k

)2

We indicate that, if γ >
(

n

k

)2
then 1(

n

k

)γ − λ >
(

n

k

)
− λ ≥ 0.

Remark 18 Observe that, if there exists u1 �= u2 such that |T2(f,E, u1)| =

|T2(f,E, u2)| = λ, γ ≥ 2λ2 > λ2 yielding that θ > 0. Therefore, max

⎛

⎜⎝θ, 1(
n

k

)γ − λ

⎞

⎟⎠ =

0 if and only if there exists a unique u �= 0 such that |T2(f,E, u)| = λ and θ = 0,
that is, |T2(f,E, v)| = 0 for every v �∈ {0, u} (observe that γ = T2(f,E, u)2 = λ2 and

1(
n

k

)γ − λ = 1(
n

k

)λ(λ −
(

n

k

)
) ≤ 0). In other words, if we are not in this situation,

max

⎛

⎜⎝θ, 1(
n

k

)γ − λ

⎞

⎟⎠ is positive.

5 Concluding remarks

In the line of the very recent work of Carlet, Méaux and Rotella, we provided a further study
of Boolean functions with restricted input. Inspired by the work of Carlet and the first author
on the covering radii of binary Reed-Muller codes, we firstly obtained upper bounds on the
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nonlinearity for Boolean functions with general restricted input. Next, we derived an upper
bound in the particular case when the restricted input is the set of vectors of fixed Hamming
weight. Our results improved the known upper bound given by Carlet et al. It would be
interesting to construct Boolean functions approaching those developed bounds. But such
construction would be a very hard work. The reader is kindly invited to join this adventure.
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