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Abstract This paper presents two classes of permutation trinomials with the form
xs(2m−1)+1+xt(2m−1)+1+x over the finite field F22m as a supplement of the recent works of
Li and Helleseth, and a class of permutation trinomials like this form over F32m . Moreover,
we give a method to construct permutation polynomials from known ones.
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1 Introduction

Let q be a power of a prime, and Fq be a finite field with q elements. A polynomial f (x) ∈
Fq [x] is called a permutation polynomial of Fq if the associated polynomial function f :
a �→ f (a) from Fq into Fq is a permutation of Fq [15]. Permutation polynomials over finite
fields have important applications in cryptography [17, 20, 21], coding theory [8, 22] and
combinatorial design theory [4]. Finding new permutation polynomials is of great interest
in both theoretical and applied aspects.

The construction of permutation polynomials with few terms attracts many authors to
work on this topic due to their simple form and wide applications. The recent progress on
construction of permutation binomials and trinomials can be seen in [2, 3, 5–7, 9, 10, 12–
14, 23, 26] and the references therein. In particular, Li and Helleseth in [12, 13] investigated
permutation polynomials with the following form

f (x) = x + xs(2m−1)+1 + xt(2m−1)+1, (1)
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where s, t are integers satisfying 1 ≤ s, t ≤ 2m. For simplicity, when s, t are written as frac-
tions or negative integers, then they are interpreted as modulo 2m + 1. By solving equations
with low degree over finite fields and using the property of linear fractional polynomials
over the finite fields F2m , they obtained some new permutation polynomials over F22m of
the form (1).

In this paper, we will further study the permutation polynomials of the form (1) following
the works in [12, 13]. By some delicate operation of solving equations with low degrees
over finite fields, we find two new pairs (s, t) such that (1) are permutation polynomials
over F22m . By using the technique provided in [6] we obtain a new class of permutation
trinomials like this form over F32m . Moreover, we present a method to construct permutation
polynomials from known ones.

2 Preliminaries

Let Fpn be a finite field with pn elements for a prime p. Let k be a divisor of n. The trace
function from Fpn to Fpk is defined by

Trnk (x) =
n/k−1∑

i=0

xpik

,

where x ∈ Fpn . Let q be a power of a prime p. A positive integer s is called a Niho exponent
with respect to the finite field Fq2 if s ≡ pi mod (q − 1) for some nonnegative integer i. s
is called a normalized Niho exponent if i = 0. The Niho exponents were first introduced by
Niho in [18] for studying the cross-correlation between anm-sequence and its d-decimation.
Let d be a positive integer with d | (q − 1), and μd denote the set of d-th roots of unity in
F

∗
q , i.e.,

μd =
{
x ∈ F

∗
q : xd = 1

}
.

A main technique to investigate permutation behavior of polynomials of the form (1) is
the following lemma.

Lemma 1 ([19, 24, 25]) Let q be a power of a prime. Let Fq be a finite field with q elements
and h(x) ∈ Fq [x]. Let d, r be positive integers with d | (q −1). Then f (x) = xrh(x(q−1)/d )

permutes Fq if and only if the following two conditions hold:

(1) gcd(r, (q − 1)/d) = 1,
(2) xrh(x)(q−1)/d permutes μd .

For later usage we need the following lemmas.

Lemma 2 ([5, 26]) Let m be a positive integer. Each of the polynomials 1 + x + x3, 1 +
x3 + x4, 1 + x + x4 and 1 + x + x5 (m is even ) has no roots in μ2m+1.

Lemma 3 Let m be an odd positive integer. Each of the polynomials x2+x +1, x4+x3+1
and x4 + x + 1 has no roots in F2m .
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Lemma 4 (Theorem 2 in [1]) Let q = 2m and Fq be a finite field. Let a, b ∈ Fq with
b �= 0. Then the cubic equation x3 + ax + b = 0 has a unique solution in Fq if and only if

Trm1 ( a3

b2
+ 1) �= 0.

Lemma 5 ([16]) Let Fq be a finite field with q = 2m. Let h(x) = x4 +a2x
2 +a1x +a0 and

g(y) = y3+a2y+a1 be polynomials over Fq with a0a1 �= 0. Let γi be the roots of g(y) = 0
when they exist in Fq and ωi = a0γ

2
i /a21 for i = 1, 2, 3. Then h(x) has no solution in Fq if

one of the following conditions is satisfied:

(1) g(y) = 0 has exactly one solution in Fq and Trm1 (ω1) = 1;
(2) g(y) = 0 has exactly three solution in Fq and Trm1 (ω1) = 0, Trm1 (ω2) = Trm1 (ω3) = 1.

Lemma 6 (Theorem 2.10 in [10]) Let q = 2m and Fq be a finite field. The polynomial
g(x) = x7(1 + x4 + x6)q−1 permutes the unite circle μq+1 in Fq2 if gcd(m, 3) = 1.

Lemma 7 (Lemma 4.1 in [26]) The mapping g(x) = x3(1+x2 +x3)2
m−1 permutes μ2m+1

in the finite field F22m .

Lemma 8 (Lemma 4 in [13]) Let q = 2m and Fq be a finite field. Let (s, t) = (i, j) be a
pair such that f (x) defined by (1) is a permutation polynomial over Fq2 , then f (x) defined
by (1) is also a permutation polynomial over Fq2 for the following pairs:

(1) (s, t) = ( i
2i−1 ,

i−j
2i−1 ) if gcd(2i − 1, 2m + 1) = 1, or

(2) (s, t) = (
j

2j−1 ,
j−i
2j−1 ) if gcd(2j − 1, 2m + 1) = 1.

These pairs are called equivalent pairs if they exist.

If (s, t) is a pair such that (1) is a permutation polynomial, then from Lemma 8 one can
easily get equivalent pairs of (s, t) such that (1) is a permutation polynomial. So, from this
property of Niho exponents one easily checks multiplicative equivalence of two permutation
trinomials of the form (1) [12].

3 Two classes of permutation trinomials over F22m

In this section, we investigate the permutation behavior of two classes of trinomials of the
form (1) over F22m , and present a method to construct new permutation polynomials from
known ones.

Theorem 1 Let Fq be a finite field with q = 2m and gcd(m, 2) = 1. The trinomial f (x)

defined by (1) is a permutation over Fq2 if (s, t) = ( 27 ,
8
7 ).

Proof By Lemma 1 we only need to show φ(x) = x(1 + xs + xt )q−1 permutes the unite
circle μq+1. This is equivalent to showing that g(x) = φ(x7) = x7(1 + x7s + x7t )q−1 =
x7(1 + x2 + x8)q−1 permutes the unite circle μq+1 since gcd(7, q + 1) = 1. By Lemma 2
we know that 1 + x2 + x8 �= 0 for all x ∈ μq+1. So g(μq+1) ⊆ μq+1. For x ∈ μq+1, g(x)

is reduced to the following fraction,

g(x) = x7(1 + x2 + x8)q−1 = 1 + x6 + x8

x + x3 + x9
.
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Next we show that there is no pair (x, y) ∈ μ2
q+1 with x �= y satisfying g(x) = g(y).

From
1 + x6 + x8

x + x3 + x9
= 1 + y6 + y8

y + y3 + y9
,

we get

(x + y) + xy(x5 + y5) + xy(x7 + y7) + (x3 + y3) + x3y3(x3 + y3)

+x3y3(x5 + y5) + (x9 + y9) + x6y6(x3 + y3) + x8y8(x + y) = 0.
(2)

Set x + y = u and xy = v. We know that u �= 0 and v �= 0 since x �= y. It follows that
u1−q = x+y

x−1+y−1 = xy = v since x, y ∈ μq+1. Plugging them into (2) and simplifying it,
we get

1 + vu4 + v2u2 + v3 + u2 + v + v3u2 + v4

+v3u4 + v4u2 + v5 + u8 + v6u2 + v7 + v8 = 0.
(3)

Let u = z−1 for z ∈ F
∗
q2
, and then v = zq−1. Multiplying both sides of (3) by z8 we get

(z8 + z8q) + zq+1(z2 + z2q) + z2(q+1)(z2 + z2q) + z3(q+1)(z2 + z2q)

+(z6 + z6q) + zq+1(z6 + z6q) + z3(q+1) + z4(q+1) + 1 = 0.
(4)

Let α, β denote z + zq and zq+1 respectively. Then α, β ∈ Fq and from (4) we have

α8 + α6 + βα6 + βα2 + 1 + β3 + β4 = 0. (5)

Next we show that (5) has no solutions (α, β) ∈ F
2
q .

If z ∈ Fq then α = z + zq = 0. From (5) we obtain

β4 + β3 + 1 = 0.

By Lemma 3 we know this is a contradiction since β ∈ Fq and gcd(2,m) = 1.
If z ∈ Fq2\Fq then α = z + zq �= 0. Let ν = α2. From (5) we have

ν4 + ν3 + βν3 + βν + 1 + β3 + β4 = 0. (6)

Multiplying both sides of (6) by ν−4 and let γ = 1
ν
, δ = β

ν
, we get

γ 4 + δγ 2 + (1 + δ3)γ + 1 + δ + δ4 = 0. (7)

From Lemma 3 we know that 1 + δ + δ4 �= 0 for δ ∈ Fq since gcd(2,m) = 1. Next we
show that there is no pair (γ, δ) ∈ F

2
q satisfying (7).

Assume that 1 + δ3 = 0. We have δ = 1 since δ ∈ Fq and gcd(2,m) = 1. Substituting
δ = 1 into (7) we get

γ 4 + γ 2 + 1 = 0.

This is a contradiction from Lemma 3 since γ ∈ Fq and gcd(2,m) = 1.
Assume that 1 + δ3 �= 0. Let h(y) = y3 + δy + (1 + δ3). Since gcd(2,m) = 1 we have

Trm1

(
δ3

(1 + δ3)2
+ 1

)
= Trm1

(
1

1 + δ3
+ 1

(1 + δ3)2
+ 1

)
= Trm1 (1) �= 0.

From Lemma 4 we know that h(y) has exactly one solution, which is δ + 1. Let

ω = (1 + δ + δ4)(1 + δ)2

(1 + δ3)2
= 1 + δ

1 + δ3
+ δ2

(1 + δ3)2
+ 1

1 + δ3
+ 1

(1 + δ3)2
.
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It is clear that Trm1 (ω) = 1 since gcd(m, 2) = 1. By Lemma 5 we know that there is
no pair (γ, δ) ∈ F

2
q satisfying (7). Therefore, there is no pair (x, y) in μ2

q+1 with x �= y

satisfying g(x) = g(y), that is, g(x) permutes the unite circle μq+1.

Theorem 2 Let m be a positive integer with m ≡ 2, 4 mod 6. Let Fq be a finite field with
q = 2m. The trinomial f (x) defined by (1) is a permutation over Fq2 if (s, t) = (− 2

7 ,
8
7 ).

Proof By Lemma 1 we need to show φ(x) = x(1 + xs + xt )q−1 permutes the unite circle
μq+1. This is equivalent to showing that g(x) = φ(x7) = x7(1 + x−2 + x8)q−1 permutes
the unite circle μq+1 since gcd(7, q + 1) = 1. By Lemma 2 we know that 1+ x2 + x10 �= 0
for all x ∈ μq+1 when m is even. So g(μq+1) ⊆ μq+1. For x ∈ μq+1, g(x) is reduced to
the following form,

g(x) = x7(1 + x−2 + x8)q−1 = x(1 + x8 + x10)

1 + x2 + x10
.

Dividing the common divisor 1 + x2 + x4 of numerator and denominator of the above
fraction we get

g(x) = x(1 + x8 + x10)

1 + x2 + x10
= x(1 + x2 + x6)

1 + x4 + x6
= x7(1 + x4 + x6)q−1.

Since m ≡ 2, 4 mod 6, we have that gcd(m, 3) = 1. By Lemma 6 we know that g(x)

permutes the unite circle μq+1. So, f (x) is a permutation over Fq2 .

Inspired by the proof of Theorem 2 we present a method to construct new permutation
polynomials from known ones. To this end, we introduce some symbols as follows. Let n

and ki be integers satisfying n ≥ 2, k0 = 0 and ki + kn−i = kn for 0 ≤ i ≤ n. Let q = 2m

and R(x) = ∑n
i=0 xki be a polynomial over Fq2 .

Theorem 3 Let r and 	 be positive integers. Let h(x) be a polynomial over Fq2 . Assume that

R(x) �= 0 for x ∈ μq+1, then the polynomial F(x) = xr+kn	R(xq−1)	h(xq−1) permutes
Fq2 if and only if gcd(r + kn	, q − 1) = 1 and the polynomial g(x) = xrh(x)q−1 permutes
μq+1.

Proof By Lemma 1 we know that F(x) permutes Fq2 if and only if gcd(r + knl, q −1) = 1

and the polynomial G(x) = xr+kn	R(x)(q−1)	h(x)q−1 permutes μq+1. Since R(x) �= 0 for
x ∈ μq+1 and ki + kn−i = kn for 0 ≤ i ≤ n, we have

G(x) = xr+kn	
(
R(x)	h(x)

)q−1 = xr+kn	

(
n∑

i=0

xki

)(q−1)	

h(x)q−1

= xr

⎛

⎜⎜⎝

n∑
i=0

xkn−ki

n∑
i=0

xki

⎞

⎟⎟⎠

	

h(x)q−1

= g(x).

SoG(x) permutesμq+1 if and only if g(x) = xrh(x)q−1 permutesμq+1. This completes
the proof.
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By this theorem we can obtain a new permutation polynomial F(x) over Fq2 from a per-
mutation polynomial over the unite circle μq+1 if the desired polynomial R(x) is provided.
The following corollary presents a method to construct R(x), and then obtains new per-
mutation polynomials over Fq2 from known permutation polynomials over the unit circle
μq+1.

Corollary 1 Let k, r, 	 be positive integers and n be an even number. Let R(x) =
n∑

i=0
xki

and h(x) be a polynomial over Fq2 . Then the polynomial F(x) = xr+kn	R(xq−1)	h(xq−1)

permutes Fq2 if and only if the following three conditions hold:

(1) gcd ((n + 1)k, q + 1) = 1,
(2) gcd (r + kn	, q − 1) = 1,
(3) g(x) = xrh(x)q−1 permutes μq+1.

Proof If the condition (1) holds then R(x) �= 0 for x ∈ μq+1. In fact, assume that α ∈ μq+1

is a root of R(x), i.e.,
n∑

i=0
αki = 0. We have

α(n+1)k + 1 = (αk + 1)

(
n∑

i=0

αki

)
= 0.

From gcd((n + 1)k, q + 1) = 1, we get α = 1. But α = 1 is not a root of R(x) since n

is even. This proves that R(x) �= 0 for x ∈ μq+1. By Theorem 3 and conditions (2) and (3)
we know that F(x) permutes Fq2 .

Conversely, if F(x) permutes Fq2 then (2) holds and the polynomial G(x) =
xr+kn	(R(x)	h(x))q−1 permutes μq+1 by Lemma 1. From G(x) permutes μq+1 we know
that conditions (1) and (3) hold.

From Corollary 1 we list some examples of permutation polynomials over Fq2 from
permutation polynomials over the unite circle μq+1.

Example 1 Let m be a positive integer and q = 2m. The following polynomials permute the
finite field Fq2 .

(1) x7 + x3q+4 + x4q+3 + x6q+1 + x7q for an m satisfying gcd(m, 3) = 1 and m �≡ 2
mod 4.

(2) x11 + xq+10 + x2q+9 + x4q+7 + x6q+5 + x8q+3 + x11q for an m satisfying m �≡ 0
mod 10 and m �≡ 2 mod 4.

(3) x11 + xq+10 + x3q+8 + x4q+7 + x5q+6 + x6q+5 + x7q+4 + x8q+3 + x11q for an even
m satisfying m �≡ 0 mod 10.

(4) x2k+3 + x3q+2k + x2k ·q+3 + x(2k+1)q+2 + x(2k+2)q+1 for a positive integer k and an
even m satisfying gcd(2k + 3, q − 1) = 1 and gcd(2k + 1, q + 1) = 1.

(5) x2k+3 + x3q+2k + x(2k+1)q+2 + x(2k+2)q+1 + x(2k+3)q for a positive integer k and an
even m satisfying gcd(2k + 3, q − 1) = 1 and gcd(2k − 1, q + 1) = 1.

Proof We only prove the case (1) and the proofs of the other cases are similar, and omit the
details here.

Cryptogr. Commun. (2019) 11:227–236232



Let R(x) = 1 + x + x2 + x3 + x4 and h(x) = 1 + x + x3. It is verified that F(x) =
x7+x3q+4+x4q+3+x6q+1+x7q = x7R(xq−1)h(xq−1). This is F(x) in Corollary 1 for n =
4, r = 3, k = 1 and 	 = 1. We easily verify that gcd((n+1)k, q +1) = gcd(5, 2m +1) = 1
since m �≡ 2 mod 4, and gcd(r + kn	, q − 1) = gcd(7, 2m − 1) = 1 since gcd(m, 3) = 1.
By Lemma 7, we know that g(x) = xrh(x)q−1 = x3(1 + x + x3)q−1 permutes μq+1. So,
the polynomial in (1) is a permutation polynomial over Fq2 from Corollary 1.

In the end of this section, we list all the known pairs (s, t) such that the polynomials of
the form (1) are permutations in Table 1.

4 A class of permutation trinomials over F32m

It is clear that polynomials of the form (1) are a special case of polynomials of the form

xrh(x
q−1
d ), where r, d are positive integers satisfying d | (q − 1), 1 ≤ r <

q−1
d

and h(x) ∈
Fq [x]. Recently, some new permutation trinomials of this form were obtained in [9–11]
over finite fields with odd characteristic. Permutation property of trinomials in those papers
is derived by using Lemma 1. At the same time, Hou [6, 7] proposed several classes of
permutation trinomials with this form by highly technical calculations. Following some
techniques in [6] we obtain a new class of permutation trinomials having the form,

f (x) = x4(q−1)+1 + x(q−1)2+1 − x, (8)

over Fq2 , where q = 3m.

To this end, we need some preparations. Denote by λ = Tr2mm (x) = x+xq and μ = x ·xq

for x ∈ Fq2 . The following lemma can be verified by routine calculations.

Lemma 9 Let q = 3m and Fq2 be a finite field. For x ∈ Fq2 ,

Tr2mm (x7) = λ7 − μλ5 − μ2λ3 − μ3λ, Tr2mm (x5) = λ5 + μλ3 − μ2λ,

Table 1 Known pairs (s, t) such that f (x) defined by (1) are permutation polynomials

(s, t) g(x) Conditions Equivalent Pairs Proven in

(k, −k) x see Thm. 3.4 in [3] ( ±k
2k∓1 , ±2k

2k∓1 ) [3]

(2,−1) 1+x2+x3

1+x+x3
positive m (1, 1

3 ), (1, 2
3 ) [3, 26]

(1,− 1
2 )

x(1+x2+x3)

1+x+x3
gcd(3,m) = 1 (1, 3

2 ), ( 14 , 3
4 ) [5, 9, 10]

(− 1
3 , 4

3 ) 1+x4+x5

1+x+x5
m even (1, 1

5 ), (1, 4
5 ) [10, 13, 26]

(3,−1) 1+x3+x4

x(1+x+x4)
m even ( 35 , 4

5 ), ( 13 , 4
3 ) [10, 13, 26]

(− 2
3 , 5

3 ) 1+x5+x7

1+x2+x7
m even (1, 2

7 ), (1, 5
7 ) [13]

( 15 , 4
5 )

x(1+x3+x4)

1+x+x4
gcd(5, 2m + 1) = 1 (1,− 1

3 ), (1, 4
3 ) [5, 10, 13]

(2,− 1
2 )

x(1+x+x5)

1+x4+x5
m ≡ 2, 4 mod 6 ( 23 , 5

6 ), ( 14 , 5
4 ) [10]

(4,−2) 1+x4+x6

x(1+x2+x6)
gcd(3,m) = 1 ( 47 , 6

7 ), ( 25 , 6
5 ) [10]

( 2k

2k−1
, −1
2k−1

) 1+x2
k +x2

k+1

1+x+x2
k+1

gcd(2k − 1, 2m + 1) = 1 (1, 1
2k+1

), (1, 2k

2k+1
) [12]

( 1
2k+1

, 2k

2k+1
) x+x2

k +x2
k+1

1+x+x2
k gcd(2k + 1, 2m + 1) = 1 (1, 2k

2k−1
), (1, −1

2k−1
) [12]

( 27 , 8
7 ) 1+x6+x8

x(1+x2+x8)
gcd(m, 2) = 1 (2,− 2

3 ), ( 23 , 8
9 ) Theorem 1

(− 2
7 , 8

7 )
x(1+x8+x10)

1+x2+x10
m ≡ 2, 4 mod 6 ( 109 , 8

9 ), ( 2
11 , 10

11 ) Theorem 2
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Tr2mm (x4) = λ4 − μλ2 − μ2, Tr2mm (x12) = λ12 − μ3λ6 − μ6,

Tr2mm (x8) = λ8 + μλ6 − μ2λ4 − μ3λ2 − μ4.

Using above lemma we can prove the following theorem.

Theorem 4 Let m be a positive integer with m �≡ 0 (mod 6). Let q = 3m and Fq2 be a

finite field with q2 elements. The polynomial f (x) = x4q−3+xq2−2q+2−x is a permutation
trinomial over Fq2 .

Proof We first show that f (x) permutes Fq . If f (x) ∈ Fq for x ∈ Fq2 then f (x)q = f (x),
i.e.,

x4−3q + x3q−2 − xq = x4q−3 + x3−2q − x. (9)

Denote by y = xq−1. Assume x �= 0 then y �= 0. From (9) we get

y4 + y−2 − 1 = y−3 − y3 + y. (10)

Equation (10) is reduced to
(y − 1)7 = 0.

So, y = 1, i.e., xq−1 = 1. Hence, x ∈ Fq . On the other hand, if x ∈ Fq then f (x) =
x4q−3 + x3−2q − x = x. So, f (x) permutes Fq .

From above analysis we know that f (Fq2 \ Fq) ⊂ Fq2 \ Fq . Next, for any α ∈ Fq2 \ Fq ,
we show that the equation

f (x) = x4q−3 + xq2−2q+2 − x = α (11)

has one solution in Fq2 \ Fq only depending on α. Taking trace function from Fq2 to Fq on
both sides of (11) and using Lemma 9 we have

β = Tr2mm (α) = Tr2mm (x4q−3) + Tr2mm (x3−2q) − Tr2mm (x)

= Tr2mm (x7)

x3(1+q)
+ Tr2mm (x5)

x2(1+q)
− Tr2mm (x)

= λ7 − μλ5 − μ2λ3 − μ3λ

μ3
+ λ5 + μλ3 − μ2λ

μ2
− λ

= λ7

μ3
. (12)

Taking norm function from Fq2 to Fq on both sides of (11) and using Lemma 9 we have

γ = α · αq = (x4q−3 + x3−2q − x)(x4−3q + x3q−2 − xq)

= Tr2mm (x12)

x5(1+q)
− Tr2mm (x8)

x3(1+q)
− Tr2mm (x4)

x1+q

= λ12 − μ3λ6 − μ6

μ5
− λ4 − μλ2 − μ2

μ

−λ8 + μλ6 − μ2λ4 − μ3λ2 − μ4

μ3

= λ12

μ5
− λ8

μ3
+ λ6

μ2
− λ2 + μ. (13)
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From (12) and (13) we calculate γ

β2 as follows,

γ

β2
= μ

λ2
− μ3

λ6
+ μ4

λ8
− μ6

λ12
+ μ7

λ14

=
( μ

λ2
− 1

)7 + 1. (14)

It is clear that λ, μ ∈ Fq . Since m �≡ 0 (mod 6), we have gcd(7, q − 1) = 1, and denote
the inverse of 7 modulo q − 1 by 1

7 . So, from (14) we have

μ

λ2
=

(
γ

β2
− 1

) 1
7 + 1. (15)

Combining (12) and (15) we have

x + xq = λ = β

(
(

γ

β2
− 1)

1
7 + 1

)3

. (16)

Substituting the value of λ into (15) we get

x · xq = μ = β2
(

(
γ

β2
− 1)

1
7 + 1

)7

. (17)

It is know that x ∈ Fq2 \ Fq . So, xq �= x. From (16) and (17) we know that x and xq are
two distinct solutions of the following quadratic equation

z2 − β

(
(

γ

β2
− 1)

1
7 + 1

)3

z + β2
(

(
γ

β2
− 1)

1
7 + 1

)7

= 0.

So, (11) has only one solution x in Fq2 \ Fq , i.e., f (x) permutes the set Fq2 \ Fq .
Combining above two cases we know that f (x) permutes Fq2 .

5 Concluding remark

In this paper, we present two classes of permutation trinomials with the form (1) over the
finite field F22m and a class of permutation trinomials like this form over F32m . Moreover,
a method to construct permutation polynomials from known ones is provided. During the
study of permutation trinomials of the form (1), we have come across the pair (s, t) =
( 4
11 ,

10
11 ) such that the polynomial of the form (1) for an m with gcd(m, 5) = 1 can possibly

be a permutation trinomial over F22m . We have verified the conjecture for m from 2 to 12
using computers. It would be nice if this conjecture can be settled.
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