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Abstract Naı̈ve implementation of block ciphers are subject to side-channel and fault
injection attacks. To deceive side-channel attacks and to detect fault injection attacks, the
designer inserts specially crafted error correcting codes in the implementation. The impact
of codes on protection against fault injection attacks is well studied: the number of detected
faults relates to their minimum distance. However, regarding side-channel attacks, the link
between codes and protection efficiency is blurred. In this paper, we relate statistical proper-
ties of code-based countermeasures against side-channel attacks to their efficiency in terms
of security, against uni- and multi-variate attacks.
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3 LTCI, Télécom ParisTech, Université Paris-Saclay, 75 013 Paris, France
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1 Protection as a coding problem

Cryptographic algorithms are subject to attacks aiming at extracting their keys. When the
adversary has access to the device, he is able to target the implementation of the cryp-
tographic algorithm. Two attack paths customarily encountered are side-channel attacks
(where the attacker reads some leakage from the implementation when it is running), and
fault injection attacks (where the attacker modifies some intermediate variables inside of
the implementation).

In this article, we analyze algorithmic protections combining both side-channel preven-
tion and fault injection detection. We survey security models for a given set of security
parameters. In general, several such models can be defined, each addressing a particular
kind of attacker. The equivalence or even the reduction of security models is hard and is
currently at the core of intensive researches. However, when one focuses on one specific
implementation operated in a given context, then security notions can be clarified (e.g., be
shown equivalent).

In this paper, we focus on a protection against side-channel and fault injection attacks
where the state of the cryptographic algorithm is encoded. From the security model and its
parameters, we can thus derive desirable protection properties. Those result from a statistical
analysis of the leakage in the presence of countermeasures.

Contributions Regarding side-channel analysis protections, we identify that the inner
product masking scheme [3, 58] is an instance of the leakage squeezing (see [18, 19, 37,
37, 38] for 2 shares, and [16] for strictly more than 2 shares) protection using linear bijec-
tions (Section 6.4). The papers about inner product masking scheme explain the engineering
aspects related to secure computation of finite field laws (addition and multiplication),
whereas papers about leakage squeezing highlight the accurate security level of the data
representation. In this article, we bridge the gap by showing how to design inner product
masking schemes with quantifiable security level against bit-level side-channel attacks. For
the first time, we relate the dual distance of the code used in the countermeasure, the mutual
information between sensitive variable and leakage, and the attack success rate.

A second contribution of this paper is to analyze joint side-channel and fault attacks
protections. Specifically, we emit a warning: fault protections and side-channel protections
can happen to combine nicely, provided a careful analysis of their combined implementa-
tion is carried out (Section 6.3). Without such analysis, the combination can be destructive
security-wise.

Eventually, we expose a novel method to derive Boolean codes from codes over F2k

(Section 7).

Outline The rest of the paper is structured as follows. We start in Section 2 by explaining
how error correcting codes can provide a protection against both side-channel and fault
injection attacks. Then, we review in Section 3 existing security models, and select some
of them. Relevant security parameters are given in Section 4. The impact on the protections
architecturing is then analyzed in Section 5. Known constructions are revisited in Section 6,
and a new one is given in Section 7. Our contributions beyond the state-of-the-art are in
Section 6 and 7. Eventually, conclusions are in Section 8.
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2 Introduction

2.1 Principle of coding

One purpose of codes is to detect (and correct) errors. Another purpose is to allow multiple
users to use the same channel without interference, while maximizing the use of its capacity.
In the context of protections against side-channel attacks, one user will be the cryptographic
computation, and the other ones are noisy sources, aiming at making the leakage passing
through the channel as difficult to interpret as possible for an eavesdropper. Clearly, this
dual use of codes allows to kill two birds with the same stone, which makes it appealing.

Let us insist more in detail on the protection against side-channel attacks. We denote by
X∈ F

k
2 (where Fk

2 is {0, 1}k equipped with an additive group law, denoted by “⊕”) a sensitive
variable, we intend to protect. It is usually a word, of bit length k. As usual in statistics, we
shall use capital letters (such as X) for random variables, and small letters (such as x) for
their realizations. The AES [45] block cipher will be our running example, because it is very
widespread in the field and is well studied in academic papers. As AES is byte-oriented, we
will consider that every variable can be represented by one or more bytes, hence k = 8 bits.
In a cryptographic implementation, such variable is leaking some non-injective and noisy
information. The non-injective function is denoted as ϕ : F

k
2 → R, and N denotes the

additive noise. Both are represented in Fig. 1, as well as the leakage X � ϕ(X) + N .
Typically, ϕ is an extensive function (that is, it is the weighted sum over R of its coor-

dinates), such as the Hamming weight (denoted as wH ). This model is attested in many
devices, such as smartcards, whose leakage is analyzed in Fig. 2 [31].

To protect against straightforward analysis of leakage, masking countermeasure has been
initially presented (by Thomas S. Messerges [40]) as a two-step process:

1. the algorithmic parameters (e.g., substitution boxes) are recomputed for a
given mask (randomly chosen) by replacing each sensitive data X by (X ⊕⊕t

i=1 Yi, Y1, Y2, . . . , Yt ), where t is some security parameter and where the Yi’s are
chosen randomly independently in the same additive group F

k
2 as X, and then

2. the masked algorithm is executed with masked plaintext and masked key as inputs.

While this strategy works well from a theoretical point of view, some criticisms have
emerged over time:

Fig. 1 Leakage arising from the manipulation of variable X
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Fig. 2 Decomposition of the leakage per value of ϕ(X) = wH (X) ∈ {0, . . . , 8}

– from a security point of view, it has been noted that the recomputation stage algorithm
(which does not depend on the key) leaks a lot of information which can be combined
in a constructive way with the algorithm execution (where masked sensitive data, that
is data which depend on the key and on inputs/outputs known by the attacker, are used),
and that such attack path is hard to counter [14, 47, 55],

– from a performance point of view, the recomputation takes a longer time1 than the
execution of the recomputed algorithm, which obviously limits the advantage of such
solution.

Therefore, solutions which are free from the preliminary recomputation stage are favored
in practice in many applications (except low-cost smartcard, which do not have enough
resources to get rid of the security-wise weak table recomputation stage). Historically, the
data and the masking material are processed together during the execution of the algorithm.
For instance, in the case where t = 1 above, the computation is organized by duplicating
the state: one half contains the masking material Y∈ F

k
2, whereas the second half contains

the masked data X ⊕Y∈ F
k
2. This is illustrated in Fig. 3. It shall be noted that the leakage is

now bi-variate, hence harder to exploit by the attacker, because the latter must combine two
values to recover useful information. However, some implementations manage to handle
X ⊕ Y and Y side-by-side; when the non-injective leakage function ϕ is extensive, we thus
have ϕ(X ⊕ Y, Y ) = ϕ(X ⊕ Y ) + ϕ(Y ), hence it is convenient to describe the masking
as an encoding of (X, Y ). Namely, the sensitive variable X is encoded by a linear code
of generating matrix (I ‖ 0), the mask is encoded using the repetition code of generating
matrix (I ‖ I ), where I is the identity matrix in F

k
2, and these two codewords are added

together.
Thus, we see that protection against side-channel attack can also be expressed in terms

of codes. In the former example, the two binary codes are:

1. C, of parameters [n = 2k, k, 1], of generating matrix (I ‖ 0), and
2. D, of parameters [n = 2k, k, 2], of generating matrix (I ‖ I ),

1For instance, in the AES block cipher, the substitution box has 256 entries, hence recomputation requires
256 memory accesses. The number of substitution box calls in the algorithm is 16 (resp. 4) per round for the
datapath (resp. key schedule), hence a total of (16 + 4) × 10 = 200 calls, which is indeed less than 256.
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Fig. 3 Leakage arising from the
manipulation of the masked
variable X ⊕ Y and of its (single)
mask Y , here of same size k = 8
as that of X

such that any element Z = (X ⊕ Y, Y )∈ F
n
2 is the direct sum of the encoding of X through

C and of Y though D.
This approach of coding is well suited to the physical leakage as represented in Fig. 1,

since side-channel analysis can be reinterpreted as a decoding problem: the aim of the
attacker is the recovery of X after its encoding with masks, and transformation through
the non-injective (owing to ϕ) and noisy (owing to N ) leakage function. Notice that high-
order masking schemes are detailed in greater details under the view of coding theory in
Section 6.1.

However, we stress that the attacker has other means to recover information on Z (X
after coding):

– with a probing station, the attacker is able to read and/or write selected bits,
– on multicore platforms running an operating system, cache hit/miss2 probing can be

used as an attack, especially if data are used as addresses to memories.

2.2 Design choice

In the previous section, we took the example (recall Fig. 3) of mask (Y ) and information
(X) of same bitwidth. However, we have already seen that this can be more general, with a
value of t larger than 1 in traditional masking. Typically, Y can be made smaller (as small as
1 bit, e.g., in [8, 40, 54]—for instance, in [40], a 1-bit masking is used to perform a Boolean
to arithmetic transform.) But also, for enhanced security, Y can be larger than X, especially
in so-called high-order masking schemes [52].3 The general encoding using linear codes of
X is as follows:

Z = XG ⊕ YH, (1)

where:

– G is the generating matrix of a code of length n and of dimension k, and
– H is the generating matrix of a code of length n and of dimension (n − k).

Typically, k = 8 bits for AES. For high-order protections, the masks are used as multiple
k bit words. Therefore, a typical study will be that (n − k) is a multiple of k.

However, probing attacks do target individual bits.

2Systems with multiple processors speed up memory accesses using data and instruction memory caches,
which are shared by the processors; if a data which is not in the cache memory is fetched, then there is a
cache miss (which takes a long time) otherwise, there is a cache hit (which is fast). Thus the hit/miss patterns
betray the memory access sequence.
3Beware that the high-order implementation in this publication is flawed. For fixes, please refer to [21].
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Therefore, we will consider two kinds of codes: codes on F2k and codes on F2. Notice
that a code on F2k can be expanded on F2. In MAGMA [56], this operation can be realized
on a code C easily using command

C expanded := SubfieldRepresentationCode(C, GF(2));.

If C has parameters [n, k, d]2m , then C expanded has parameters [mn, mk, d ′]2, where
d ′ ≥ d. A concrete example will be given in Section 7.

3 Security models

3.1 Side-channel analysis

Masking consists in adding some randomness in the computations, which forces the attacker
to perform a high-order attack, process during which several leakage sources are com-
bined. In turn, if the leakage samples are noisy, the combination results in a so-called noise
amplification.

There are mainly two security models:

– Probing model (cf. Section 3), as in [32] (and many other papers [9, 23, 36, 50] which
stem from this seminal publication).

– Bounded moment model (cf. Section 3), initially defined in [44, Section 4], and then
reintroduced in [6].

Probing model The probing model states the following:

Definition 1 (Probing model) A masking scheme is secure at order t in the probing model
if no tuple of t intermediate variables depends on the secret.

An unprotected implementation is secure at order t = 0 (recall Fig. 2). A protected
implementation is secure at order t > 1.

When the algorithm handles bitvectors (elements of Fk
2), there is an ambiguity whether

the Definition 1 refers to intermediate variables as bitvectors or as individual bits. Thus, in
the sequel, we shall clarify this point when talking about the probing model.

An automated method to test for the security of an algorithm with respect to this model
at bitvector-level is given in [4, 5].

Bounded moment model The bounded moment model states the following:

Definition 2 (Bounded moment model) A masking scheme is secure at order t in the
bounded moment model if no moment of degree t in the intermediate variables depends on
the secret.

With this definition, we also have that an unprotected implementation is secure at order
t = 0, while a protected implementation is secure at order t > 1.

The Definition 2 has initially been introduced in the context of low entropy masking
schemes (LEMS [8, 44]). The concept has been recovered independently [42, 43] by noting
that attacks at many orders are possible, but that in usual situations (see exception in [14]),
the lowest order is the most successful.
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Reductions between leakage security models are studied in [6]. When probing model
and bounded moment models are considered at the bit level, then they are equivalent (see
Theorems 9 and 10 of [30]).

3.2 Fault injection analysis

Protection of block ciphers with codes is a topic which has been studied for a long time [2,
35]. Basically, the security metric relates to the code error detection probability. However,
we notice that few constructs have been tackling simultaneously protection against both
side-channel and fault injection analyzes.

3.3 Combination of side-channel and fault injection

The ODSM countermeasure (to be analyzed at Section 6.3) is the first joint protection
against side-channel and fault injection analyzes. Carlet et al. noticed that masks are not sen-
sitive by themselves (in that they do not leak information “standalone”); thus faults can be
detected by verifying that masks have not been altered. This strategy is all the more relevant
in first-order masking schemes, where the security can be attained by reusing the same mask
throughout the algorithm to protect, hence the possibility to perform the integrity check at
any arbitrarily chosen time while the algorithm unfolds. A careful warning is nonetheless
formulated in Section 6.3.

4 Security parameters

Security at order one is nowadays considered insufficient for most practical operational
environments. Indeed, many attacks at first order (such as second-order correlation power
analysis [41], collision-correlation [26], MIA [7], etc.) are known and well mastered by
most adversaries.

Regarding fault injection attacks, it is known that very powerful exploitation techniques
exist for block ciphers [33]. Thus, once again, detecting a single fault is insufficient.

However, it shall be noted that some palliative countermeasures are usually implemented
in addition to the two abovementioned curative countermeasures. Palliative countermea-
sures consist typically in artificial insertion of horizontal noise (desynchronized start date,
random interrupts, dummy decoil operations, etc.), which makes the step for succeeding
higher-order attacks drastically high.

Concluding, second-order resistance (t ≥ 2) to both side-channel analysis and fault injec-
tion resistance is, in most case, sufficient if well complemented by other protection means,
in a construction denoted by defense in depth.

5 Architectural options for protection

Protecting against both side-channel and fault injection attacks can resort to the masks veri-
fication strategy of ODSM. But more generally, it can be imagined to implement orthogonal
protections one of top of each other. Both approaches have pros and cons:

– encode then mask suffers no security issue. Indeed, encoding does increase the data
bitwidth while making the encoded data redundant, thus reducing the density of the new
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sensitive variable. However, this does not cause any security issue as masking remains
secure even if the variable to protect is not uniformly distributed (which is the case
because the sensitive variable here belongs to a codebook). The “encode then mask”
suffers more performance than security issues: the sensitive variable, after encoding,
encounters a blow-up in size corresponding to the inverse of the code rate. After appli-
cation of the side-channel protection, this overhead is multiplied by the order of the
masking scheme.

– mask then encode is thus more efficient in terms of variable size growth. But care
must be taken on the way the redundancy is applied. Indeed, linear codes consist
in computing some redundancy on top of the masked data, and this redundancy is
a linear transformation. It is well known that some linear transformations destruc-
tively combine with the masking: e.g., the addition of all shares clearly completely
unmasks the masked data. Besides, it becomes non-obvious to compute on an encoded
state. The only proposal in this direction is paper [51], which handles security at
bit-level.

In addition to those considerations, it shall be noticed that verification can be achieved both
at word or at bit levels. Further investigations are left for future considerations.

6 Some known constructions revisited

In this section, we present several masking schemes under the prism of coding theory. We
highlight the links between their definition and their security level. The perfect additive
masking (Section 6.1) is typically word-oriented.

6.1 Perfect additive masking scheme [9]

In this section, we answer the question “why is masking an encoding?”. Actually, it is
straightforward to show that share-based masking schemes (e.g. [27, 50]) consist in encod-
ings. We denote by t the order of the masking, and by d = t + 1 the number of shares, that
are elements of Fk

2. The protection rationale is as follows:

– x∈ F
k
2 the clear data,

– y = (y1, y2, . . . , yt ) ∈ (Fk
2)

t are the masks, and the protected data is:
– z = (x ⊕ ⊕t

i=1 yi, y1, y2 . . . , yt ) ∈ (Fk
2)

d .

So we have n = d × k = (t + 1) × k, and z = xG ⊕ yH , where

G = (
Ik 0 0 · · · 0

)
and H =

⎛

⎜
⎜
⎜
⎝

Ik Ik 0 · · · 0
Ik 0 Ik · · · 0
...

...
...

. . .
...

Ik 0 0 · · · Ik

⎞

⎟
⎟
⎟
⎠

. (2)

Notice that GH T �= 0, thus the codes generated by G and H are not complementary
dual [22].
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6.2 Inner product (IP [3]) masking scheme

The perfect masking scheme depicted in (2) presents intrinsic weaknesses:4 for instance, it
does not correspond to individual bit masking, but rather word-wise. Individual bits in the
shares can be attacked independently one of the others, thereby enabling k parallel divide-
and-conquer mono-bit strategies. Hence there is a need for a secondary security objective
which is bit-oriented. The publications dealing with inner product masking [3, 58] therefore
attempt to shuffle bits within one share. However, both the choice to focus on one share
and the code selection method are currently not discussed mathematically in the published
literature. Still, there is a way to select linear functions in line with a security objective. This
will be made clear in Section 6.4 devoted to leakage squeezing countermeasure.

6.3 Orthogonal direct sum masking (ODSM [11])

ODSM refers to the masking scheme where the data to protect is represented as in (1).

Implementation An example of implementation of ODSM for AES (n = 2k = 16) is
given in the appendix B of [12]. These indications shall suffice to reproduce a protected
design. The only practical detail to be precised in the implementation is the computation
of the linear transformation F

16
2 → F

16
2 . It can be implemented as a vector-matrix product,

as explained in Algorithm 2 of [12]. Thus, there is no need to save a 216 × 16 table corre-
sponding to all the values of xL′ for x ∈ F

16
2 . Besides, if it is wanted all the same to resort

to a table-based implementation, it is possible to split the 216 × 16 table into tables of size
216 × 8 (see Alg. 1 in [30]).

Security against fault injection attacks In ODSM, the transformations (e.g., the call
to substitution boxes) are presented as operating in parallel on the whole state z∈ F

n
2. It

is described in [11] how linear and non-linear operations can be tabulated. When k|n, the
ODSM scheme can be interpreted as a computation which can be carried out on k-bit words.
In this case, one knows that linear operations can be safely implemented as the parallel
composition of the linear operation on each of the d = n/k shares. However, this should not
be understood as the fact that arbitrary linear operations can be securely implemented on the
whole state. Indeed, for instance, the projection of z on x is linear and is clearly insecure.
Therefore, care must be taken when implementing (linear) operations between shares. For
instance, it is secure to project z on the code of generating matrix H in parallel to the code
of generating matrix G, and to get then y, but the projection algorithm shall be scrutinized.
Indeed, the following method:

Step 1: z is projected on the code of generating matrix G in parallel to the code of
generating matrix H to retrieve x,

Step 2: then y is retrieved as the subtraction z ⊕ xG on F2,

is not desirable from a security standpoint, owing to the demasking of the variable at Step 1.

4The perfect masking scheme introduced in 2001 [9] is perfect in that it ensures perfect independence at
word-level between tuples of intermediate variable missing at least one share. However, it is not perfect in
the sense of bit-level security. Hence the later introduction in 2011 of leakage squeezing masking scheme
[38] and in 2015 of inner product masking scheme [3].
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6.4 Leakage squeezing

Background about leakage squeezing countermeasure The leakage squeezing idea
[28, 38] is based on masking but additionally applies some bijective functions (linear or
non-linear) to the shares. A quantitative analysis of the gain in terms of bounded moment
leakage security model is carried out in [37], where it is found that the best bijections can be
non-linear in relation with non-linear codes (e.g., the Nordstrom-Robinson code for k = 8,
n = 16). A comprehensive search of functions / codes suitable in the bounded moment
leakage model is carried out in [20]. The suitable codes are nicknamed Complementary
Information Set (CIS). A survey of usage of codes in the field of side-channel analysis is
conducted by the first author [15]. In parallel, an approach using cellular automata to build
codes is proposed in [34]. Following from [37], the conditions for building better codes are
precised in [18]. Also, this journal paper shows that the leakage squeezing countermeasure
resists model imperfections. The mutual information between the sensitive data and the
leakage is computed empirically in [18, 37]. In [19], it is demonstrated mathematically
that this mutual information vanishes exponentially with the noise variance, at a rate which
is proportional to the countermeasure first non-constant moment (known as the HCI or
High-order Correlation Immunity). In this section, we relate bounded moments, mutual
information, and attack success rate. That is, we show that the attacks are all the more
difficult as the first non-constant moment of the leakage is high, and that this behavior tracks
that of the mutual information.

Eventually, notice that leakage squeezing with more than two shares has already been
studied, from a security perspective in [16] and from the codes construction point of view
in [25] (where HO-CIS codes are introduced as a generalization of CIS codes). The most
recent survey on codes in side-channel analysis is available in [30]. In the rest of this section
on leakage squeezing, we do detail only leakage squeezing with two shares.

Definition and use-case Leakage squeezing (LS) consists in masking X∈ F
k
2 using

representation

(X ⊕ Y, F (Y )), (3)

where F is a bijective function from F
k
2. The security order of LS is studied in [37]. We

compare here-after LS at various orders (and we use indices, e.g., Ft , for t = 0, 1, . . ., to
make a difference between the different functions F ):

– 0 (no protection); the leakage has only one share, that is X (plain).
– 1: F1 = Id, i.e., (3) represents perfect masking (F1(y) = y).
– 2: F2 is a linear function, where the matrix of F2 is:

M2 =

⎛

⎜
⎜
⎝

0 0 1 1
1 1 0 1
0 1 1 1
1 1 0 0

⎞

⎟
⎟
⎠ .

– 3: F3 is a linear function (which is optimal—cf. F3′ in [18, Section 5.2]), of matrix:

M3 =

⎛

⎜
⎜
⎝

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

⎞

⎟
⎟
⎠ .
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Alternatively, the truth tables of Ft are (using hexadecimal notations):

– {F1(y), 0 ≤ y < 24} = {0,1,2,3,4,5,6,7,8,9,a,b,c,d,e,f},
– {F2(y), 0 ≤ y < 24} = {0,a,e,4,5,f,b,1,7,d,9,3,2,8,c,6},
– {F3(y), 0 ≤ y < 24} = {0,e,d,3,b,5,6,8,7,9,a,4,c,2,1,f}.

When the bijective functions Ft are linear, the leakage squeezing is a special instance
of ODSM, with generating matrices G and H defined in (1) equal to G = (Ik||0) and
H = (Ik||Mt).

Leakage distributions for leakage squeezing The resulting (uni-variate) distributions
in Hamming weight, when X ⊕ Y and Ft (Y ) are manipulated in parallel, are represented in
Fig. 4a, when the noise has variance σ 2 = 1. The versions resisting attacks at orders 1, 2
and 3 are represented in Figs. 5a, 6a, and 7a. The scale is the same for all plots. It can be
seen that:

– distributions in Fig. 4a do not have the same mean,
– distributions in Fig. 5a have the same mean (= n = 4), but not the same variance

(informally, some distributions are larger than others),
– distributions in Fig. 6a have the same mean (= n = 4), the same variance (= n/2+σ 2),

but not the same skewness (informally, some distributions are bending to the right, other
to the left, while the others are straight),

– distributions in Fig. 7a have same mean (= n = 4), same variance (= n/2 + σ 2), no
skewness, but different kurtosis (informally, some distributions have smaller tails than
others).

Remark 1 The distributions represented in Figs. 4a, 5a, 6a, and 7a are the convolution of
the 2n cosets of the weight distribution of the graph of functions Ft , for 0 ≤ t ≤ 3.

The bi-variate distributions, that is:

(wH (X ⊕ Y ) + N,wH (Ft (Y )) + N ′) ∈ R
2, where N,N ′ ∼ N (0, σ 2),

which represent the word-oriented case, are represented in Figs. 4b, 5b, 6b, and 7b. It can be
seen that Fig. 4a is merely the value at abscissa of the corresponding bi-variate distribution
(somehow artificial, since this implementation uses only one share—however, the represen-
tation allows to contrast leakage of unprotected and protected implementations) represented
in Fig. 4b. Besides, Figs. 5a, 6a, and 7a are merely the diagonal of corresponding bi-variate
distributions represented in Figs. 5b, 6b, and 7b.

It is interesting to see that some distributions are identical for some values of x. We group
identical distributions by classes, labeled in lexicographical order. In the uni-variate case
(recall (5)), the number of classes is respectively 5, 5, 6 and 3 (for bijection F0, F1, F2 and
F3), as represented in Table 1. The bi-variate case (recall (4)) is represented in the bottom
line of Table 1. In these tables, the layout is as given below:

⎡

⎢
⎢
⎣

x = 0x0 x = 0x1 x = 0x2 x = 0x3
x = 0x4 x = 0x5 x = 0x6 x = 0x7
x = 0x8 x = 0x9 x = 0xa x = 0xb
x = 0xc x = 0xd x = 0xe x = 0xf

⎤

⎥
⎥
⎦ .
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Fig. 4 Leakage distribution without countermeasure (n = 4). Due to absence of masking, the leakage traces
consist in Gaussian functions, centered at 0, 1, . . . , k
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Fig. 5 Leakage distribution with leakage squeezing countermeasure at order 1 (k = 4, see Section 6.4)
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Fig. 6 Leakage distribution with leakage squeezing countermeasure at order 2 (k = 4, see Section 6.4)
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Fig. 7 Leakage distribution with leakage squeezing countermeasure at order 3 (k = 4, see Section 6.4)



924 Cryptogr. Commun. (2018) 10:909–933

Table 1 Classes of identical
uni-variate and bi-variate
distributions, in leakage
squeezing with functions
Ft , for 0 ≤ t ≤ 3

0 1 2 3

uni-variate

distribution

0 1 1 2

1 2 2 3

1 2 2 3

2 3 3 4

0 1 1 2

1 2 2 3

1 2 2 3

2 3 3 4

0 1 2 2

1 3 4 4

2 4 5 1

2 4 1 5

0 1 1 2

1 2 2 1

1 2 2 1

2 1 1 2

bi-variate

distribution

0 1 1 2

1 2 2 3

1 2 2 3

2 3 3 4

0 1 1 2

1 2 2 3

1 2 2 3

2 3 3 4

0 1 2 3

1 4 5 6

2 5 7 8

3 6 8 9

0 1 1 2

1 2 2 3

1 2 2 3

2 3 3 4

Uni- and bi-variate attacks on leakage squeezing Attacks have been simulated, both
in uni- and bi-variate settings. In the bi-variate setting, the attacker gets the leakages L(1)

and L(2) corresponding to masked data and mask (with bijection Ft : Fk
2→ F

k
2 applied on

it): {
L(1) = wH (T ⊕ k∗ ⊕ Y ) + N

L(2) = wH (Ft (Y )) + N ′ , (4)

where X = T ⊕ k∗ is the sensitive variable (known text T ∈ F
k
2 and secret key k∗∈ F

k
2). The

(4) is the application of the Hamming weight leakage model on the two shares of (3), and in
the addition of noise. In the uni-variate setting, the attackers gets only one leakage sample:

L = L(1) + L(2). (5)

For the sake of fair comparison, we focus on the optimal attack [13], that is, the attack which
maximizes the probability of success in secret key recovery. Notice that the bijections used
in leakage squeezing countermeasure are supposed public information.

– The uni-variate attack measures the sum l
(1)
q + l

(2)
q of leakage for each trace q (1 ≤ q ≤

Q), hence the optimal attack estimates the correct key k∗ as:

k̂∗ = argmax
k∈Fk

2

Q∑

q=1

log
∑

y∈Fk
2

\

exp − 1

4σ 2

{(
l(1)
q + l(2)

q − wH (tq ⊕ k ⊕ y, Ft (y))
)2

}

. (6)

– The bi-variate attacks measures each share l
(1)
q and l

(2)
q independently, hence the optimal

attack estimates the correct key k∗ as:

k̂∗ = argmax
k∈Fk

2

Q∑

q=1

log
∑

y∈Fk
2

\

exp − 1

2σ 2

{(
l(1)
q − wH (tq ⊕ k ⊕ y)

)2 +
(
l(2)
q − wH (Ft (y))

)2
}

. (7)

Notice that the noise in uni-variate case is N + N ′ ∼ N
(
0, 2σ 2

)
, whereas in the bi-

variate case, it is (N,N ′)∼N
((

0 0
0 0

)

, σ 2
(

1 0
0 1

))

; this explains the different factors in the
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Fig. 8 Attack result for σ = 1

exponential for expressions (6) and (7). Results in terms of success rate (SR = P(ĥ∗ = k∗))
are shown in Fig. 8 for σ = 1. The success rates are obtained after 100 independent attacks,
and the estimation error of the curves are superimposed (they correspond to ± the standard
deviation of the SR estimator; refer to [39] for their calculation).

It can be seen that the security increases (i.e., more and more traces are needed to recover
the key) with the resistance order t , 0 ≤ t ≤ 3. Said differently, the larger the dual distance
of the code generated by H , the more difficult the attack. Moreover, it appears clearly
that bi-variate attacks are more successful than uni-variate attacks, since information is lost
while the two leakages are summed up (recall that in Table 1, there are less classes in the
uni-variate case than in the bi-variate case). This notice settles a quantitative assessment
why so-called zero-offset uni-variate attacks [57] are less efficient than truly multi-variate
counterparts. The two functions F2 and F3 seem to yield similar security level, at least for
low noise σ = 1. However, when the noise increases, F3 clearly increases more than F2 the
resistance of the implementation against attacks, as illustrated in Fig. 9 for σ = 2. One can
see the “staggering” of the number of traces to succeed for a given order: the success rate
curve without protection (F0) is squared to obtain that with 1st-order protection (F1). This
fact has already been reported in [29].

Fig. 9 Attack result for σ = 2
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Information leakage under leakage squeezing protection Besides, we also evalu-
ate the information leakage of the four levels of protections. We compute I (L; X), where
X = T ⊕ k∗ is uniformly distributed over F

k
2, and where the leakage L is the uni- or

bi-variate leakage function.

– In the uni-variate case, L is

L(1) + L(2) = wH (T ⊕ k∗ ⊕ Y ) + N + wH (Ft (Y )) + N ′ ∈ R;
– In the bi-variate case, L is

(L(1), L(2)) = (wH (T ⊕ k∗ ⊕ Y ) + N,wH (Ft (Y )) + N ′) ∈ R
2,

where:

– Y is uniformly distributed over Fn−k
2 (here = F

k
2 since n = 2k) and

– N and N ′ are two additive (recall Fig. 1) and independent noises of centered normal
law with identical standard deviation σ .

The resulting mutual information values are given in Fig. 10 for uni- and bi-variate attacks.
Interestingly, in presence of large noise, the mutual information decreases affinely with

σ (in log-log scale), with a slope −2(t + 1) = −2d, where:

– t is the protection order, and
– d = t + 1 is the minimum order of a successful attack (also denoted High-order

Correlation Immunity or HCI in [19, Def. 2]).

This noting is demonstrated mathematically in [19, Theorem 1].
It can thus be stated that LS with bijection Ft has the same bit-level security with two

shares as perfect masking with t + 1 = d shares.

Link between attacks and information leakage It is demonstrated in [29] that, for
additive distinguishers, there exists a coefficient E, called first-order exponent, such that the
number of traces q to extract the key k∗ with success probability SR satisfies the property:

1 − SR ≈ exp −q · E, (8)

where ≈ is an asymptotic equivalence (detailed in [29]).

Fig. 10 Mutual information analysis for uni- and bi-variate leakage
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Fig. 11 Number of traces to extract the secret key k∗ with probability 80% as a function of the mutual
information between the leakage and the sensitive variable X = T ⊕ k∗

It is hinted in [53] that such exponent is proportional to the mutual information (as com-
puted in previous Section 6.4), provided the distinguisher is the template attack. Now, with
perfect profiling, the template attack [24] coincides with the optimal distinguisher [13].
Thus, we aim in this section at validating this finding on the bi-variate (but higher-order
secure) LS masking scheme, using the distinguishers (6) and (7) for the optimal attacks.

To validate experimentally that the first-order E involved in (8) is proportional to
I (L; X), we extract the number of measurements q to recover the key k∗ with probability
SR = 80%. The two Figs. 8 and 9 allow to extract 16 values of number of traces. The cor-
responding values (for σ = 1 and 2) of I (L; X) are extracted from Fig. 10. These data are
represented in Fig. 11.

In the case of the bi-variate attack, it is possible to fit these data by linear regression as
relationship:

log(q) = log(− log(0.80)) − log(α · I (L; X)),

where the estimated parameter α is found to be α = 0.0396361 ± 0.0002805. This good
fit with a law where q × I (L; X) is a constant (curve of slope −1 in Fig. 11) validates that
in the case of optimal attack on bi-variate leakage, one has that (8) holds, with first-order
exponent equal to:

E = α · I (L; X). (9)

We underline that this result holds, surprisingly, for 4 different leakage scenarios (cor-
responding to the use of Ft , t ∈ {0, 1, 2, 3}). Therefore, the relationship (9) seems very
general. On the contrary, it might explain why the law (8) fits less nicely (the interpolated
slope of the curve is > −1), since sum of two leakages is a ad hoc operation.
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1 F X := Po lynomia lR ing (GF( 2 ) ) ;
2 P := F ! 1+X+Xˆ 4 ; / / Degree k i r r e d u c i b l e po lynomia l
3 GF16 X := ex t GF( 2 ) P ;
4 C5 := LinearCode GF16 , 2 [1 ,1+X] ; / /

S t ep 2
5 / / [ 2 , 1 , 2 ] C o n s t a c y c l i c by Xˆ7 L i n e a r Code ove r GF ( 2 ˆ 4 )
6 / / Gen e r a t o r ma t r i x :
7 / / [ 1 Xˆ 4 ]
8 C5 expanded := Su b f i e l dR e p r e s e n t a t i o nCod e (C5 ,GF( 2 ) ) ; / /

S t ep 3
9 / / [ 8 , 4 , 3 ] L i n e a r Code ove r GF( 2 )

10 / / Gen e r a t o r ma t r i x :
11 / / [ 1 0 0 0 1 1 0 0]
12 / / [0 1 0 0 0 1 1 0]
13 / / [0 0 1 0 0 0 1 1]
14 / / [0 0 0 1 1 1 0 1]
15 M5 inv := Submat r ix ( Gen e r a t o rMa t r i x ( C5 expanded ) , 1 , 5 , 4 , 4 ) ; / /

S t ep 4
16 M5 inv ˆ 1; / / Used as //5Fnoitcejib

S t ep 5
17 / / [0 1 1 1]
18 / / [1 1 1 1]
19 / / [1 0 1 1]
20 / / [1 0 0 1]

Listing 1 Example of program for obtaining codes (in magma [56] language)

7 A new construction for leakage squeezing and inner product masking

7.1 Rationale of the construction

In this section, we explain how to obtain CIS (and HO-CIS) codes based on code expansion
from F2k to F2. The procedure is the following:

1. Decide on a number m of shares of k bit words.
2. Search for a code of parameters [m, 1]2k of minimum distance m; basically, this means

that the generating matrix of the code consists in a line of m non-zero values of F2k .
3. Expand the code on F2. This code is HO-CIS of order m (see Proposition 2.2 of [1]).

The protection order of this code in bit-level security models is equal to its minimum
distance minus one.

4. Write its generating matrix as (M1||M2|| . . . ||Mm), where Mi (1 ≤ i ≤ m) are k × k

matrices with entries in F2.
5. As explained in [17, Appendix B, page 21], the linear function to apply to share i

(1 ≤ i ≤ m) is generated by matrix M−1
i .

7.2 Example on a non-optimal code

We detail in Listing 1 an example of a masking with m = 2 shares of k = 4 bits, which has
order 1 security at word level and order 2 security at the bit level.5

5Notice that in Listing 1 and in the rest of this section, the symbol X denotes the dummy variable for field
F2 extension to F16. Thus, it shall not be confused with X, the sensitive variable (recall (1)).
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Table 2 Hierarchy between masking styles

Perfect masking [9] ⊆ Inner product [3] ⊆ Leakage squeezing [18] ⊆ ODSM [11]

k|n, G and H are made k|n, G and H are made k|n, G and H are arbitrary k and n ≥ k are free,

up of block matrices of up of k × k invertible matrices — LS can even and G and H must

size k × k being either matrices corresponding extend to non-linear codes simply generate two

zero or the identity to F2k -linear isomorphisms. complementary codes

(cf. (2)) Also, paper [58] presents in F
n
2

a variant of inner product

masking [3] in that the

k × k submatrices can

take on any value

The construction for this code needed in leakage squeezing is explained below:

1. we opt for a leakage squeezing with a mask Y of bitwidth equal to that of the data X to
protect,

2. the code C5 in F2k is generated by (1||1 + X), where F24 = F2[X]/1 + X + X4, hence
has parameters [2, 1, 2]16,

3. this code is expanded into C5 expanded, which has parameters [8, 4, 3]2. Therefore,
the security at bit level is 3 − 1 = 2, which is one more than that of C5 at word level,

4. the generating matrix of C5 expanded is written in systematic form as

(I4||M5 inv) =

⎛

⎜
⎜
⎝

1 0 0 0 1 1 0 0
0 1 0 0 0 1 1 0
0 0 1 0 0 0 1 1
0 0 0 1 1 1 0 1

⎞

⎟
⎟
⎠

5. the researched linear bijection has matrix M5 = M5 inv−1 =

⎛

⎜
⎜
⎝

0 1 1 1
1 1 1 1
1 0 1 1
1 0 0 1

⎞

⎟
⎟
⎠.

The resulting linear function has truth table:

{F5(y), 0 ≤ y < 24} = {0,e,3,d,7,9,4,a,f,1,c,2,8,6,b,5}.

7.3 Example on an optimal code

In the case k = 4 and n = 2k = 8, we detail how the (autodual, and unique of type-II 6)
code with parameters [8, 4, 4]2 and generating matrix

⎛

⎜
⎜
⎝

1 0 0 0 0 1 1 1
0 1 0 0 1 0 1 1
0 0 1 0 1 1 0 1
0 0 0 1 1 1 1 0

⎞

⎟
⎟
⎠ (10)

6See http://www.unilim.fr/pages perso/philippe.gaborit/SD/GF2/GF2II.htm.

http://www.unilim.fr/pages_perso/philippe.gaborit/SD/GF2/GF2II.htm
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can be derived from a linear code of parameters [2, 1]16 over F24 . We aim to find an
irreducible polynomial P(X) such that F16 = F2[X]/P (X) and the code over F16 has
parameters [1, X + X2 + X3]2. Equivalently, this means that:

1. d◦(P (X)) = 4 and
2. the three following conditions are met:

– X(X + X2 + X3) = 1 + X2 + X3 mod P(X),
– X2(X + X2 + X3) = 1 + X + X3 mod P(X),
– X3(X + X2 + X3) = 1 + X + X2 mod P(X).

The second, third, and forth condition mean that P(X) is a divisor of gcd(X(X + X2 +
X3)+ 1 +X2 +X3, X2(X +X2 +X3)+ 1 +X +X3, X3(X +X2 +X3)+ 1 +X +X2) =
gcd(1 + X4, 1 + X + X4 + X5, 1 + X + X2 + X4 + X5 + X6).

Now, it happens indeed that 1 + X4|1 + X + X4 + X5, 1 + X + X2 + X4 + X5 + X6.
However, F2[X]/(1 + X4) is a ring, and not a field, because 1 + X4 = (1 + X)4. Thus, the
code is defined over a ring, which has never been analyzed this way in masking, and which
opens the door to interesting perspectives.

We have tested all 4! permutations of the four last columns in the [8, 4, 4]2 code gener-
ating matrix (10), without success to lift this code as a [2, 1, 2]16 code in F16. Actually, this
code can be obtained as a binary image (through a graymap) of a [2, 1] code on F4[X]/(X2)

or on F2[X]/(X4), and of a code of parameters [4, 2] on F2[X]/(X2).

8 Conclusions

In this paper we have studied the statistical distribution of uni- and multi-variate leak-
age functions of cryptographic implementations when some countermeasures against fault
injection and side-channel analyzes are applied.

We have observed that the previous studied protection called leakage squeezing is a gen-
eralization of the variants of perfect masking, including inner product masking (see Table 2
for a recap). In this sense, we extend the work [48], which explores the links between inner
product masking and direct sum masking. We show that leakage squeezing is all the more
secure as its underlying code has a high minimum distance d. Side-channel attacks of orders
1, . . . , t = d − 1 are impossible. We relate this value to the slope −2d of the mutual infor-
mation between sensitive variables and the leakage (represented in log-log scale), and show
that, in practice, the success rate of attacks is less when d is large. We also reveal that bi-
variate mutual information (resp. bi-variate attack probability success) is less than in the
uni-variate case.

Eventually, we propose a new method to build (HO-)CIS codes based on code expansion,
which is promising in the context of leakage squeezing, i.e., when a high level of security is
required both at word- and at bit-level.
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