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Abstract Let A = M2(F2 + uF2), where u2 = 0, the ring of 2 × 2 matrices over the finite
ring F2 + uF2. The ring A is a non-commutative Frobenius ring but not a chain ring. In this
paper, we derive the structure theorem of cyclic codes of odd length over the ring A and use
them to construct some optimal cyclic codes over F4. Let v2 = 0 and uv = vu. We also
give an isometric map from A to F4 + vF4 + uF4 + uvF4 using their respective Bachoc
weight and Lee weight.
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1 Introduction

Cyclic codes over finite rings have been much studied in recent years, particularly after the
significant result obtained in [1], where certain interesting nonlinear binary codes were con-
structed through a Gray map from Z4 to F

2
2. The Gray map employed in [1] is an isometry

from Lee weight over Z4 to Hamming weight over F2
2, which helped to explain the apparent

duality of the nonlinear binary codes. Since then several recent papers dealt with codes over
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finite commutative rings. The case of noncommutative rings have been studied in different
contexts by very few authors (see [2, 4, 5, 7–9]). Recently the ring M2(F2) was studied in
the context of space time codes [7]. Subsequently, in [4] the theory of cyclic codes over
M2(F2) was developed. One got a characterization of cyclic codes and their duals as right
ideals in terms of two generators and the existence of infinitely many nontrivial cyclic codes
for the Euclidean product. But these codes were derived in the case of odd length. Thus, a
natural question is the generalization to even length.

In this paper, we will focus on cyclic codes of odd length over the ring A = M2(F2 +
uF2), where u2 = 0, which enables us to construct even length codes over M2(F2) using a
Gray map. An important fact is that the ring A is not a finite chain or commutative ring. We
will define a Gray map φ fromM2(F2+uF2) toM2

2 (F2)which preserves the Bachoc weight
[2]. Thus, images of cyclic codes of odd length over A under φ are binary quasi-cyclic codes
of even length over M2(F2). This is one of the questions introduced in [4].

In Section 2, we will start with a short description of the ring M2(F2 + uF2) and show
that M2(F2 + uF2) ∼= F4 + vF4 + uF4 + uvF4,where v2 = 0 and uv = vu. Hence, the ring
M2(F2 +uF2) has the similar structure of F2 +uF2 + vF2 +uvF2 which was introduced in
[6], So, refer to that work, we will define a Gray map from M2(F2 + uF2) to F4

4 and extend
the definition of Lee weight in [3].

In Section 3, the structure of cyclic codes of odd length over M2(F2 + uF2) will be
obtained. In Section 4, the Bachoc weight will be introduced over M2(F2 + uF2). We will
define a right F2-module isometry from M2(F2 + uF2) to F4 + vF4 + uF4 + uvF4 using
their respective Bachoc weight and Lee weight. This ideal for the isometry map comes from
[5] in which an isometric map from M2(F2) to F

2
4 was defined. In Section 5, we will give

some examples of cyclic codes of length 3 and 5 over M2(F2+uF2) , and show their images
under the Gray maps φ are optimal quaternary quasi-cyclic codes of length 12 and 20 over
F4, respectively.

2 Linear codes over M2(F2 + uF2)

Let A = M2(F2 + uF2), where u2 = 0. Then A is a non-commutative ring of matrices of
order 2 over the ring F2 + uF2. Clearly A = M2(F2) + uM2(F2) � M2(F2)[u]/〈u2〉. Here
we present some preliminaries that are required to introduce linear and cyclic codes over
A. Following [2], M2(F2) = F2[ζ ] + iF2[ζ ], where ζ and i are elements in A satisfying

the relation iζ = ζ 2i. A possible choice of ζ and i given by Bachoc [2] are i =
(
0 1
1 0

)

and ζ =
(
0 1
1 1

)
. Setting v = 1 + i and identifying the subring F2[ζ ] with F4 follows that

M2(F2) = F4 + vF4. This implies that

A = F4 + vF4 + uF4 + uvF4,

where v2 = u2 = 0 and uv = vu.
We recall, in the case of F2+uF2, Lee weight was defined in [3] as wL(0) = 0, wL(1) =

wL(1 + u) = 1, wL(u) = 2, and accordingly a Gray map from (F2 + uF2)
n to F

2n
2 was

defined by sending a + ub to (b, a + b) with a, b ∈ F
n
2. We will adopt a similar technique

here to define the Gray map from A to F
4
4. It follows:

θ : A → F
4
4, a + bu + cv + duv → (d, c + d, b + d, a + b + c + d),
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where a, b, c, d are in F4. For any e = a + bu + cv + duv in A, we extend the definition of
the Lee weight as

wL(e) = wH (d) + wH (d + c) + wH (d + b) + wH (d + c + b + a),

where wH (−) denotes Hamming weight of the element − of F4.

Definition 1 (1) A linear code C of length n over the ring A is an A-submodule of An.
(2) Let c = (c0, c1, · · · , cn−1) be a vector of An. Then Lee weight of c is defined as

wL(c) = wL(c0) + wL(c1) + · · · + wL(cn−1).

(3) Let C be a linear code over A. Then Lee distance of C is defined as

dL(C) = min{wL(c) =
n−1∑
i=0

wL(ci)|c = (c0, c1, · · · , cn−1) ∈ C}.

Extending the map θ to vectors, by definition of Lee distance, we have the following
theorem.

Theorem 1 If C is a linear code over A of length n, size M and Lee distance d. Then θ(C)

is a code over F4 of length 4n, size M and Hamming distance d.

3 Cyclic codes over M2(F2 + uF2)

Let A[x] be the ring of polynomials over A. We have a natural homomorphic mapping from
A to the field F4. For any e ∈ A, let ẽ denote the polynomial reduction modulo u and v.
Now we define a polynomial reduction mapping μ : A[x] → F4[x] such that

f (x) =
n−1∑
i=0

eix
j →

n−1∑
i=0

ẽix
j .

A monic polynomial f over A[x] is said to be a basic irreducible polynomial if its pro-
jection μ(f ) is irreducible over F4[x]. As right modules we have the Chinese Remainder
Theorem as follows. In the sequel, we will drop interrminate x for polynomials when the
context is clear.

Proposition 1 Let n be an odd number. Then

A[x]
〈x − 1〉 = ⊕t

j=1
A[x]
〈fj 〉

where xn − 1 = ∏t
j=1 fj and fj ’s are irreducible polynomials over F4.

Proof The proof follows by a natural application of Chinese Remainder theorem to the right
module A[x]

〈x−1〉 using the method similar to that given in [7]

We shall prove the results below using the same techniques in [2] with the condition n

being an odd number.

Cryptogr. Commun. (2018) 10:11 –111709 1111



Proposition 2 If f is an irreducible polynomial over F4, then the only right A-modules of
Rf = A[x]

〈f 〉 have two types

I : 〈0〉, 〈1〉, 〈u〉, 〈v〉, 〈u〉 + 〈v〉, 〈uv〉.
II : 〈u + vhα〉 where hα is a unit in F4[x]

〈f 〉F4[x] .

Proof Let I be a nonzero ideal of Rf and let 0 	= g ∈ A[x] with g + 〈f 〉 ∈ I and g 	∈ 〈f 〉.
Then there exist g1, g2, g3, g4 ∈ F4[x] such that g = g1 + ug2 + vg3 + uvg4. Consider the
polynomial g1(x), we obtain that

gcd(g1(x), f (x)) = f (x) or 1.

If gcd(g1(x), f (x)) = 1 for some g1(x) ∈ A[x], then there exists g′
1 ∈ F4[x] such

that g1g
′
1 + 〈f (x)〉 = 1 + 〈f (x)〉. Let g′ = g′

1 − u((g′
1)

2g2 − v((g′
1)

2g3 − vu(g4(g
′
1)

2 +
2(g′

1)
3g2g3). Then we have gg′ + 〈f (x)〉 = 1 + 〈f (x)〉. This means that I = Rf . Now

assume that gcd(g1(x), f (x)) = f (x) for any element g + 〈f (x)〉 ∈ I , then g + 〈f (x)〉 =
ug2 + vg3 + uvg4 + 〈f (x)〉.

If gcd(g2(x), f (x)) = f (x), then g+〈f (x)〉 = vg3(x)+uvg4(x). It follows that I = 〈v〉
or I = 〈uv〉.

If gcd(g2(x), f (x)) = 1 exists, arguing as in the proof of g1(x), one deduces that there
is a g−1

2 ∈ F4[x] such that g2g
−1
2 = 1. This implies that uv = g · vg−1

2 ∈ I . It follows that
ug2 + vg3 = g − uvg4 ∈ I .

If gcd(g3(x), f (x)) = f (x), then u ∈ I . This means that I = 〈u〉.
If gcd(g3(x), f (x)) = 1, then u + vhα ∈ I where hα = g−1

2 g3 is a unit of F4[x]. Now
one obtains two cases as follows:

Case A: 〈u + vhα〉 = I .
Case B: 〈u + vhα〉 � I . Then there exists u + vhβ ∈ I where hβ ∈ F4[x], but it is not

in 〈u + vhα〉. This implies that v(hα − hβ) ∈ I . Since hα − hβ 	∈ 〈f (x)〉, v ∈ I . Thus, we
obtain that I = 〈u〉 + 〈v〉.

Let h be a factor of xn − 1 in F4[x]. We denote by ĥ = xn−1
g

.

Proposition 3 Let xn − 1 = f1f2 · · · ft where fi(1 ≤ i ≤ t) are irreducible pairwise-
coprime polynomials in F4[x]. Then any ideal in A[x]

〈xn−1〉 is a sum of ideals of the form

〈f̂i + 〈xn − 1〉〉, 〈uf̂i + 〈xn − 1〉〉, 〈(u + vhα)f̂i + 〈xn − 1〉〉 for 1 ≤ i ≤ t . where hα is a
unit of F4[x]

〈xn−1〉 .

Proof By the Chinese Remainder Theorem, we have

A[x]
〈xn − 1〉 = A[x]⋂m

i=1〈fi〉 =
m⊕

i=1

A[x]
〈fi〉 .

Thus, any ideal of is of the form ⊕Ii , where Ii is an ideal of A[x]
〈fi 〉 . By Proposition 2, for

1 ≤ i ≤ t , we have

Ii ∈ {〈1 + 〈fi〉〉, 〈u + 〈fi〉〉, 〈v + 〈fi〉〉, 〈u + vhα + 〈fi〉〉}.
Then Ii correspond to the form 〈f̂i +〈xn−1〉〉, 〈uf̂i +〈xn−1〉〉, 〈(u+vhα)f̂i +〈xn−1〉〉

in A[x]
〈xn−1〉 . Consequently, I is sum of ideals of the forms 〈f̂i + 〈xn − 1〉〉, 〈uf̂i + 〈xn −

1〉〉, 〈(u + vhα)f̂i + 〈xn − 1〉〉, where 1 ≤ i ≤ t .
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From now on, in order to simplify notation, we will just write a0 + a1x + a2x
2 + · · · +

an−1x
n−1 for the corresponding coset a0 + a1x + a2x

2 + · · · + an−1x
n−1 + 〈xn − 1〉 in

A[x]
〈xn−1〉 . Next, we give the main result in this section.

Theorem 2 Let C be a cyclic code of odd length n over A. Then there exists a unit hα in
F4[x]

〈xn−1〉 and a family pairwise coprime monic polynomials F0, F1, · · · , F6 in F4[x] such that
F0F1 · · ·F6 = xn −1 and C = 〈F̂1〉⊕〈uF̂2〉⊕〈vF̂3〉⊕〈uvF̂4〉⊕〈(u+vhα)F̂5〉⊕ (〈uF̂6〉+
〈vF̂6〉).

Proof Let xn − 1 = f1f2 · · · fm be a factorization of xn − 1 into a product of monic basic
irreducible pairwise coprime polynomials. By Proposition 3, C is a sum of ideals of the
form 〈f̂i + 〈xn − 1〉〉, 〈uf̂i + 〈xn − 1〉〉, 〈(u + vhα)f̂i + 〈xn − 1〉〉, where 1 ≤ i ≤ t . After
reordering if necessary, we can assume that

C = 〈f̂k1+1〉 ⊕ · · · ⊕ 〈f̂k1+k2〉
⊕ 〈uf̂k1+k2+1〉 ⊕ · · · ⊕ 〈uf̂k1+k2+k3〉
⊕ 〈vf̂k1+k2+k3+1〉 ⊕ · · · ⊕ 〈vf̂k1+···+k4〉
⊕ 〈uvf̂k1+···+k4+1〉 ⊕ · · · ⊕ 〈uvf̂k1+···+k5〉
⊕ 〈(u + vhα)f̂k1+···+k5+1〉 ⊕ · · · ⊕ 〈(u + vhα)f̂k1+···+k6〉
⊕ (〈uf̂k1+···+k6+1〉 + 〈vf̂k1+···+k6+1〉) ⊕ · · · ⊕ (〈uf̂m〉 + 〈vf̂m〉),

where k1, · · · , k6 ≥ 0 and k1 + · · · + k6 + 1 ≤ t .
Let k0 = 0 and k7 be nonnegative integers such that k1 + · · · + k7 = t . Next, we define

F0 = fk0+1 · · · fk0+k1 , F1 = fk0+k1+1 · · · fk0+k1+k2 ,

F2 = fk0+k1+k2+1 · · · fk0+k1+k2+k3 , F3 = fk0+···+k3+1 · · · fk0+···+k4 ,

F4 = fk0+···+k4+1 · · · fk0+···+k5 , F5 = fk0+···+k5+1 · · · fk0+···+k6 ,

F6 = fk0+···+k6+1 · · · ft .

Then, by our construction, it is clear that F0, F1, · · · , F6 are pairwise coprime,
F0F1 · · ·F6 = xn − 1 , and

C = 〈F̂1〉 ⊕ 〈uF̂2〉 ⊕ 〈vF̂3〉 ⊕ 〈uvF̂4〉 ⊕ 〈(u + vhα)F̂5〉
⊕ (〈uF̂6〉 + 〈vF̂6〉).

Let R = F4[x]
〈xn−1〉F4[x] with 〈xn − 1〉F4[x] being the ideal of F4[x] generated by xn − 1.

Proposition 4 Let C be a cyclic code of odd length n over A. Then there exist polynomials
F,G,H, K,Q in F4[x] which are factors of xn − 1 such that

C = 〈F 〉R + u〈G〉R + v〈H 〉R + uv〈K〉R + (u + vhα)〈Q〉R,

where hα is a unit of R and 〈−〉R is an ideal of R generated by −. Moreover,

|C| = 45n−(degF+degG+degH+degK+degQ).
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Proof By Theorem 2, C = 〈F̂1〉⊕〈uF̂2〉⊕〈vF̂3〉⊕〈uvF̂4〉⊕〈(u+vhα)F̂5〉⊕(〈uF̂6〉+〈vF̂6〉).
Note that 〈F̂i〉 = 〈F̂i〉R + u〈F̂i〉R + v〈F̂i〉R + uv〈F̂i〉R for 0 ≤ i ≤ 6, we have

C = 〈F̂1〉R + u〈F̂1〉R + v〈F̂1〉R + uv〈F̂1〉R
+ u〈F̂2〉R + uv〈F̂2〉R
+ v〈F̂3〉R + uv〈F̂3〉R
+ uv〈F̂4〉R
+ (u + vhα)〈F̂5〉R + uv〈F̂5〉R
+ u〈F̂6〉R + v〈F̂6〉R + uv〈F̂6〉R

= 〈F̂1〉R
+ u(〈F̂1〉R + 〈F̂2〉R + 〈F̂6〉R)

+ v(〈F̂1〉R + 〈F̂3〉R + 〈F̂6〉R)

+uv(〈F̂1〉R + 〈F̂2〉R + 〈F̂3〉R + 〈F̂4〉R + 〈F̂5〉R + 〈F̂6〉R)

+ (u + vhα)〈F̂5〉R.

Let

F = F̂1

G = F̂1 + F̂2 + F̂6

H = F̂1 + F̂3 + F̂6

K = F̂1 + F̂2 + F̂3 + F̂4 + F̂5 + F̂6

Q = F̂5.

Next, we show that 〈G〉R = 〈F̂1〉R + 〈F̂2〉R + 〈F̂6〉R , 〈H 〉R = 〈F̂1〉R + 〈F̂3〉R + 〈F̂6〉R
and 〈K〉R = 〈F̂1〉R + 〈F̂2〉R + 〈F̂3〉R + 〈F̂4〉R + 〈F̂5〉R + 〈F̂6〉R .

For any distinct i, j ∈ {0, 1, · · · , 6}, we have xn − 1|F̂i F̂j , so that FiFj = 0 in �[x]
〈xn−1〉 .

Moreover, for i = 1, · · · , 6, {Fi, F̂i} are coprime pairs, hence, there exist b0i , b1i ∈ F4[x]
such that b0iFi + b1i F̂i = 1.

Take b0iFi + b1i F̂i = 1 for i = 2, · · · , 6, then there exist polynomials w1, · · · , w6 in
F4[x] such that

w1F2 · · ·F6 + w2F̂2F3 · · ·F6 + · · · + w6F2 · · ·F5F̂6 = 1.

Multiplying both sides of the above equation by F̂1 yields

F̂1 = w1F̂1F2 · · ·F6.

By the hypothesis, we obtain that

G = F̂1 + F̂2 + F̂6,

which implies that

w1FF2 · · · F6 = w1F̂1F2 · · · F6.

Hence

w1GF2 · · · F6 = F̂1.

Cryptogr. Commun. (2018) 10:11 –1117091114



This implies that F̂1 ∈ 〈G〉R . Continuing this process, we have
F̂1, F̂2, F̂6 ∈ 〈G〉R
F̂1, F̂3, F̂6 ∈ 〈H 〉R
F̂1, F̂2, F̂3, F̂4, F̂5, F̂6 ∈ 〈K〉R

Consequently, by Theorem 2, C = 〈F 〉R +u〈G〉R +v〈H 〉R +uv〈K〉R + (u+vhα)〈Q〉R .
Since |F4| = 4, |〈F 〉R| = 4n−degF , hence,

|C| = 45n−(degF+degG+degH+degK+degQ).

4 Right F2-module isometry

We take A as a natural extension of the ring M2(F2), accordingly, we can extend the defi-
nition of the Bachoc weight which was introduced in [2] from M2(F2) to this ring. Let WB

be the Bachoc weight over A and wB be the ordinary Bachoc weight of M2(F2)-codes, and
so we set

WB(X = X1 + uX2) = wB(X2) + wB(X1 + X2), for any X1, X2 ∈ M2(F2).

The definition of the weight immediately leads to a Gray map from A to M2
2 (F2) which

naturally extends to An:

ϕ : A → M2
2 (F2),X1 + uX2 → (X2, X1 + X2)

Note that ϕ extends to a distance preserving isometry:

ϕ : (An, Bachoc weight) → (M2n
2 (F2),

Bachoc weight).
Consider the mapping φ defined as

φ : M2(F2 + uF2) −→ F4 + uF4 + vF4 + uvF4(
a1 + ub1 a2 + ub2

(a2 + a3) + u(b2 + b3) (a1 + a2 + a4) + u(b1 + b2 + b4)

)

−→ (a1 + a2w) + u(b1 + b2w) + v(a3 + a4w) + uv(b3 + b4w),

where ai, bj in F2 for 1 ≤ i, j ≤ 4. It is easy to show that φ is a left F2-module isomor-
phism. Note that WB(X = X1 + uX2) = wB(X2) + wB(X1 + X2) = wL(φ(X)) for all
X ∈ A, φ is a right F2-module isometry. Thus, we have the following theorem.

Theorem 3 If C is a cyclic code overA of length n, sizeM and minimum Bachoc distance d ,
then φ(C) is a linear code over F4 of length 4n, size M and minimum Hamming distance d.

5 Examples

A linear code C of length n over A is called an optimal code if the quaternary code θ(C)

in Theorem 1 has the largest minimum Hamming distance for the given length and the
dimension. Now, some optimal codes of length 3 and 5 over A are shown as the following
examples. All the computations of minimum distance were performed in Magma (http://
magma.maths.usyd.edu.au/magma/).
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Example 1 The case when n = 3, we see the factorization of x3 − 1 = (x + 1)(x + w)(x +
w2). Now,let f1 = x + 1, f2 = x + w and f3 = x + w2, some optimal codes of length 3
over A are shown as follows:

Generators Imθ

〈f3, uf1, vf1〉 [12, 11, 2]∗
〈f1, vf2f3〉 [12, 10, 2]
〈f1, (u + v)f2f3〉 [12, 10, 2]
〈uf1, vf1, (u + v)f2f3〉 [12, 8, 4]∗
〈uf1, vf1, uvf2f3〉 [12, 7, 4]

Example 2 The case when n = 5, we see the factorization of x5 − 1 = (x + 1)(x2 + wx +
1)(x2 + w2x + 1). Now, let f1 = x + 1, f2 = x2 + wx + 1 and f3 = x2 + w2x + 1, some
optimal codes of length 5 over A are shown as follows:

Generators Imθ

〈f1, vf2f3〉 [20, 18, 2]∗
〈f1, (u + v)f2f3〉 [20, 18, 2]∗
〈f3, (u + v)f1f2〉 [20, 16, 3]
〈uf2, vf2, (u + v)f1〉 [20, 15, 4]∗

6 Conclusion

In [4], a theory of cyclic codes over M2(F2) was developed giving a characterization of
cyclic codes and their duals as right ideals in terms of two generators, and showing the
existence of infinitely many nontrivial cyclic codes for the Euclidean product. But these
codes were derived in the case of odd length. In this paper, based on these results, we derive
the structure theorem of cyclic codes of odd length over the ring M2(F2 +uF2) which leads
to even length codes overM2(F2). We also provide some optimal cyclic codes of even length
over F4. Also we obtain an isometric map from M2(F2 + uF2) to F4 + vF4 + uF4 + uvF4
using their respective Bachoc weight and Lee weight.
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