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Abstract We discuss nonlinear vectorial primitive recursive sequences. First we consider
the nonlinearly filtered multiple-recursive matrix generator for producing pseudorandom
vectors based on some nonlinear schemes and give lower bounds for their componentwise
linear complexity. Moreover, we obtain certain results concerning the jump multiple-
recursive matrix generator and establish that sequences generated by them have better period
and componentwise linear complexity as compared to usual multiple-recursive matrix gen-
erator sequences. We also include analogous results for transformation shift registers for
generating pseudorandom vectors.
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1 Introduction

Linear feedback shift registers (LFSRs) are used as basic building blocks in most of the
modern stream ciphers. These ciphers produce only a single bit per clock and hence are
often referred to as bit-oriented ciphers. Moreover, apart from having good cryptographic
properties, these ciphers also have very low cost of implementation in hardware. Since the
manipulation of several bits is required to produce just a single bit, bit-oriented ciphers are
sluggish when it comes to their software implementation.

It is quite natural to ask if we can design feedback shift registers (FSRs) that produce a
word in each clock instead of a bit so that software efficiency in various applications such as
high speed link encryption may be achieved. This question was stated by Preneel in [21] and
in fact, he asked if we can design fast and secure FSRs with the help of the word operations
of modern processors and the techniques of parallelism.

Niederreiter [15–18] gave a solution to Preneel’s problem even before it was formally
stated in the form of his multiple-recursive matrix method for producing pseudorandom vec-
tors, which we will refer to as “multiple-recursive matrix generator (MRMG)” throughout
this paper. We remark that multiple-recursive matrix generator is indeed a generalization of
matrix congruential generators studied by Franklin [5] and Grothe [10]. Zeng, Han and He
[25] introduced the notion of σ -LFSR and suggested a way to further improve the efficiency
of MRMG by imposing a restriction on the choice of its coefficient matrices from a special
set of matrices that are compatible with word operations of modern processors. It may be
noted that the notion of σ -LFSR is exactly the same as Niederreiter’s MRMG. We refer to
[1, 2, 6, 7] for more on primitive MRMG.

The sequences generated by MRMGs are prone to attacks based on algebraic techniques
due to their inherent linearity. Moreover, linear complexity plays a crucial role in determin-
ing the security of the keystream generated by MRMGs. The higher linear complexity we
have, the better security we achieve. Thus, for all practical purposes, we have to not only
destroy the linear structure of MRMGs, but also need to have better linear complexity. One
way of doing this is to employ some nonlinear functions on the contents of MRMGs. In fact,
one such scheme based on Langford arrangement was discussed in [1]. Motivated by this,
we introduce the notion of nonlinearly filtered MRMGs in Section 3 and prove that certain
lower bounds for the linear complexity can be guaranteed for the sequences generated by
them.

The other way of increasing the linear complexity of MRMG sequences, while still main-
taining large period and good statistical properties, is to apply clock control, that is, to
irregularly step the MRMG through its successive states. As in the case of regularly clocked
LFSRs [13], the regularly clocked MRMGs could also be susceptible to correlation and fast
correlation attacks. Thus irregular clocking would help in making the MRMGs immune to
correlation attacks. However, as pointed out in [13], key stream generators that use irregular
clocking are prone to timing and power attacks. In order to avoid these side-channel attacks
while still preserving all the advantages of irregular clocking, we discuss jump multiple-
recursive matrix generator in Section 4 and prove that sequences generated by the jump
multiple-recursive matrix generator have much better period and linear complexity as com-
pared to usual MRMGs. It may be noted that the notion of word-oriented cascade jump
σ -LFSR was introduced in [26], particularly, to study those cascade jump σ -LFSRs whose
matrix polynomial has only three terms. Our approach to the jump multiple-recursive matrix
generator is much more unified and general. Moreover, our results are completely different
from those obtained in [26].
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Tsaban and Vishne [24] have introduced the notion of transformation shift register (TSR)
for generating pseudorandom vectors that provides yet another solution to Preneel’s prob-
lem. It turns out that a TSR is indeed a particular case of MRMG. The reader is referred
to [3, 11, 14, 22] for some recent progress concerning TSRs. In order to blot out the linear
structure of TSRs and to enhance linear complexity, we introduce the notion of nonlinearly
filtered TSRs in Section 5. We also introduce the notion of jump transformation shift reg-
isters in Section 6. The results discussed in Sections 5 and 6 are quite analogous to those
obtained in Sections 3 and 4, but we include them for the sake of completeness.

The main objective of this paper is to introduce “nonlinearity” on MRMGs as well as
on TSRs that have not been yet reported in the literature and to bring them to the notice of
the larger crypto community. These “nonlinear word-oriented linear feedback shift regis-
ters” have relatively better cryptographic properties as compared to their linear counterparts.
Moreover, nonlinear word-oriented linear feedback shift registers have an added advantage
over their LFSR counterparts in terms of software efficiency as they produce a word instead
of a bit. Thus, nonlinear word-oriented linear feedback shift registers may be a useful choice
for designing stream ciphers, particularly, when software efficiency is required.

Part of this work has been presented at the International Conference on SEquences and
Their Applications (SETA-2016) held at Southwest Jiaotong University, Chengdu, China
during October 09–14, 2016.

2 Preliminaries

We recall some definitions and results described in [1, 16] concerning MRMGs. As we
know, in the majority of practical applications, one generally uses finite fields with char-
acteristic 2. Henceforth, we shall restrict ourselves to fields with characteristic 2 and their
extensions. However, some of the results discussed in this paper may directly be extended to
a finite field with odd characteristic. We shall denote, as usual, by F2 the finite field with 2
elements, by F2m the extension field of F2 of degreem and by F2[X] the ring of polynomials
in one variable X with coefficients in F2.

Given any ringR and any positive integer d, letMd(R) denote the set of all d×d matrices
with entries inR. Throughout this paper, we fix positive integersm and n, and a vector space
basis {α0, . . . , αm−1} of F2m over F2. Given any s ∈ F2m , there are unique s0, . . . , sm−1 ∈
F2 such that s = s0α0+· · ·+sm−1αm−1, and we shall denote the corresponding co-ordinate
vector (s0, . . . , sm−1) of s by s. Evidently, the association s �−→ s gives a vector space
isomorphism of F2m onto Fm

2 . Elements of Fm
2 may be thought of as row vectors and so sC

is a well-defined element of Fm
2 for any s ∈ F

m
2 and C ∈ Mm(F2).

Definition 1 Let C0, C1, . . . , Cn−1 ∈ Mm(F2). Given any n-tuple (s0, . . . , sn−1) of ele-
ments of F2m , let (si )∞i=0 denote the infinite sequence of elements of F2m determined by the
following linear recurrence relation:

si+n = C0si + C1si+1 + · · · + Cn−1si+n−1 i = 0, 1, . . . . (1)

The system (1) is called a multiple-recursive matrix generator (MRMG) of order n over
F2m , while the sequence (si )∞i=0 is referred to as the sequence generated by the MRMG
(1). The n-tuple (s0, s1, . . . , sn−1) is the initial state of the MRMG (1) and the polynomial
ImXn − Cn−1X

n−1 − · · · − C1X − C0 with matrix coefficients is the matrix polynomial of
the MRMG (1). The sequence (si )∞i=0 is ultimately periodic if there are integers r, n0 with
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r ≥ 1 and n0 ≥ 0 such that sj+r = sj for all j ≥ n0. The least positive integer r with this
property is the period of (si )∞i=0 and the corresponding least nonnegative integer n0 is the
preperiod of (si )∞i=0. The sequence (si )∞i=0 is periodic if its preperiod is 0.

The following result gives some basic facts about MRMG.

Proposition 1 [6, Proposition 4.2] For the sequence (si )∞i=0 generated by the MRMG (1) of
order n over F2m , we have

(i) (si )∞i=0 is ultimately periodic, and its period is no more than 2mn − 1;
(ii) if C0 is nonsingular, then (si )∞i=0 is periodic; conversely, if (si )∞i=0 is periodic when-

ever the initial state is of the form (b, 0, . . . , 0), where b ∈ F2m with b �= 0, then C0 is
nonsingular.

An MRMG of order n over F2m is primitive if for any choice of nonzero initial state, the
sequence generated by that MRMG is periodic of period 2mn − 1.

In view of Proposition 1 if ImXn − Cn−1X
n−1 − · · · − C1X − C0 ∈ Mm (F2) [X] is the

matrix polynomial of primitive MRMG, then the matrix C0 is necessarily nonsingular.
Corresponding to a matrix polynomial ImXn − Cn−1X

n−1 − · · · − C1X − C0 ∈
Mm(F2)[X], we can associate a (m, n)-block companion matrix Cmrmg ∈ Mmn(F2) of the
following form

Cmrmg =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . 0 0 C0
Im 0 0 . . 0 0 C1
. . . . . . . .

. . . . . . . .

0 0 0 . . Im 0 Cn−2
0 0 0 . . 0 Im Cn−1

⎞
⎟⎟⎟⎟⎟⎟⎠

, (2)

where Im denotes the m × m identity matrix over F2, while 0 indicates the zero matrix
in Mm(F2). Using a Laplace expansion or a suitable sequence of elementary column
operations, it is easy to see that detCmrmg = ± det(C0). Consequently,

Cmrmg ∈ GLmn(F2) if and only if C0 ∈ GLm(F2), (3)

where GLm(F2) is the general linear group of m × m nonsingular matrices over F2.
It may be noted that the block companion matrix (2) is the state transition matrix for the

MRMG (1). Indeed, the k-th state Sk := (sk, sk+1, . . . , sk+n−1) ∈ F
n
2m of the MRMG (1)

is obtained from the initial state S0 := (s0, s1, . . . , sn−1) ∈ F
n
2m by Sk = S0Ck

mrmg , for any
k ≥ 0. We can identify MRMG (1) with the block companion matrix (2).

The following lemma reduces the calculation of an mn × mn determinant to an m × m

determinant.

Lemma 1 [6, Lemma 5.1] Let Cmrmg be an MRMG as given as in (2) and also let M(X) ∈
Mm (F2[X]) be defined by M(X) := ImXn − Cn−1X

n−1 − · · · − C1X − C0. Then the
characteristic polynomial of Cmrmg is equal to det (M(X)).

The following characterization of primitive MRMG can be easily extracted from the
results given in [6]; see also [15, Theorem 4].

Proposition 2 [6] Let C0 ∈ GLm(F2). Then the following are equivalent:

(i) an MRMG (1) of order n over F2m is primitive;
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(ii) o(Cmrmg) = qmn − 1, where o(Cmrmg) denotes the multiplicative order of Cmrmg in
GLmn(F2);

(iii) det (M(X)) is a primitive polynomial over F2 of degree mn, where M(X) is same as
defined in Lemma 1.

We recall a result that enables us to determine the linear complexity of sequences
generated by a primitive MRMG.

Lemma 2 [16, Lemma 1] Let si =
(
s
(1)
i , . . . , s

(m)
i

)
∈ F

m
2 � F2m i = 0, 1, . . . , be an

arbitrary recursive vector sequence and let h(X) ∈ F2[X] be the characteristic polynomial
of the matrix Cmrmg in (2). Then for each 1 ≤ j ≤ m the sequence s

(j)

0 , s
(j)

1 , . . . of the j th

coordinates is a linear recurring sequences in F2 with characteristic polynomial h(X).

The following lemma trivially follows from Lemma 2 and gives the component-wise
linear complexity of the sequences generated by a primitive MRMG.

Lemma 3 Let si =
(
s
(1)
i , . . . , s

(m)
i

)
∈ F

m
2 � F2m i = 0, 1, . . . , be a sequence generated

by a primitive MRMG of order n over F2m . Then for each 1 ≤ j ≤ m, the linear complexity
of the j th coordinate sequence s

(j)

0 , s
(j)

1 , . . . over F2 is mn.

We also recall some definitions and results from [11, 24] concerning transformation shift
registers (TSR) for generating pseudorandom vectors. These results are similar to what we
discussed for multiple-recursive matrix generator and will be used in the sequel.

Definition 2 [11, 24] Let c0, c1, . . . , cn−1 ∈ F2 and T ∈ Mm(F2). Given any n-tuple
(s0, . . . , sn−1) of elements of F2m , let (si )∞i=0 denote the infinite sequence of elements of
F2m determined by the following linear recurrence relation:

si+n = si (c0T ) + si+1(c1T ) + · · · + si+n−1(cn−1T ) i = 0, 1, . . . . (4)

The system (4) is a transformation shift register (TSR) of order n over F2m , while the
sequence (si )∞i=0 is the sequence generated by the TSR (4). The n-tuple (s0, s1, . . . , sn−1) is
the initial state of the TSR (4) and the polynomial Xn − (cn−1T )Xn−1 − · · · − (c1T )X −
(c0T ) with matrix coefficients is the tsr-polynomial of the TSR (4). The sequence (si )∞i=0
is ultimately periodic if there are integers r, n0 with r ≥ 1 and n0 ≥ 0 such that sj+r = sj
for all j ≥ n0. The least positive integer r with this property is the period of (si )∞i=0 and the
corresponding least nonnegative integer n0 is the preperiod of (si )∞i=0. The sequence (si )∞i=0
is periodic if its preperiod is 0.

The basic properties of TSRs are stated in the following proposition.

Proposition 3 [11] For the sequence (si )∞i=0 generated by the TSR (4) of order n over F2m ,
we have

(i) (si )∞i=0 is ultimately periodic, and its period is ≤ 2mn − 1;
(ii) if c0 �= 0 and T is nonsingular, then (si )∞i=0 is periodic; conversely, if (si )∞i=0 is peri-

odic whenever the initial state is of the form (b, 0, . . . , 0), where b ∈ F2m with b �= 0,
then c0T is nonsingular.
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A TSR of order n over F2m is primitive if for any choice of nonzero initial state, the
sequence generated by that TSR is periodic of period 2mn − 1.

In view of Proposition 3, if Xn − (cn−1T )Xn−1 − · · · − (c1T )X − (c0T ) ∈ Mm(F2)[X]
is the tsr-polynomial of a primitive TSR, then the matrix c0T is necessarily nonsingular.

Corresponding to a tsr-polynomial Xn − (cn−1T )Xn−1 − · · · − (c1T )X − (c0T ) ∈
Mm(F2)[X], we can associate a (m, n)-block companion matrix Ctsr ∈ Mmn(F2) of the
following form

Ctsr =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 0 . . 0 0 c0T

Im 0 0 . . 0 0 c1T

. . . . . . . .

. . . . . . . .

0 0 0 . . Im 0 cn−2T

0 0 0 . . 0 Im cn−1T

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5)

where c0, c1, . . . , cn−1 ∈ F2, T ∈ Mm(F2) and Im denotes the m × m identity matrix over
F2, while 0 indicates the zero matrix in Mm(F2).

Note that the block companion matrix (5) is the state transition matrix for the TSR (4)
and we can identify TSR (4) with block companion matrix (5).

The following lemma is used to compute the characteristic polynomial of a TSR (5).

Lemma 4 [24, Proposition 3.1] Let Ctsr be a TSR as given in (5) and also let M̃(X) ∈
Mm (F2[X]) be defined by M̃(X) := ImXn − (cn−1T )Xn−1 − · · · − (c1T )X − (c0T ). Then
the characteristic polynomial of Ctsr is equal to det

(
M̃(X)

)
.

Primitive TSRs admit the following characterization.

Proposition 4 [11] Let c0 be non-zero and T ∈ GLm(F2). Then the following are
equivalent:

(i) a TSR (4) of order n over F2m is primitive;
(ii) o(Ctsr ) = 2mn −1, where o(Ctsr ) denotes the multiplicative order of T in GLmn(F2);
(iii) det (F (X)) is a primitive polynomial of degree mn over F2, where M̃(X) is same as

defined in Lemma 4.

The following lemma ensures that the characteristic polynomial of each of the component
sequences is same as the TSR itself.

Lemma 5 [11] Let si =
(
s
(1)
i , . . . , s

(m)
i

)
∈ F

m
2 � F2m i = 0, 1, . . . , be an arbitrary

recursive vector sequence and let g ∈ F2[x] be the characteristic polynomial of the matrix
Ctsr in (5). Then for each 1 ≤ j ≤ m the sequence s

(j)

0 , s
(j)

1 , . . . of the j -th coordinates is
a linear recurring sequences in F2 with characteristic polynomial g.

The following lemma gives linear complexity of the componentwise sequences generated
by a primitive TSR.

Lemma 6 [11, Corollary 1] Let si =
(
s
(1)
i , . . . , s

(m)
i

)
∈ F

m
2 � F2m i = 0, 1, . . . , be a

sequence generated by a primitive TSR of length n over F2m . Then for each 1 ≤ j ≤ m, the
linear complexity of the j -th coordinate sequence s

(j)

0 , s
(j)

1 , . . . over F2 is mn.
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3 Nonlinearly filtered primitive MRMGs

First we recall some definitions and classical results about the linear complexity of nonlin-
early filtered primitive LFSRs. We then use these to define nonlinearly filtered primitive
MRMGs.

Definition 3 Let (si)∞i=0 be a sequence generated by a primitive LFSR. If a sequence (zi)
∞
i=0

is produced by any non-zero linear combination of finitely many (say, L) products of k

different shifts of the sequence (si)
∞
i=0, that is,

zi =
L−1∑
t=0

ct si+δt
0
si+δt

1
. . . si+δt

k−1
,

where, for each j = 0, . . . , k−1, δt
j denote the distance at which sequence has been shifted,

then the sequence (zi)
∞
i=0 is obtained by a k-th order filtering of the sequence (si)

∞
i=0.

We recall the following classical result by Rueppel [23] which gives a lower bound for
the linear complexity of filtered sequences.

Proposition 5 [23, Corollary 5.7] Let (si)∞i=0 be a sequence generated by a primitive LFSR
of length n over F2 and let (zi)

∞
i=0 be produced by any non-zero linear combination of L

consecutive k-th order products (k < n) of equidistant shifts of the sequence (si)
∞
i=0, that is

zi =
L−1∑
t=0

ct si+t si+t+δ . . . si+t+(k−1)δ,

where gcd(δ, 2n − 1) = 1. Then, the linear complexity of the filtered sequence (zi)
∞
i=0 is at

least

(
n

k

)
− (L − 1).

Without essentially having the Rueppel’s restriction that δ and 2n − 1 be coprime, the
following result of Paterson [19] still gives a good lower bound on the linear complexity of
the filtered sequences.

Proposition 6 [19, Theorem 1] Let (si)
∞
i=0 be a sequence generated by a primitive LFSR

of length n over F2. Assume 0 < δ < 2n − 1 and u is the least positive integer such
that (2n − 1)|δ(2u − 1). Let (zi)

∞
i=0 be produced by any non-zero linear combination of L

consecutive k-th order products (k < n) of equidistant shifts of the sequence (si)
∞
i=0, that is

zi =
L−1∑
t=0

ct si+t si+t+δ . . . si+t+(k−1)δ.

Then, the linear complexity of (zi)
∞
i=0 is at least

(
u

k

) (
n
u

)k − (L − 1).

Analogous to the notion of nonlinearly filtered primitive LFSRs, we introduce the notion
of nonlinearly filtered primitive MRMGs and study their linear complexity.

Consider (si )∞i=0, where si =
(
s
(1)
i , . . . , s

(m)
i

)
∈ F

m
2

∼= F2m, i = 0, 1, . . . , is a sequence

over F2m generated by a primitive MRMG of order n. Then the “product” and “sum” of
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the two different shifts si and si+δ of the sequence (si )∞i=0 is defined as the componentwise
multiplication and componentwise addition respectively:

sisi+δ =
(
s
(1)
i s

(1)
i+δ, . . . , s

(m)
i s

(m)
i+δ

)
, si + si+δ =

(
s
(1)
i + s

(1)
i+δ, . . . , s

(m)
i + s

(m)
i+δ

)
. (6)

Definition 4 Let (si )∞i=0 be a sequence generated by a primitive MRMG. If a sequence
(zi )

∞
i=0 is produced by any non-zero linear combination of finitely many (say, L) products

of k different shifts of the sequence (si )∞i=0, that is,

zi =
L−1∑
t=0

ct si+δt
0
si+δt

1
. . . si+δt

k−1
,

then the sequence (zi )
∞
i=0 is obtained by a k-th order filtering of the sequence (si )∞i=0.

The lower bound for the componentwise linear complexity of nonlinearly filtered
MRMGs is given by the following proposition.

Proposition 7 Let (si )∞i=0 be a sequence generated by a primitive MRMG of length n over
F2m and let (zi )

∞
i=0 be produced by any non-zero linear combination of L consecutive k-th

order products (k < n) of equidistant shifts of the sequence (si )∞i=0, that is

zi =
L−1∑
t=0

ct si+t si+t+δ . . . si+t+(k−1)δ,

where gcd(δ, 2mn − 1) = 1. Then for each 1 ≤ j ≤ m, the linear complexity of the j -th

coordinate sequence z
(j)

0 , z
(j)

1 , . . . is at least

(
mn

k

)
− (L − 1).

Proof From (6), it follows that for each 1 ≤ j ≤ m, we have

zi =
L−1∑
t=0

ct s
(j)
i+t s

(j)
i+t+δ . . . s

(j)

i+t+(k−1)δ i = 0, 1, . . . .

Moreover, by Lemma 3, the linear complexity of the sequences s
(j)
i , i = 0, 1, . . . , is mn.

Thus, by Proposition 5, the linear complexity of the sequence (z
(j)
i )∞i=0 is at least

(
mn

k

)
−

(L − 1).

By relaxing the condition gcd(δ, 2mn − 1) = 1, the following proposition still gives a
good lower bound for the componentwise linear complexity of nonlinearly filtered primitive
MRMGs.

Proposition 8 Let (si )∞i=0 be a sequence generated by a primitive MRMG of length n over
F2m . Assume 0 < δ < 2mn−1 and u is the least positive integer such that (2mn−1)|δ(2u−1).
Let a sequence (zi )

∞
i=0 be produced by any non-zero linear combination of L consecutive

k-th order products (k < mn) of equidistant shifts of the sequence (si )∞i=0 defined as

zi =
L−1∑
t=0

ct si+t si+t+δ . . . si+t+(k−1)δ.
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Then for each 1 ≤ j ≤ m, the linear complexity of the j -th coordinate sequence

z
(j)

0 , z
(j)

1 , . . . is at least

(
u

k

) (
mn
u

)k − (L − 1).

Proof It follows by similar arguments as the ones given in the proof of Proposition 7 and
by using Proposition 6.

Our discussions so far provide only generic framework for introducing nonlinearity on
the contents of MRMGs that ensures a minimum value for the componentwise linear com-
plexity. However, one might use cryptographically well-studied nonlinear functions, like the
one suggested in [1], on the contents of MRMGs so as to produce sequences with possibly
explicit and better linear complexity.

As alluded to in the introduction, nonlinearly filtered MRMGs output a word per clock
instead of a bit and hence, they should have efficient software encryption unlike nonlinearly
filtered LFSRs.

4 Jump controlled multiple-recursive matrix generator

In stream cipher design, one can achieve better linear complexity of the sequences by using
cascading clock controlled feedback shift registers. In this generator, the output of one FSR
is obtained by clocking or stepping through its state space once or multiple times depend-
ing upon the output of another FSR. The keystream generators that use clock-controlled
FSRs are usually stepped a few times to produce just a single bit of the sequence. As a
consequence, we have relatively less rate of sequence generation, which makes them not so
attractive for high speed implementations. In order to achieve better efficiency in such cases,
let an FSR move to a state more than one step ahead without actually traversing consecu-
tive intermediate states. This phenomenon is called jumping and the notion of bit-oriented
jump controlled LFSR was first introduced by Jansen in [12]. It was later used in designing
a stream cipher called Pomaranch [13].

Analogous to the notion of jump controlled LFSR, we discuss jump controlled multiple-
recursive matrix generator, in which output of one MRMG is clock controlled by another
MRMG. The jump multiple-recursive matrix generator shall render double efficiency, one
because of its jumping and other because it produces a word per clock unlike jump LFSRs.
In this section, we also study period and componentwise linear complexity of sequences
generated by jump controlled multiple-recursive matrix generator.

Let us suppose that the state transition matrix Cmrmg as described in (2) has maximum
possible multiplicative order in the corresponding general linear group, the output sequence
then achieves the maximum possible period 2mn − 1. Now from Lemma 1, we have that the
characteristic polynomial χ(X) of Cmrmg is given by

χ(X) = det
(
ImXn − Cn−1X

n−1 − · · · − C1X − C0

)

and in view of Proposition 2, χ(X) is primitive of degree mn over F2.
Since χ(Cmrmg) = 0, Cmrmg may be viewed as a root of χ , that is, the order of Cmrmg is

2mn−1. Now Cmrmg+I being an element of Fmn
2 is equal to CJ

mrmg for some positive integer

J . In fact, the identity CJ
mrmg = Cmrmg + I is essentially equivalent to XJ = X + 1 (mod

χ(X)). The integer J is the Jump index of χ (cf. 12). It is easy to conclude from here that
by changing state transition matrix of MRMG from Cmrmg to Cmrmg + I , we are effectively
making J steps through the state space of the original MRMG, that is, jumping J steps
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ahead of the original state. It is clear that we achieve the same effect as multiplying a state
vector either by CJ

mrmg or by Cmrmg + I . Moreover, it is much more efficient to go from

Cmrmg to Cmrmg + I rather than going from Cmrmg to CJ
mrmg . Thus making a MRMG jump

is indeed efficient and attractive. To see it more directly, let us assume that at a particular
instance t , the t-th state of MRMG is St := (st , st+1, . . . , st+n−1) ∈ F

n
2m . Now in order to

traverse it J times through the state space, we need to multiply it by CJ
mrmg as given in the

following expression:

StC
J
mrmg = St

(
Cmrmg + I

) = StCmrmg + St = St+1 + St . (7)

Thus, in practice, jumping can be achieved simply by adding the current state to the next
state.

Let the characteristic polynomial of the modified transition matrix Cmrmg +I be denoted
by χ⊥(X); it follows that χ⊥(X) = det(XI +Cmrmg + I ) = χ(X+1). It may be remarked
that the dual χ⊥(X) is not necessarily a primitive polynomial even though χ(X) is primitive.
As noted in [12], if the dual polynomial χ⊥(X) is also primitive, its jump index J⊥ always
exists and is given by

J⊥ = J−1 (
mod 2mn − 1

)
.

It is clear that the jump index of the dual polynomial only exists if J is relatively prime
with order of χ , i.e., gcd(J, 2mn − 1) = 1. Moreover, the jump index J ∗ of the reciprocal
polynomial χ∗(X) = Xmnχ (1/X) of χ(X) is given by

J ∗ = 1 − J
(
mod 2mn − 1

)
.

After having these basic facts at our disposal, we now turn our focus toward jump
controlled MRMGs. We discuss here the basic building block for designing a key stream
generator that consists of a control MRMG, say C-MRMG and a clock-controlled gener-
ating MRMG, say G-MRMG. For achieving better period and better linear complexity of
sequences, we take both C-MRMG and G-MRMG to be primitive MRMGs of length n over
F2m . We take the output of G-MRMG controlled by the binary sequence generated by C-
MRMG in the following manner: if the output of C-MRMG is 0, we take the output from
G-MRMG only after clocking it once, and if the output of C-MRMG is 1, we take the output
from G-MRMG only after jumping it J times, where J is the jump index of G-MRMG.

In order to achieve maximum period of the component sequences generated by G-
MRMG when clocked controlled under C-MRMG, we impose the condition gcd(J −
1, 2mn − 1) = 1. The reader is referred to [4, 12] for more details.

The following proposition guarantees the maximum period for component sequences
generated by a G-MRMG when controlled under C-MRMG.

Proposition 9 Let G-MRMG be a jump MRMG controlled under C-MRMG as described
above. Let (si )∞i=0 be the sequence generated by G-MRMG when clocked regularly and
let (zi )

∞
i=0 be the sequence produced by G-MRMG when clocked under the control of C-

MRMG. Then for each 1 ≤ j ≤ m, the period of the j -th coordinate sequence z
(j)

0 , z
(j)

1 , . . .

is (2mn − 1)2.

Proof It is clear that each component sequence z
(j)
i , i = 0, 1, . . . would traverse a step-or-J

steps through the state space depending on whether C-MRMG produces 0 or 1, respectively.
Moreover, in view of Lemmas 2 and 3, each component sequence s

(j)
i , i = 0, 1, . . . , of G-

MRMG when clocked regularly is primitive with period 2mn − 1 and linear complexity mn.
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Thus, it follows from [9, Theorem 4] together with the condition gcd(J − 1, 2mn − 1) = 1
that the period of each component sequence z

(j)
i , i = 0, 1, . . . is (2mn − 1)2.

Proposition 9 clearly exhibits that there is a significant improvement in the period of the
component sequences of jump controlled MRMGs. In fact, it has increased from the period
2mn − 1 of usual MRMGs to the period (2mn − 1)2 of the jump controlled MRMGs.

The componentwise linear complexity of the sequences generated by jump controlled
MRMG is given by the following proposition.

Proposition 10 Let G-MRMG be a jump MRMG controlled under C-MRMG as described
above. Let (si )∞i=0 be the sequence generated by G-MRMG when clocked regularly and
let (zi )

∞
i=0 be the sequence produced by G-MRMG when clocked under the control of C-

MRMG. Then for each 1 ≤ j ≤ m, the componentwise linear complexity of the j -th
coordinate sequence z

(j)

0 , z
(j)

1 , . . . is mn (2mn − 1).

Proof It follows by similar arguments as given in the proof of Proposition 9 and by [9,
Corollary 1] together with the condition gcd(J − 1, 2mn − 1) = 1.

It is easy to see from Proposition 10 that the componentwise linear complexity of jump
controlled MRMGs is (2mn − 1) times more than that of the usual MRMGs.

The sequences generated by jump controlled MRMG when viewed over F2 are useful
in various applications. The following theorem gives explicit period and greatest possible
value of linear complexity of the sequences generated by jump controlled MRMGs when
viewed over F2.

Theorem 1 Let G-MRMG be a jump MRMG controlled under C-MRMG as described
above. Let (si )∞i=0 be the sequence generated by G-MRMG when clocked regularly and
let (zi )

∞
i=0 be the sequence produced by G-MRMG when clocked under the control of C-

MRMG. Also, let gcd(J − 1, 2mn − 1) = 1. If the sequence (zi )
∞
i=0 in F2m generated by

G-MRMG when clocked under the control of C-MRMG is viewed as a sequence in F2, then
its period and the greatest possible value of its linear complexity are given by (2mn − 1)2

and m2n (2mn − 1), respectively.

Proof It is easy to see from Lemma 2 that the minimal polynomial over F2 of each of the
component sequences of G-MRMG when clocked regularly is primitive of degree mn and
is given by χ(X). In other words, each component sequences of G-MRMG when clocked
regularly is of period 2mn − 1 and is essentially a shifted version of other components.
Therefore, when G-MRMG is clocked under the control of C-MRMG, each component
sequence z

(j)
i , i = 0, 1, . . . has the same minimal polynomial (say, g(X)) over F2 and has

degree mn (2mn − 1) in view of the Proposition 10.
We can think of each component sequence z

(j)
i , i = 0, 1, . . . as an m-decimated

sequence of (zi )
∞
i=0 when viewed as a sequence over F2. Thus, the sequence (zi )

∞
i=0 when

viewed as a sequence over F2 can be obtained by interleaving these m decimated sequences
z
(j)
i , j = 0, . . . , m − 1. If f (X) denotes the minimal polynomial of the sequence (zi )

∞
i=0

when viewed as a sequence over F2, then by [8, Theorem 1], we have that f (X) | g(Xm).
Hence, the greatest possible value of the linear complexity of the sequence (zi )

∞
i=0 when

viewed as a sequence over F2 is m2n (2mn − 1), which is the degree of the polynomial
g(Xm). Moreover, it follows from Proposition 9 that the period of the sequence (zi )

∞
i=0

when viewed as a sequence over F2 is (2mn − 1)2.
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It is clear from (7) that to make a G-MRMG traverse through J steps in the state space,
we do not really need the explicit value of J . However, in order to maximize the period of
jump controlled MRMGs, the greatest common divisor of J −1 and the period 2mn−1 must
be equal to 1. By taking ideas from Pohlig-Hellman method [20], we prove the following
theorem that gives an alternative way to check this condition without actually computing J .

Theorem 2 Let h(X) be a primitive polynomial of degree N over F2 with period P =
2N − 1 and jump index J . Moreover, assume that p1, p2, . . . , pr are the distinct prime
factors of P , where each factor occurs only once. Then gcd(J − 1, P ) = 1 if and only if

X
P
pi �= (X + 1)

P
pi (mod h(X)) for each i = 1, . . . , r .

Proof It is easy to see that gcd(J − 1, P ) = 1 if and only if J �= 1 (mod pi) for each
i = 1, . . . , r . By the definition of jump index, we have

XJ = X + 1 (mod h(X)). (8)

For each i, we can reduce the computation of J as a discrete logarithm in F
∗
2N to com-

putation of J (mod pi) as a discrete logarithm in the cyclic groups of order pi generated by

X
P
pi as indicated in the following equation.

(X
P
pi )J (mod pi) = (X + 1)

P
pi (mod h(X)). (9)

It follows from (9) that J �= 1 (mod pi) if and only if X
P
pi �= (X + 1)

P
pi (mod h(X)).

This completes the proof.

In practice, if the factors of P are known, it is easier to check the equivalent conditions
of Theorem 2 as compared to computing J first and then testing whether or not gcd(J −
1, P ) = 1.

5 Nonlinearly filtered primitive TSRs

Motivated by nonlinearly filtered primitive MRMGs, we introduce the notion of nonlinearly
filtered primitive TSRs in this section and obtain some results analogous to those discussed
in Section 3.

Consider (si )∞i=0, where si =
(
s
(1)
i , . . . , s

(m)
i

)
∈ F

m
2

∼= F2m, i = 0, 1, . . . , is a sequence

over F2m generated by a primitive TSR of order n. Then the “product” and “sum” of the
two different shifts si and si+δ of the sequence (si )∞i=0 is defined as the componentwise
multiplication and componentwise addition respectively:

sisi+δ =
(
s
(1)
i s

(1)
i+δ, . . . , s

(m)
i s

(m)
i+δ

)
, si + si+δ =

(
s
(1)
i + s

(1)
i+δ, . . . , s

(m)
i + s

(m)
i+δ

)
. (10)

Definition 5 Let (si )∞i=0 be a sequence generated by a primitive TSR. If a sequence (zi )
∞
i=0

is produced by any non-zero linear combination of finitely many (say, L) products of k

different shifts of the sequence (si )∞i=0, that is,

zi =
L−1∑
t=0

ct si+δt
0
si+δt

1
. . . si+δt

k−1
,

then the sequence (zi )
∞
i=0 is obtained by a k-th order filtering of the sequence (si )∞i=0.
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The following proposition gives lower bound for the componentwise linear complexity
of nonlinearly filtered TSRs.

Proposition 11 Let (si )∞i=0 be a sequence generated by a primitive TSR of length n over
F2m and let (zi )

∞
i=0 be produced by any non-zero linear combination of L consecutive k-th

order products (k < n) of equidistant shifts of the sequence (si )∞i=0, that is

zi =
L−1∑
t=0

ct si+t si+t+δ . . . si+t+(k−1)δ,

where gcd(δ, 2mn − 1) = 1. Then for each 1 ≤ j ≤ m, the linear complexity of the j -th

coordinate sequence z
(j)

0 , z
(j)

1 , . . . is at least

(
mn

k

)
− (L − 1).

Proof It follows by similar arguments as given in the proof of Proposition 7 and by using
Proposition 5.

After we relax the restriction gcd(δ, 2mn − 1) = 1 in Proposition 11, the following
proposition still ensures a good lower bound for the componentwise linear complexity of
the nonlinear filtered TSRs.

Proposition 12 Let (si )∞i=0 be a sequence generated by a primitive TSR of length n over
F2m . Assume 0 < δ < 2mn−1 and u is the least positive integer such that (2mn−1)|δ(2u−1).
Let a sequence (zi )

∞
i=0 is produced by any non-zero linear combination of L consecutive

k-th order products (k < mn) of equidistant shifts of the sequence (si )∞i=0 defined as

zi =
L−1∑
t=0

ct si+t si+t+δ . . . si+t+(k−1)δ.

Then for each 1 ≤ j ≤ m, the linear complexity of the j -th coordinate sequence

z
(j)

0 , z
(j)

1 , . . . is at least

(
u

k

) (
mn
u

)k − (L − 1).

Proof It follows by similar arguments as given in the proof of Proposition 7 and by using
Proposition 6.

The results of this section are quite general in nature. It is important to note that for
practical purposes, one has to employ a nonlinear function on the contents of TSRs that
significantly increases the linear complexity. For instance, a nonlinear scheme based on
Langford arrangement was given in [11], which is similar yet different from what has been
recently proposed in [1] and gives enhanced componentwise linear complexity.

Unlike their LFSRs counterparts, nonlinearly filtered TSRs produce a word per clock
and hence are efficient in software implementations.

6 Jump controlled transformation shift registers

In this section, we introduce the notion of jump controlled transformation shift registers, in
which output of one TSR is clock controlled by another TSR and study period and compo-
nentwise linear complexity of sequences generated by jump controlled transformation shift
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registers. Like jump controlled MRMG, the jump controlled transformation shift registers
shall also provide greater efficiency unlike jump LFSRs.

We begin with a TSR whose state transition matrix Ctsr as given in (5) has order 2mn −1
so as to obtain maximum period of the corresponding sequence. In view of Lemma 4, the
characteristic polynomial χ̃(X) of Ctsr admits the following form

χ̃(X) = det
(
ImXn − (cn−1T )Xn−1 − · · · − (c1T )X − (c0T )

)
,

and Proposition 4 clearly implies that χ̃(X) is primitive of degree mn over F2.
As pointed out in [12], χ̃(X) being primitive, the jump index of χ̃ shall always exits. Let

J̃ be the jump index of χ̃ . By definition of jump index, we have, CJ̃
tsr = Ctsr + I , which is

indeed equivalent to XJ̃ = X + 1 (mod χ̃(X)).
In order to traverse J̃ step ahead through the state space of the original TSR, we shall

multiply the state vector by CJ̃
tsr , which, in turn, is same as multiplying by Ctsr + I . In fact,

if at a particular instance t , the t-th state of TSR is St := (st , st+1, . . . , st+n−1) ∈ F
n
2m , then

the effect of jumping is achieved simply by adding the current state to the next state as is
evident from the following equation:

StC
J
tsr = St (Ctsr + I ) = StCtsr + St = St+1 + St . (11)

Our basic set-up for a keystream generator consists of a control TSR, say C-TSR and
a clock-controlled generating TSR, say G-TSR. We take both C-TSR and G-TSR to be
primitive TSRs of length n over F2m for achieving high period and better linear complexity.
We take the output of G-TSR controlled by the binary sequence generated by C-TSR in the
following manner: if the output of C-TSR is 0, we take the output from G-TSR only after
clocking it once, and if the output of C-TSR is 1, we take the output from G-TSR only after
jumping it J̃ times, where J̃ is the jump index of G-TSR. To maximize the period of the
component sequences in this set-up, we also impose a restriction that gcd(J̃ −1, 2mn −1) =
1 or equivalently, gcd(J̃ ∗, 2mn − 1) = 1, where J̃ ∗ = 1− J̃ (mod 2mn − 1) is jump index
of the reciprocal polynomial χ̃∗(X) = Xmnχ̃ (1/X) of χ̃(X).

The following proposition is analogous to Proposition 9 and gives period of component
sequences generated jump TSR.

Proposition 13 Let G-TSR be a jump TSR controlled under C-TSR as described above.
Let (si )∞i=0 be the sequence generated by G-TSR when clocked regularly and let (zi )

∞
i=0 be

the sequence produced by G-TSR when clocked under the control of C-TSR. Then for each
1 ≤ j ≤ m, the period of the j -th coordinate sequence z

(j)

0 , z
(j)

1 , . . . is (2mn − 1)2.

Proof By using Lemmas 5 and 6, the proof follows by similar arguments as given in
Proposition 9 together with the condition gcd(J̃ − 1, 2mn − 1) = 1.

It clear from Proposition 13 that the period has increased from the period 2mn − 1 of
usual TSRs to the period (2mn − 1)2 of the jump controlled TSRs.

The following proposition gives the componentwise linear complexity of the sequences
generated by jump controlled TSRs.

Proposition 14 Let G-TSR be a jump TSR controlled under C-TSR as described above.
Let (si )∞i=0 be the sequence generated by G-TSR when clocked regularly and let (zi )

∞
i=0

be the sequence produced by G-TSR when clocked under the control of C-TSR. Then for
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each 1 ≤ j ≤ m, the componentwise linear complexity of the j -th coordinate sequence
z
(j)

0 , z
(j)

1 , . . . is mn (2mn − 1).

Proof It follows by similar arguments as given in Proposition 9 and by [9, Corollary 1]
together with the condition gcd(J̃ − 1, 2mn − 1) = 1.

Proposition 14 confirms that the componentwise linear complexity of jump controlled
TSRs has significantly increased from the usual TSRs.

The period and greatest possible value of linear complexity of the sequences generated
by jump controlled TSRs when viewed over F2 is given by the following theorem.

Theorem 3 Let G-TSR be a jump TSR controlled under C-TSR as described above. Let
(si )∞i=0 be the sequence generated by G-TSR when clocked regularly and let (zi )

∞
i=0 be the

sequence produced by G-TSR when clocked under the control of C-TSR. Also, let gcd(J̃ −
1, 2mn − 1) = 1. If the sequence (zi )

∞
i=0 in F2m generated by G-TSR when clocked under

the control of C-TSR is viewed as a sequence in F2, then its period and the greatest possible
value of its linear complexity are given by (2mn − 1)2 and m2n (2mn − 1), respectively.

Proof The proof is exactly along the similar lines as of Theorem 1.

Remark 1 In order to maximize the period of the jump TSRs, we must ensure the condition
gcd(J̃ − 1, 2mn − 1) = 1. This can be done by checking the equivalent conditions of
Theorem 2.

7 Conclusions

We study nonlinearly filtered multiple-recursive matrix generator for producing pseudoran-
dom vectors based on nonlinear schemes and give lower bounds for their componentwise
linear complexity. We also study the jump multiple-recursive matrix generator and establish
that sequences generated by them have better period and componentwise linear complexity
when compared to usual multiple-recursive matrix generator sequences. Analogous results
are given for transformation shift registers for generating pseudorandom vectors. Table 1
summarizes our findings in terms of periods and linear complexity.

Table 1 Summary of our results

Generators Period Linear complexity

Propositions G-MRMG clocked (2mn − 1)2 mn(2mn − 1)

9 and 10 by C-MRMG

Theorem 1 G-MRMG clocked (2mn − 1)2 ≤ m2n(2mn − 1)

by C-MRMG over F2

Propositions G-TSR clocked (2mn − 1)2 mn(2mn − 1)

13 and 14 by C-TSR

Theorem 3 G-TSR clocked (2mn − 1)2 ≤ m2n(2mn − 1)

by C-TSR over F2
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