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Abstract Permutation polynomials over finite fields are an interesting subject due to their
important applications in the areas of mathematics and engineering. In this paper, we inves-
tigate the trinomial f (x) = x(p−1)q+1+xpq −xq+(p−1) over the finite field Fq2 , where p is
an odd prime and q = pk with k being a positive integer. It is shown that when p = 3 or 5,
f (x) is a permutation trinomial of Fq2 if and only if k is even. This property is also true for a

more general class of polynomials g(x) = x(q+1)l+(p−1)q+1+x(q+1)l+pq−x(q+1)l+q+(p−1),
where l is a nonnegative integer and gcd(2l + p, q − 1) = 1. Moreover, we also show that
for p = 5 the permutation trinomials f (x) proposed here are new in the sense that they are
not multiplicative equivalent to previously known ones of similar form.

Keywords Finite fields · Permutation trinomials · Niho exponents · Multiplicative
inequivalent
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1 Introduction

Let Fq denote the finite field with q elements and F∗
q = Fq \ {0}, where q is a prime power.

A polynomial f (x) ∈ Fq [x] is called a permutation polynomial of Fq if the associated
mapping f : c �−→ f (c) permutes Fq . Permutation polynomials were firstly studied by
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Hermite for the finite prime fields and by Dickson for arbitrary finite fields [19]. They have
wide applications in coding theory [14], cryptography [5, 25] and combinatorial designs [3].
For a finite field Fq , there are in total q! permutation polynomials of Fq , and all of them can
be obtained from the Lagrange interpolation. Permutations with a few terms are of particular
interest because of the simple algebraic expressions. Especially, permutation binomials and
trinomials attracted particular attention [11, 12, 15, 20, 27, 31]. Recent achievements on the
study of permutation polynomials were surveyed in [11, 23].

Let p be a prime and k a positive integer. A Niho exponent over the finite field Fp2k is
a positive integer d satisfying d ≡ pj (mod pk − 1) for some nonnegative integer j <

k. In the case of j = 0, it is called a normalized Niho exponent. Researches in the past
decades demonstrate that Niho exponents are good resources that lead to desirable objects
in sequence design [6, 30], coding theory [2, 32] and cryptography [7]. Recently, a lot of
permutation trinomials of the form

F(x) = x + λ1x
s(pk−1)+1 + λ2x

t(pk−1)+1 (1)

have been proposed, where s and t are two integers, and the coefficients λ1 and λ2 are
restricted to {−1, 1}. For p = 2, Li and Helleseth gave a rather detailed list of known pairs
(s, t) and some new pairs such that F(x) is a permutation polynomial of F22k [16, 17]. In
[8, 21, 28, 34] some permutation trinomials of F22k of similar form were also presented. For
p = 3, Li et al. in [21] investigated several permutation trinomials of F32k of the form (1)
and proposed three conjectures, which were later confirmed in [18] and [1]. Very recently,
for p = 5, Wu and Li in [29] derived a series of sufficient conditions on s, t , λ1 and λ2 for
F(x) to permute F52k .

There are also some permutation polynomials constructed from Niho exponents over Fq2

with q being a power of an arbitrary prime. Hou in [10] characterized the necessary and
sufficient conditions on the coefficients for the polynomial ax + bxq + x2q−1 ∈ Fq2 [x] to
be a permutation of Fq2 . In [4], for q �≡ 3 (mod 3), the necessary and sufficient conditions

for x + xt(q−1)+1 + x−t (q−1)+1 to be a permutation polynomial of Fq2 were determined,
where t is a positive integer. Let T rq2/q(·) denote the trace function from Fq2 to Fq [19].
Some permutation trinomials of Fq2 of the form x + γ T rq2/q(xd) were obtained in [13],
where γ ∈ F

∗
q and d is a Niho exponent over Fq2 .

In this paper, we investigate the permutation property of the following trinomial

f (x) = x(p−1)q+1 + xpq − xq+(p−1), (2)

where p is an odd prime and q = pk for a positive integer k. It is easily verified that
(p − 1)q + 1, pq and q + (p − 1) are Niho exponents over Fp2k . We show that for p = 3
or 5, f (x) in (2) is a permutation polynomial of Fp2k if and only if k is even. However, for
the case p > 5, such a result may not hold. Furthermore, we prove that the above property
is also true for more general polynomials

g(x) = x(q+1)l+(p−1)q+1 + x(q+1)l+pq − x(q+1)l+q+(p−1), (3)

where l is a nonnegative integer and gcd(2l + p, q − 1) = 1. In addition, when p = 5, the
permutation polynomials f (x) presented in (2) are shown to be new in the sense that they
are not multiplicative equivalent to the permutation polynomials of the form (1) in [4, 9, 10,
13, 18, 21, 22, 29].
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The remainder of this paper is organized as follows. Section 2 gives some preliminaries
and notation, including some useful lemmas. In Section 3, we give the proofs of our main
results. Section 4 is devoted to demonstrating that the permutation trinomials f (x) given in
(2) are new when p = 5. Section 5 concludes the study.

2 Preliminaries

Let p be a prime, k a positive integer and q = pk . The trace function and the norm function
from Fq2 to Fq will be denoted by T r(x) and N(x), respectively [19]. Namely,

T r(x) = x + xq and N(x) = x · xq, x ∈ Fq2 .

The unit circle U of Fq2 is defined by

U = {x | xq+1 = 1, x ∈ Fq2}. (4)

In [16–18, 21, 29], in order to prove the permutation property of the trinomials con-
structed from Niho exponents, the authors mainly used the following lemma, which was
proved by Park and Lee in 2001 and reproved by Zieve in 2009.

Lemma 1 [24, 33] Let p be a prime and n a positive integer. Assume that d is a positive

integer such that d | (pn − 1), h(x) ∈ Fpn [x] and r > 0 is a integer. Then, xrh(x
pn−1

d ) is a
permutation of Fpn if and only if

(i) gcd
(
r,

pn−1
d

)
= 1 and

(ii) xrh(x)
pn−1

d permutes μd , where μd is the set of d-th root of unity in F
∗
pn .

The polynomials constructed from Niho exponents over Fq2 can always be rewritten in

the form xrh(x
q2−1

d ) with d = q + 1. To determine the permutation property of the polyno-

mials xrh(x
q2−1

d ) constructed from Niho exponents by Lemma 1, the main task is to decide

if xrh(x)
q2−1

d permutes the unit circle U of Fq2 . However, sometimes the corresponding

polynomial xrh(x)
q2−1

d leads to a fractional polynomial with high degree [16–18, 21, 26,

29]. It is still a difficult problem in general to verify that xrh(x)
q2−1

d permutes U .
Another general method for investigating the permutation property of the polynomials

constructed from Niho exponents over Fq2 is to concentrate on the subset Fq2 \ Fq . More
specifically, assume that G(x) is a polynomial constructed from Niho exponents over Fq2

with coefficients in Fq . If we can show that G(x) is a permutation of Fq and a permutation
of Fq2 \ Fq respectively, then G(x) is a permutation polynomial of Fq2 . To this end, it is
usually required that G(x) has the property G(Fq2 \Fq) ⊆ Fq2 \Fq , and the key step in the
proof is to prove that G(x) is a permutation of Fq2 \ Fq . This idea originated from [9] and
later was used in [21]. In this paper we will use this idea to prove our main result.

The following lemma is needed in the sequel. Its proof is trivial and is omitted here.

Lemma 2 Let q be a prime power. Denote by T r(x) and N(x) the trace function and the
norm function from Fq2 to Fq , respectively. Then, for any c ∈ Fq2 , the set {c, cq} is uniquely
determined by the pair (T r(c),N(c)).
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The following lemma is obtained by direct computations.

Lemma 3 Let q be a prime power, and T r(x) and N(x) be the trace function and the norm
function from Fq2 to Fq , respectively.

(i) If q = 3k , then for any x ∈ Fq2 ,

T r(x2) = T r2(x) + N(x) and T r(x4) = T r4(x) − N(x)T r2(x) − N2(x);
(ii) If q = 5k , then for any x ∈ Fq2 ,

T r(x2) = T r2(x) − 2N(x), T r(x3) = T r3(x) + 2N(x)T r(x),

T r(x4) = T r4(x) + N(x)T r2(x) + 2N2(x),

T r(x6) = T r6(x) − N(x)T r4(x) − N2(x)T r2(x) − 2N3(x),

and

T r(x8) = T r8(x) + 2N(x)T r6(x) − N3(x)T r2(x) + 2N4(x).

Proof We only give the proof of (ii). In Lemma 1 of [29], the expressions for T r(x2),
T r(x3), T r(x4) and T r(x8) were given while that for T r(x6) was not. Now we compute
T r(x6) to illustrate how to obtain the above results. Note that

T r6(x) = (x + xq)6

= (x + xq)5(x + xq)

= (x5 + x5q)(x + xq)

= x6 + x5+q + x5q+1 + x6q

= T r(x6) + x1+q
(
x4 + x4q

)
= T r(x6) + N(x)T r(x4),

which implies

T r(x6) = T r6(x) − N(x)T r(x4). (5)

Substituting T r(x4) into (5), we get the desired result.

Lemma 4 Let U be defined as in (4). We have the following results:

(i) if q = 3k , then y2 + 1 = 0 has no solution in U if k is even and has two solutions in
U otherwise;

(ii) if q = 5k , then y2 − y + 1 = 0 has no solution in U if k is even and has two solutions
in U otherwise.

Proof (i) Let α be a primitive root of Fq2 with q = 3k . Then, the solutions of y2 = −1 in

Fq2 are ±α
q2−1
4 , which belong to U if and only if q + 1 is divisible by 4. Since q + 1 is

divisible by 4 if and only if k is odd, the desired result follows.
(ii) Note that y2 − y + 1 is an irreducible polynomial over F5 because it has no root in

F5. Since the degree of y2 − y + 1 is 2, it follows that its two roots belong to F52 . We can
rewrite y2 − y + 1 as (y + 2)2 − 3. Then, the two roots of y2 − y + 1 in F52 are −2± √

3,
where ±√

3 denote the two solutions of x2 = 3 in F52 .
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When k is even,
(√

3
)q = √

3 since
√
3 ∈ F52 and when k is odd,

(√
3
)q =

(√
3
)5 =

−√
3. Thus, when k is even, we have

(
−2 ± √

3
)q+1 =

(
−2 ± √

3
)q (

−2 ± √
3
)

=
(
−2 ± √

3
)2

= 2 ± √
3,

which is not equal to 1. When k is odd, we have
(
−2 ± √

3
)q+1 =

(
−2 ∓ √

3
) (

−2 ± √
3
)

= 4 − 3
= 1.

Therefore, when k is odd, −2 ± √
3 ∈ U . From the above computations, the desired result

follows.

The following lemma is a special case of Exercise 7.4 in [19]. For the reader’s
convenience, we include a proof here.

Lemma 5 Let Fq be a finite field of characteristic p. Then, xp − ux ∈ Fq [x] is a
permutation polynomial of Fq if and only if u is not a (p − 1)th power of an element
of F∗

q .

Proof Note that xp − ux is a p-polynomial over Fq , and it is a permutation polynomial of
Fq if and only if it only has the root 0 in Fq . Thus, xp − ux is a permutation polynomial
of Fq if and only if xp−1 − u has no root in Fq . The latter exactly means that u is not a
(p − 1)th power in Fq .

3 A new class of permutation trinomials from Niho exponents

In this section, we present our main results about the permutation property of f (x) defined
by (2) and that of g(x) defined by (3). The first main result is given in the following theorem.

Theorem 1 Let q = pk and f (x) be the trinomial defined by (2). Then for p = 3 or 5,
f (x) is a permutation polynomial of Fq2 if and only if k is even.

Before proceeding with the proof, we first have a general discussion on f (x) and g(x).
The three exponents appearing in f (x) are Niho exponents since (p−1)q+1 = (p−1)(q−
1)+p, pq = p(q−1)+p, and q+(p−1) = (q−1)+p. However, the exponents in g(x)may
not be Niho exponents. As we will see in the sequel, the permutation property of f (x) and
that of g(x) depend on a same condition after utilizing Lemma 1. If we obtain the condition
for f (x) to permute Fq2 , then it is also true for g(x). In addition, a permutation polynomial
f (x) of the form (2) is closely related to some permutation polynomial of the form (1). In
the next section, we will study the relationship between the permutation trinomials f (x) in
Theorem 1 and the previously known ones of the form (1). By comparison, we will show
that the permutation polynomials f (x) proposed here are new when p = 5.
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In order to prove Theorem 1, the following preparatory lemma is needed.

Lemma 6 Let q = pk and f (x) be defined by (2). When p = 3 or 5, for any x ∈ Fq2 \ Fq ,
we have f (x) ∈ Fq2 \ Fq if and only if k is even.

Proof Assume that x ∈ Fq2 \ Fq . Note that f (x) ∈ Fq if and only if

x(p−1)q+1 + xpq − xq+(p−1) = xq+(p−1) + xp − x(p−1)q+1

which is equivalent to

2xq+(p−1) + xp − xpq − 2x(p−1)q+1 = 0.

Dividing the above equation by xp, we get

2xq−1 + 1 − xp(q−1) − 2x(p−1)(q−1) = 0. (6)

Setting z = xq−1, (6) can be rewritten as

2z + 1 − zp − 2zp−1 = 0,

which equals
(z − 1)(z2 + 1) = 0 (7)

if p = 3, and
(z − 1)(z2 − z + 1)2 = 0 (8)

if p = 5.
Note that if x ∈ Fq2 \ Fq , then z = xq−1 ∈ U \ {1}, where U is defined as in (4). For

p = 3, from (7), we can conclude that for any x ∈ Fq2 \Fq , we have f (x) ∈ Fq if and only

if z = xq−1 satisfies z2 + 1 = 0. By Lemma 4, if k is even, then z2 + 1 = 0 has no solution
in U . Thus, in this case, for any x ∈ Fq2 \ Fq , we have f (x) /∈ Fq , i.e., f (x) ∈ Fq2 \ Fq . If

k is odd, then z2 + 1 = 0 has two solutions in U \ {1}, which shows that there are 2(q − 1)
elements x ∈ Fq2 \ Fq such that f (x) ∈ Fq . Similarly, for p = 5, we can obtain the same
conclusion by (8) and Lemma 4.

From the above discussions, the desired result follows.

Proof of Theorem 1 Note that in this proof q = pk and p is restricted to {3, 5}. To prove
that f (x) is a permutation of Fq2 , it suffices to show that for any c ∈ Fq2 , f (x) = c has
exactly one solution in Fq2 .

If k is odd, from the proof of Lemma 6, there are 2(q − 1) elements x ∈ Fq2 \ Fq such
that f (x) ∈ Fq . On the other hand, note that when x ∈ Fq , then f (x) = xp , which is a
permutation of Fq since gcd(p, q − 1) = 1. Therefore, when k is odd, for some c ∈ Fq

there must exist at least two distinct elements x1, x2 ∈ Fq2 such that f (x1) = f (x2) = c.
Thus, f (x) is not a permutation polynomial of Fq2 when k is odd.

Next we prove that when k is even, then f (x) is a permutation polynomial of Fq2 . By
the observation that f (x) permutes Fq and Lemma 6, we only need to show that for any
c ∈ Fq2 \Fq , f (x) = c has exactly one solution in Fq2 \Fq . Let T r(x) and N(x) be defined
as in (3). We compute T r(f (x)) and N(f (x)) as follows:

T r(f (x)) =
(
x(p−1)q+1 + xpq − xq+(p−1)

)
+

(
x(p−1)q+1 + xpq − xq+(p−1)

)q

= xpq + xp

= T rp(x), (9)
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and

N(f (x)) =
(
x(p−1)q+1+xpq −xq+(p−1)

)(
xq+(p−1)+xp−x(p−1)q+1

)

= 3xpq+p+
(
x(p−1)q+(p+1)+x(p+1)q+(p−1)

)

−
(
x(2p−2)q+2 + x2q+(2p−2)

)
−

(
x(2p−1)q+1+xq+(2p−1)

)

= 3Np(x)+Np−1(x)T r(x2)−N2(x)T r(x2p−4)−N(x)T r(x2p−2). (10)

When p = 3 or 5, by Lemma 3, N(f (x)) in (10) can be expressed in terms of T r(x) and
N(x) as follows:

N(f (x)) =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−N(x)T r4(x) + N2(x)T r2(x) + N3(x), for p = 3,

N5(x) + 3N4(x)T r2(x) + N3(x)T r4(x)

+ 2N2(x)T r6(x) − N(x)T r8(x), for p = 5.

(11)

For any c ∈ Fq2 \ Fq , from f (x) = c, we have

T r(f (x)) = T r(c) and N(f (x)) = N(c). (12)

In what follows, we will prove that T r(x) and N(x) are uniquely determined by c under
the aforementioned conditions that c ∈ Fq2 \ Fq , f (x) = c and k is even. We only give
the proof for the case p = 5, and for p = 3 it can be proved in the same way. Thus, in the
sequel we always assume that q = 5k .

By (9), (11) and (12), we have⎧
⎪⎨
⎪⎩

T r5(x) = T r(c),

N5(x) + 3N4(x)T r2(x) + N3(x)T r4(x) + 2N2(x)T r6(x) − N(x)T r8(x) = N(c).

(13)
Note that gcd(5, q−1) = 1. Thus, from T r5(x) = T r(c), one knows that T r(x) is uniquely
determined by c. Therefore, it suffices to show that N(x) is also uniquely determined by c.
We consider the following two cases.

Case 1 T r(c) = 0. Then, it follows that T r(x) = 0. By the second equation in (13), we
have N5(x) = N(c) and thus N(c) is also uniquely determined by c.

Case 2 T r(c) �= 0. Then, T r(x) �= 0. For convenience, put

r = N(x)

T r2(x)
and s = N(c)

T r2(c)
. (14)

Then, divided by T r10(x), the second equation in (13) can be rewritten as

r5 + 3r4 + r3 + 2r2 − r = s

or equivalently
(r − 2)4(r + 1) = s + 1. (15)

We claim that s is not equal to −1. Otherwise, we have N(c) + T r2(c) = 0, which implies
(cq − c)2 = 0 leading to c ∈ Fq , a contradiction to the assumption c ∈ Fq2 \ Fq . Let

t = r − 2, (16)
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then (15) becomes
t5 + 3t4 = s + 1. (17)

Note that t is not equal to 0 since s is not equal to −1. Therefore, (17) can be further
transformed into (

1

t

)5

− 3

s + 1
· 1

t
= 1

s + 1
. (18)

If we can show that 3
s+1 is not a fourth power in Fq , then by (18) and Lemma 5 we can

conclude that 1
t
is uniquely determined by s. Then, from (14) and (16), it follows that N(x)

is uniquely determined by c.
Thus, it suffices to show that 3

s+1 is not a fourth power in Fq . To this end, we express
3

s+1 in terms of c as follows:

3

s + 1
= 3

N(c)/T r2(c) + 1
= 3

(
1 − 1

c1−q + cq−1 − 2

)
. (19)

Since c ∈ Fq2 \Fq and T r(c) �= 0, it follows that cq−1 ∈ U \ {±1}. Let u = cq−1. Suppose,

on the contrary, that 3
s+1 is a fourth power in Fq . Then, by (19) we have

3

(
1 − 1

u + u−1 − 2

)
= ω4 (20)

for some ω ∈ Fq . Note that 3 − ω4 �= 0. Thus, we can rewrite (20) as

u2 + 1 + 2ω4

3 − ω4
u + 1 = 0,

which implies

u = 3ω4 + 4 ± √
3ω2

2(3 − ω2)
, (21)

where ±√
3 denote the two solutions of x2 = 3 in F52 . Note that when k is even, the two

solutions of x2 = 3 belong to Fq . From (21), it follows that u ∈ Fq , which contradicts to
the fact u ∈ U \ {±1} since Fq ∩ U = {±1}. Therefore, 1

s+1 is not a fourth power in Fq and
the desired result follows.

The discussions in Cases 1 and 2 have shown that for p = 5, under the conditions that
c ∈ Fq2 \ Fq , f (x) = c and k is even, T r(x) and N(x) are uniquely determined by c. For
p = 3, this conclusion can be similarly proved.

It follows from Lemma 2 that if f (x) = c for c ∈ Fq2\Fq , then the set {x, xq} is uniquely
determined by c when p ∈ {3, 5} and k is even. Furthermore, since f (xq) = (f (x))q and
cq �= c, only one of {x, xq} can satisfy f (x) = c. Therefore, when p ∈ {3, 5} and k is even,
for any c ∈ Fq2 \ Fq , f (x) = c has only one solution in Fq2 \ Fq .

From what we have shown above, the desired result follows.

Corollary 1 Let U be defined as in (4) with q = pk and p ∈ {3, 5}. Then, the following
fractional polynomial

x + 1 − xp−1

xp + xp−1 − x
(22)

permutes U if and only if k is even.

Proof Note that f (x) in (2) can be written as xp
(
x(p−1)(q−1) + xp(q−1) − xq−1

)
. Then, by

Lemma 1 and Theorem 1, it follows that xp
(
xp−1 + xp − x

)q−1
permutes U if and only
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if k is even, where p ∈ {3, 5}. Note that if xp
(
xp−1 + xp − x

)q−1
permutes U , then it is

not equal to zero when x ∈ U . Thus, for each p ∈ {3, 5}, xp
(
xp−1 + xp − x

)q−1
can be

written as
xp

(
xp−1 + xp − x

)q

xp−1 + xp − x
,

which is exactly (22) since xq = x−1 when x ∈ U .

Based on Lemma 1 and Corollary 1, we obtain our second main result which gives the
permutation property of g(x) defined by (3).

Theorem 2 Let q = pk with p ∈ {3, 5}, and l a nonnegative integer satisfying gcd(2l +
p, q − 1) = 1. Then,

g(x) = x(q+1)l+(p−1)q+1 + x(q+1)l+pq − x(q+1)l+q+(p−1)

is a permutation polynomial of Fq2 if and only if k is even.

Proof We can rewrite g(x) as

x(q+1)l+p
(
x(p−1)(q−1) + xp(q−1) − xq−1

)
.

Note that gcd((q + 1)l +p, q − 1) = gcd(2l +p, q − 1) = 1. Then, by Lemma 1, g(x) is a

permutation polynomial of Fq2 if and only if x(q+1)l+p
(
x(p−1) + xp − x

)q−1
permutes U .

Since x(q+1)l = 1 when x ∈ U , this is equivalent to xp
(
x(p−1) + xp − x

)q−1
permuting

U . The desired result follows now from Corollary 1.

Remark 1 As we have shown in the proofs of Corollary 1 and Theorem 2, f (x) or g(x) is

a permutation polynomial of Fq2 if and only if xp
(
x(p−1) + xp − x

)q−1
permutes U . This

shows that the permutation property of f (x) and that of g(x) depend on a same condition.
However, it seems difficult to verify directly whether this condition holds. Thus, in this
paper we use a different approach to investigate the permutation property of f (x), and then
obtain the permutation property of g(x).

Remark 2 Let f (x) and g(x) be defined by (2) and (3), respectively. The polynomial g(x)

contains f (x) as a special case since by taking l = 0, g(x) is reduced to exactly f (x).
Note that when p = 2, f (x) = xpq and g(x) = x(q+1)l+pq , which are always permutation
polynomials of F22k for any positive integer k. For p > 5, Theorems 1 and 2 may not hold.
By Magma, we have obtained some numerical results summarized in Table 1.

4 A comparison with known related permutation trinomials

In this section, we will compare the permutation polynomials f (x) proposed in Theorem
1 with previously known ones of the form (1). It is straightforward that the composition of
two permutation polynomials of the same finite field is also a permutation polynomial. We
recall the definition of multiplicative equivalence from [11, 20, 28].

Definition 1 Let q be a prime power, and H(x) and h(x) be two permutation polynomials
of Fq . H(x) and h(x) are called multiplicative equivalent if there exists an integer 1 ≤ d ≤
q − 2 such that gcd(d, q − 1) = 1 and H(x) = ah(xd) for some a ∈ F

∗
q .
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Table 1 Is f (x) or g(x) a
permutation of Fp2k p k Permutation of Fp2k

7 1 No

7 2 Yes

7 3 No

7 4 No

7 5 No

7 6 No

11 1 No

11 2 Yes

11 3 No

11 4 No

13 1 No

13 2 Yes

13 3 No

Next we will determine whether or not the permutation trinomials f (x) given in Theorem
1 are multiplicative equivalent to the previously known ones of the form (1) in [4, 9, 10, 13,
18, 21, 22, 29]. We make some preparations as follows.

Proposition 1 Let f (x) be defined as in (2), and q = pk with k being even and p ∈ {3, 5}.
We have the following results:

(a) If p = 3, then f (x) is multiplicative equivalent to the following permutation
trinomials of Fq2 :

(i) f1(x) = x + x(2·3k−1+1)(q−1)+1 − x(3k−1+1)(q−1)+1;
(ii) f2(x) = x + x−q+2 − xq ;
(iii) f3(x) = x − xq − x2q−1;

(b) If p = 5, then f (x) is multiplicative equivalent to the following permutation
trinomials of Fq2 :

(i) f1(x) = x + x(4·5k−1+1)(q−1)+1 − x(5k−1+1)(q−1)+1;

(ii) f2(x) = x + x
2q+1
3 (q−1)+1 − xq ;

(iii) f3(x) = x − xq − x
q+5
3 (q−1)+1.

Proof We only prove the case p = 5. For the case p = 3, the result can be proved in the
same way.When p = 5, note that f1(x) = f (x5k−1

). Thus, f (x) is multiplicative equivalent
to f1(x). Let d1 = (4 ·5k−1+1)(q −1)+1 and d2 = (5k−1+1)(q −1)+1. When k is even,
gcd(d1, q2 − 1) = gcd(d2, q2 − 1) = 1. Then, by extended Euclidean algorithm, we have
d−1
1 = 2q+1

3 (q − 1) + 1 and d−1
2 = q+5

3 (q − 1) + 1, where d−1
i denotes the inverse of di

modulo q2 − 1, i = 1, 2. Note that f2(x) = f1(x
d−1
1 ) and f3(x) = −f1(x

d−1
2 ). Therefore,

f (x) is multiplicative equivalent to f2(x) and f3(x). It is easily seen that f1(x), f2(x) and
f3(x) are pairwise multiplicative equivalent to each other.
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The following claims are needed.

Claim 1 Recall that the inverse d−1 of a (normalized) Niho exponent d over Fp2k , if it
exists, is again a (normalized) Niho exponent, and the product of two (normalized) Niho
exponents is also a (normalized) Niho exponent [6].

Let F(x) be a permutation polynomial of Fp2k of the form (1), d1 = s(pk − 1) + 1

and d2 = t (pk − 1) + 1. If one of d1 and d2 is invertible, say d1, then λ1F(xd−1
1 ) is also

a permutation polynomial of the form (1) which is multiplicative equivalent to F(x). This
analysis together with Claim 1 gives the following claim.

Claim 2 Let F(x) be a permutation polynomial of Fp2k of the form (1). Then, all the per-
mutation trinomials of the form (1) that are multiplicative equivalent to F(x) are given by

λiF (xd−1
i ) provided gcd(di, p

2k − 1) = 1, i = 1, 2.
Claims 1 and 2 together with Proposition 1 give the following claim.

Claim 3 Let f (x) be a permutation polynomial in Theorem 1. If a permutation trinomial
of the form (1) is multiplicative equivalent to f (x), then it must be one of f1(x), f2(x) and
f3(x) in Proposition 1.

In the sequel, a permutation polynomial F(x) of Fp2k of the form (1) will be denoted by
the tuple (λ1, s, λ2, t). According to Lemma 1, F(x) is a permutation polynomial of Fp2k if
and only if the associated polynomial

x
(
1 + λ1x

s + λ2x
t
)pk−1 (23)

permutes the unit circle U . When F(x) is a permutation polynomial of Fp2k , (23) can be
further written as a fractional polynomial

x
1 + x−s + x−t

1 + xs + xt

Table 2 Known permutation trinomials of F32k of the form (1) (q = 3k)

(λ1, s, λ2, t) Fractional polynomial k Ref.

(−1, 2, 1,−2) x5+x3−x

−x4+x2+1
k �≡ 0 (mod 4) [21, Theorem 3.2]

(1, 3,−1,−1) −x4+x3+1
x5+x2−x

odd k [21, Theorem 3.4]

(−1, 4, 1,−2) x6+x4−1
−x7+x3+x

all k [21, Conjecture 5.1 (2)], [18]

(−1,−2, 1, 2) −x5+x3+x

x4+x2−1
k �≡ 2 (mod 4) [21, Conjecture 5.1 (3)], [18]

(
−1, q+3

4 ,−1, 3q+5
4

)
x x

3q+5
4 −x

q+1
2 −1

x
3q+5
4 −x−x

q+3
2

even k [13, Theorem 1.1 (d)]

(−1,
√

q,−1, 1 − √
q
)

x
√

q−x2
√

q−1−1
x

√
q−1−x2

√
q−1−1

even k [13, Theorem 1.1 (e)]

(−1,
√

q + 1,−1,−√
q
)

x
√

q+1−x2
√

q+1−1
x

√
q−x2

√
q+1−1

even k [13, Theorem 1.1 (f)]

(−1, 1,−1, 2) x+1−x2

x3+x2−x
even k [10, Theorem A (iv)]
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since x ∈ U , which is called the fractional polynomial of F(x). For comparison purposes,
we collect all known permutation trinomials of F32k and F52k of the form (1). We list them
in Tables 2 and 3, respectively. To the best of our knowledge, the lists in Tables 2 and 3 are
complete.

Table 3 Known permutation trinomials of F52k of the form (1) (q = 5k)

(λ1, s, λ2, t) Fractional polynomial k Ref.

(
1, q+3

4 ,−1, q+3
2

)
−x

q+1
2

(
xs−2
xs+2

)2 (
s = q+3

4

)
all k [29, Theorem 1]

(
1, q−1

2 ,−1, q+3
2

) −x

(
x

q+3
2 −x

q−1
2 +1

)

x
q+3
2 −x

q−1
2 −1

odd k [29, Theorem 2]

(
1,−1,−1, q+3

2

) x2
(

x
q−1
2 −x−1

)

x
q+5
2 −x−1

odd k [29, Theorem 3]

(
−1, q+3

2 , 1, q+5
2

) −x

(
x

q−1
2 −x

q−3
2 −1

)

x
q+5
2 −x

q+3
2 +1

odd k [29, Theorem 4]

(
−1, 2, 1, q+3

2

)
x

q+3
2 +x2−1

x

(
x

q+3
2 −x2+1

) even k [29, Theorem 5]

(
1, 1,−1, q−1

2

)
x

q+5
2 −x−1

x
q−1
2 −x−1

even k [29, Theorem 6]

(
−1, 1, 1, q+5

2

)
x

q−1
2 +x−1

x
q+5
2 −x+1

even k [29, Theorem 7 (i)]

(
1, q+3

2 , 1, q+5
2

)
x

q+1
2 +x

q−1
2 +x

x
q+5
2 +x

q+3
2 +1

even k [29, Theorem 7 (ii)]

(
1, q+3

2 ,−1,−1
) x2

(
x

q−1
2 −x+1

)

x
q+5
2 +x−1

even k [29, Theorem 7 (iii)]

(1, 2,−1,−2) −x
(

x2+2
x2−2

)2
odd k [29, Proposition 1]

[22, Theorem 4.1]
(
−1, q+5

3 ,−1, 2(q+2)
3

)
−x

(
x2−2
x2+2

)2
even k [29, Proposition 2]

[22, Theorem 3.1]

(
1, q+2

3 , 1, 2q+4
3

)
x
2q+4
3 +x

q+2
3 +1

x
2q+1
3 +x

q+2
3 +1

even k [13, Theorem 1.1 (c)]

(−1,
√

q,−1, 1 − √
q
)

x
√

q−x2
√

q−1−1
x

√
q−1−x2

√
q−1−1

even k [13, Theorem 1.1 (e)]

(−1,
√

q + 1,−1,−√
q
)

x
√

q+1−x2
√

q+1−1
x

√
q−x2

√
q+1−1

even k [13, Theorem 1.1 (f)]

(1, t, 1,−t) x even k [4, Theorem 3.4 (i) ]

(1, t, 1,−t) x odd k and [4, Theorem 3.4 (iii) ]

exp3(t) ≥ exp3(q + 1)a

(±1, 1, 1, 2) 1
x

even k [9, Theorem A (ii) ]

awhere exp3(i) denotes the exponent of 3 in the canonical factorization of i
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Note that the last one in Table 2 is exactly f3(x) in Proposition 1 (a)(iii). In [10], Hou
determined all permutation trinomials of Fq2 of the form ax + bxq + x2q−1 ∈ Fq2 [x].
When p = 3, according to Theorem A (iv) of [10], −x + xq + x2q−1 is a permutation
polynomial of F32k if and only if −1 is a square of F∗

3k , which holds if and only if k is even.

The permutation polynomial x − xq − x2q−1 equals − (−x + xq + x2q−1
)
, and thus its

permutation property can be derived from Theorem A (iv) of [10].
According to Tables 2–3, Proposition 1 and Claim 3, we conclude the following result.

Proposition 2 Let f (x) be a permutation polynomial proposed in Theorem 1. When p =
3, f (x) is multiplicative equivalent to the permutation polynomial x − xq − x2q−1 (or
−x + xq + x2q−1 ) which is contained in Theorem A (iv) of [10]. When p = 5, f (x) is not
multiplicative equivalent to any permutation trinomial listed in Table 3.

The above proposition shows that f (x) proposed in Theorem 1 is indeed new when
p = 5. When p = 3, the permutation polynomial f (x) proposed in Theorem 1 is multi-
plicative equivalent to a known one contained in [10]. Nevertheless, the method for proving
the permutation property in this paper is different from that in [10].

5 Conclusion

In this paper, we construct a class of permutation trinomials of Fq2 with q = 3k and 5k .

Precisely, for each p ∈ {3, 5}, we prove that f (x) = x(p−1)q+1 + xpq − xq+(p−1) is a
permutation trinomial of Fq2 if and only if k is even. This conclusion is also true for more

general polynomials g(x) = x(q+1)l+(p−1)q+1 +x(q+1)l+pq −x(q+1)l+q+(p−1) with l being
a nonnegative integer satisfying gcd(2l + p, q − 1) = 1. Moreover, when p = 5, we
prove that f (x) presented here is not multiplicative equivalent to any known permutation
trinomial of the form (1). Numerical experiments show that Theorems 1 and 2 may not hold
when p > 5. It would be nice if our construction can be generalized to arbitrary finite field.
Namely, the readers are invited to determine the permutation polynomials of Fq2 of the form

x(p−1)q+1 + λ1x
pq + λ2x

q+(p−1),

where p is a prime, q = pk for some positive integer k and λ1, λ2 ∈ Fq .
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