
Cryptogr. Commun. (2018) 10:177–193
DOI 10.1007/s12095-017-0250-9

POEX: A beyond-birthday-bound-secure on-line cipher

Christian Forler1 ·Eik List2 ·Stefan Lucks2 ·
Jakob Wenzel2

Received: 29 November 2016 / Accepted: 30 June 2017 / Published online: 26 August 2017
© Springer Science+Business Media, LLC 2017

Abstract On-line ciphers are convenient building blocks for realizing efficient single- pass
encryption. In particular, the trend to limit the consequences of nonce reuses rendered them
popular in recent authenticated encryption schemes. While encryption schemes, such as
POE, COPE, or the ciphers within ElmE/ElmD concentrated on efficiency, their security
guarantees and that of all earlier on-line ciphers is limited by the birthday bound, and so are
those of the AE schemes built upon them. This work proposes POEX, a beyond-birthday-
bound-secure on-line cipher which employs one call to a tweakable block cipher and one
call to a 2n-bit universal hash function per message block. POEX builds upon the recently
proposed XTX tweak extender by Iwata and Minematsu. We prove the security of our
construction and discuss possible instantiations.

Keywords Symmetric cryptography · Provable security · On-line cipher · Universal hash
function · Tweakable block cipher

Mathematics Subject Classification 11T71

This article is part of the Topical Collection on Recent Trends in Cryptography

� Eik List
Eik.List@uni-weimar.de

Christian Forler
cforler@beuth-hochschule.de

Stefan Lucks
Stefan.Lucks@uni-weimar.de

Jakob Wenzel
Jakob.Wenzel@uni-weimar.de

1 Beuth Hochschule für Technik Berlin, Berlin, Germany

2 Bauhaus-Universität Weimar, Weimar, Germany

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-017-0250-9&domain=pdf
mailto:Eik.List@uni-weimar.de
mailto:cforler@beuth-hochschule.de
mailto:Stefan.Lucks@uni-weimar.de
mailto:Jakob.Wenzel@uni-weimar.de

178 Cryptogr. Commun. (2018) 10:177–193

1 Introduction

On-line Ciphers Restating the informal definition by Rogaway and Zhang [32], a crypto-
graphic transform is called on-line if it can be realized by an algorithm that, for any allowed
input, reads its input bytes one at a time in order and computes the corresponding output
bytes one at a time in order, using only a constant-bound amount of memory and/or latency.
On-line ciphers were introduced by Bellare et al. [7]: for some fixed n (which typically rep-
resents the block size of the underlying primitive), a message M is considered as a sequence
of n-bit blocks M1, . . . , Mm, |Mi | = n, for 1 ≤ i ≤ m. Then, an on-line cipher is a deter-
ministic length-preserving permutation where the i-th output block Ci depends only on the
first i input blocks M1, . . . , Mi and the secret key. Boldyreva and Taesombut [13] later
strengthened this definition to include the requirements of being computable with constant
memory and latency.

Limitations Due to their nature, on-line ciphers cannot provide the usual security notion of
general ciphers, i.e., indistinguishability from a PRP (pseudorandom permutation) or SPRP
(strong PRP). This stems directly from the fact that a secure cipher must make every bit
of the ciphertext depend on every bit of the plaintext and vice versa – a requirement which
prohibits constant-bound memory and latency. So, the security notions of on-line ciphers
are derived forms of the notions for ciphers in general. As the ideal primitive, Bellare et al.
[7] proposed an on-line permutation (OPRP), that is a family of permutations P = {Pi |Pi :
({0, 1}n)i−1 × {0, 1}n → {0, 1}n}, for i ≥ 1, such that every Pi takes the current message
block Mi as input and all previous input blocks M1, . . . , Mi−1 as “tweak” that defines the
permutation Pi(M1‖ . . . ‖Mi−1, ·). An on-line cipher is then called secure if it is infeasible
to distinguish it from an OPRP (on-line pseudorandom permutation) or SOPRP (strong
OPRP).

Applications Despite their limitations, on-line ciphers are highly valuable in practice, for
they allow to securely encrypt messages within a single pass. This is particularly important
in environments with demanding throughput or low-latency requirements. Moreover, var-
ious network APIs in practice are stream- oriented1, which disallows to buffer the entire
input. In authenticated encryption, the use of OPRP-secure on-line ciphers limit the con-
sequences of nonce reuses which motivated their application in several CAESAR [10]
candidates. Though, many renowned block-cipher modes, e.g., CBC, CTR, or the encryp-
tion procedures of GCM [25] and OCB [21] actually are on-line ciphers. What renders
the latter secure against chosen-plaintext attacks is the dependency on the additional input
such as an encrypted nonce. Without it, their standalone encryption would lack even the
basic OPRP security due to the missing dependency between blocks. In the remainder, we
focus on on-line ciphers that provide at least OPRP security without depending on auxiliary
inputs.

Existing Block-Cipher-Based On-line Ciphers Due to their similarity to CBC, early
on-line ciphers were inherently sequential. Bellare et al. [7] proposed HCBC1 and HCBC2,
both of which use one call to the block cipher and one call to an almost-XOR-universal
hash function. As major difference, the former construction employs a single multipli-
cation and could provide only OPRP security, whereas the latter construction uses two

1For example, the OpenSSL EVP DecryptUpdate interface [34].

Cryptogr. Commun. (2018) 10:177–193 179

multiplications to achieve SOPRP security. Boldyreva and Taesombut [13] later proposed a
variant of HCBC2, called HPCBC, that prepended the encryption of a random IV in order
to fit their strengthened notions. Nandi [29, 30] proposed two modified SOPRP-secure vari-
ants of HCBC1 and HCBC2, called MHCBC and MCBC. His MCBC construction could
replace the additional call to a universal hash function by a second invocation of the block
cipher. Rogaway and Zhang [32] could also eliminate any additional calls by employing a
tweakable block cipher for their constructions TC1, TC2, and TC3. In parallel to them,
Fleischmann et al. published the on-line authenticated encryption (AE) scheme MCOE [17],
also based on a tweakable block cipher. Their MCOE-G variant was similar to TC3, but
added the tag-splitting approach for handling arbitrary-length inputs. Yet, all of them were
strictly sequential.

Recently proposed on-line ciphers targeted at improving efficiency. The on-line cipher
POE (and the derived AE scheme POET) by Abed et al. [1] combines two calls to a uni-
versal hash function with one call to the block cipher per message block, which allows to
pipeline the message processing. Andreeva et al. [4] proposed the first (almost) fully par-
allelizable OPRP-secure on-line cipher COPE (and the derived AE scheme COPA). Their
design followed an Encrypt-Mix-Encrypt [18] approach at the cost of two block-cipher calls
per block. Datta and Nandi adapted this strategy in their AE schemes ELME and ELMD [14,
15] with a modified Mix layer; the CAESAR candidates ELMD and COPA have later been
merged to COLM [2]. COBRA [5] employed a variant of the two-round Feistel network
from OTR [27]; however, COBRA has been broken and withdrawn from the CAESAR
competition. Last but not least, OLEF [11] combined the Encrypt-Mix-Encrypt idea with
the double-block approach and applied a four-round Feistel network to each for inverse-free
decryption.

Beyond-Birthday-Bound Security While there has been significant progress on the effi-
ciency, the security of all on-line ciphers and on-line AE schemes above is still limited by
the birthday bound, i.e., at most � � 2n/2 blocks can be encrypted under the same key for
a block size of n bits. For on-line AE schemes, this bound matches the common expecta-
tions for privacy. Though, there is a significant gap to the optimal authenticity bound of
O(�/2n), which was already criticized by Lu [24]. A birthday-bound limitation is also rel-
evant in resource-constrained environments, where schemes would have to be instantiated
with a lightweight block cipher. Using the de-facto standard block size of n = 64 bits for
lightweight ciphers (e.g. for PRESENT [12, 19]), the security would have already vanished
after encrypting about 232 blocks (64 GiB); for example, if 1 MiB-messages were allowed
(217 blocks), the forgery probability would become about 1/16 already after 213 messages
had been processed under the same key. Nonetheless, one can imagine various further
settings where beyond-birthday-bound (BBB) security is desirable for on-line ciphers.

Contribution This work proposes POEX, a BBB-secure family of on-line ciphers which
combines the XTX approach by Iwata and Minematsu [28] with ideas from TCX [32],
MCOE [17], and POE [1]. While our proposal is similar to those three schemes, their secu-
rity is limited by the birthday bound since the adversary has full control over n bits of the
tweak, whereas it has not in POEX. Table 1 compares our approach to existing on-line
ciphers and encryption procedures from on-line nonce-misuse resistant AE schemes. Since
there exist well-known methods to transform a given on-line cipher into an AE-secure on-
line AE scheme (e.g. [7, 17, 32]), this work proposes only a family of on-line ciphers and
leaves the (non-trivial) task of extending it to a BBB-secure AE scheme for future work.

180 Cryptogr. Commun. (2018) 10:177–193

Ta
bl
e
1

C
om

pa
ri
so
n
of

ex
is
tin

g
O
P
R
P
-s
ec
ur
e
on
-l
in
e
ci
ph
er
s
an
d
on
-l
in
e
no
nc
e-
m
is
us
e-
re
si
st
an
tb

lo
ck
-c
ip
he
r-
ba
se
d
A
E
sc
he
m
es

w
ith

ou
r
pr
op
os
al

O
n-
lin

e
ci
ph
er
s

O
A
E
sc
he
m
es

A
sp
ec
t

P
O
E
X

C
O
P
E

[4
]

H
C
B
C
1

[7
]

H
C
B
C
2

[7
]

H
P
C
B
C

[1
3]

M
C
B
C

[3
0]

M
H
C
B
C

[3
0]

P
O
E

[1
]

O
L
E
F

[1
1]

T
C
1

[3
2]

T
C
2

[3
2]

T
C
3

[3
2]

C
O
B
R
A

[5
]

C
O
L
M

[2
]

E
L
M
D

[1
4]

E
L
M
E

[1
5]

M
C
O
E
-G

[1
7]

M
C
O
E
-X

[1
7]

#(
T
)B
C

m
2m

m
m

m
+

1
m

m
m

2m
m

m
m

m
2m

2m
2m

m
m

ca
lls

#K
ey
s

2
1

2
2

2
1

2
2

1
1

1
1

1
1

1
1

2
1

SO
PR

P-
•

–
–

•
•

•
•

•
•

–
•

•
(N
A
E
se
cu
ri
ty
)

se
cu
re

B
B
B
-

•
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

–
–

se
cu
re

•=
pr
ov
id
es

fe
at
ur
e,
–
=
la
ck
s
fe
at
ur
e.
#(
T
)B
C
=
(t
w
ea
ka
bl
e)

bl
oc
k
ci
ph
er

ca
lls
,B

B
B
=
be
yo
nd
-b
ir
th
da
y-
bo
un
d,

N
A
E
=
no
nc
e-
ba
se
d
au
th
en
tic
at
ed

en
cr
yp
tio

n

Cryptogr. Commun. (2018) 10:177–193 181

Outline What remains is structured as follows: after briefly reviewing the preliminaries,
Section 3 describes the generic POEX. Next, Section 4 recalls the relevant security notions.
Section 5 provides the results of our security analysis. Section 6 provides a discussion and
conclusion.

2 Preliminaries

We use notions similar to those in [3]. We use lowercase letters x, y for indices and integers,
uppercase letters X, Y for binary strings and functions, and calligraphic uppercase letters
X ,Y for sets. We denote the concatenation of binary strings X and Y by X ‖ Y and the
result of their bitwise XOR by X ⊕ Y . We indicate the length of X in bits by |X|, and write
Xi for the i-th block. X � X denotes that X is chosen uniformly at random from the set
X . We define three sets of particular interest: Perm(X) be the set of all permutations on X,
TPerm(T ,X) the set of all tweaked permutations over X with associated non-empty tweak
space T , and OPermn the set of all n-bit on-line permutations. We define by X1, . . . , Xj

x←−
X an injective splitting of the string X into blocks such that X = X1‖ · · · ‖Xj with |Xi | = x

for 1 ≤ i ≤ j − 1, and |Xj | ≤ x. For an event E, we denote by Pr[E] the probability
of E.

For a set X , we denote an �-element list by X = (X1, . . . ,X �) with X ∈ X �. We
denote an i-element sub-list as X1..i := (X1, . . . , Xi). Given sets X and Yi , for 1 ≤ i ≤ �,
and a mapping H : X → Y1 × · · · × Y� with multiple outputs, we denote by H(X)[i]
the i-th output Yi ∈ Yi . For sets X and Y , let �-element lists X = (X1, . . . ,X �), X′ =
(X′

1, . . . , X
′
�), Y = (Y1, . . . , Y�), and Y ′ = (Y ′

1, . . . , Y
′
�) with X,X′ ∈ X� and Y, Y ′ ∈ Y�.

We call (X, Y) and (X′, Y ′) element-wise disjoint and denote it by (X, Y) �≡ (X′, Y ′) iff it
holds that (X1..i , Y1..i) �= (X′

1..i , Y
′
1..i), for all 1 ≤ i ≤ �.

3 Generic definition of POEX

This section defines the generic POEX construction. Fix integers n, τ ≥ 1. Let K1 and K2
be non-empty key sets and K = K1 × K2. Further, we define two non-empty tweak sets
T = {0, 1}τ and T ′ = ({0, 1}n)2. Let M, C ⊆ ({0, 1}n)∗ denote message and ciphertext
space, respectively. Let H = {H |H : T ′ → {0, 1}n+τ } be a family of ε-CPAXU hash
functions, where a key K2 ∈ K2 defines the instance H ∈ H. We will explain this particular
notion of universality in the following section.

Further, let ˜E : K1 × T × {0, 1}n → {0, 1}n denote a tweakable block cipher and let
˜D : K1 × T × {0, 1}n → {0, 1}n denote its inverse (since ˜E−1,T may be misleading).
We will write ˜ET

K(·) and ˜DT
K(·) as short forms of ˜E(K, T , ·) and ˜D(K, T , ·), respectively.

Moreover, we will use (Wi, Vi) ← HK2(Xi−1, Yi−1) to also mean that Wi represents the
first n bit of the output of H , and Vi the remaining bits. Next, we recall the definition of
XTX briefly, which will simplify our later definition of POEX.

Definition 1 (XTX [28]) Let K1,K2 ∈ K be independent, let T , ˜E, and H be defined as
above, and let T ′ be a space. Let H ∈ H be defined by K2. Then, XTX[˜E, H] : K1×K2×
T ′ × {0, 1}n → {0, 1}n is defined as

XTX[˜E, H]TK1,K2
(M) := ˜EV

K1
(M ⊕ W) ⊕ W, where (W, V) ← HK2(T).

182 Cryptogr. Commun. (2018) 10:177–193

For encryption, POEX fixes a pair of initial chaining values (X0, Y0) to constants: X0 =
constx and Y0 = consty , such that (constx ‖ consty) ∈ T ′. For the i-th input block, the
values Wi and Vi are derived from Xi−1 and Yi−1 from HK2 . To compute the i-th ciphertext
block Ci , Vi is used as tweak for ˜E, and Wi is XORed to the message block Mi to derive
the next top-row chaining value Xi ← Mi ⊕ Wi . The result of its encryption with ˜E under
key K1 and tweak Vi yields the next bottom-row chaining value: Yi ← ˜E

Vi

K1
(Xi). Ci is

then given by Ci ← Yi ⊕ Wi . The procedure is repeated for all message blocks and the
ciphertext C results from the concatenation C ← (C1‖ · · · ‖Cm). A schematic illustration
of the encryption process is shown in Fig. 1. The decryption works analogously. We define
POEX[˜E,H] = (E,D) with deterministic encryption algorithm E : K × M → C and
deterministic decryption algorithm D : K × C → M as given in Algorithm 1. For all
K ∈ K, M ∈ M, and C ∈ C, it holds that DK(EK(M)) = M and EK(DK(C)) = C.

4 Security notions

4.1 Adversaries and Advantages

An adversary A is an efficient Turing machine that interacts with a given set of oracles
that appear as black boxes to A. We denote by A the class of all computationally bounded
adversaries and AO for the output of A after interacting with an oracle O. We write
�AOLOR := | Pr[AOL⇒ 1]−Pr[AOR⇒ 1]| for the advantage ofA to distinguish between

Fig. 1 Encryption of a three-block message M = (M1,M2,M3) with POEX[˜E, H]. ˜E : K1 × {0, 1}τ ×
{0, 1}n → {0, 1}n is a tweakable block cipher and H : {0, 1}2n → {0, 1}n+τ a keyed universal hash function

Cryptogr. Commun. (2018) 10:177–193 183

oracles OL and OR . All probabilities are defined over the random coins of the oracles and
those of the adversary, if any. We say that A is a (q, σ, t)-X adversary if it asks at most q

queries of at most σ blocks in total and runs in time at most t . We callA a (q, t)-X adversary
if queries cannot contain multiple blocks. We write AdvX

F (q, σ, t) := maxA∈A{AdvX
F (A)}

for the maximal advantage over all (q, σ, t)-X adversaries A on F and analogously for
(q, t)-X adversaries. W.l.o.g., we assume that A never asks queries to which it already
knows the answer.

We will provide pseudocode descriptions of the oracles, which will be referred to as
games, according to the game-playing framework by Bellare and Rogaway [8]. Each game
consists of a set of procedures. We define Pr[G(A) ⇒ x] as the probability that the Game
G outputs x when given A as input.

4.2 Security Definitions for Universal Hashing

Definition 2 (ε-Almost-(XOR-)Universal Hash Functions) Define two sets of bit strings
X ,Y ⊆ {0, 1}∗. Let H = {H | H : X → Y} denote a family of hash functions. H is
called ε-almost-universal (ε-AU) iff for all distinct elements X,X′ ∈ X , it holds that
PrH�H

[

H(X) = H(X′)
] ≤ ε. H is called ε-almost-XOR-universal (ε-AXU) iff for all

distinct X,X′ ∈ X and Y ∈ Y , it holds that PrH�H[H(X) ⊕ H(X′) = Y] ≤ ε.

Minematsu and Iwata [28] introduced the notion of partial ε-almost-XOR-universality,
which will be useful for our later security analysis of POEX.

Definition 3 (ε-Partial-AXU Hash Functions) Let n, m ≥ 1 be fixed and X be a non-
empty set. Let H = {H | H : X → {0, 1}n × {0, 1}m} be a family of hash functions. We
say that H is (n,m, ε)-partial-AXU or short (n, m, ε)-PAXU iff for all distinct elements
X, X′ ∈ X and all � ∈ {0, 1}n, it holds that

max
X,X′,�

Pr
H�H

[

H(X) ⊕ H(X′) = (�, 0m)
] ≤ ε.

Informally spoken, the notion captures the probability that one part of a given pair of
hashes H(X) and H(X′) collides and the other part has a specific non-zero difference.
Clearly, an ε-AXU hash function is also ε-PAXU. In the following, we introduce a notion
of chained partial- almost-XOR universality to articulate the security requirements when
the inputs depend on earlier outputs of the hash function.

Throughout the following, let integers n, m ≥ 1 and let H = {H | H : {0, 1}n ×
{0, 1}n → {0, 1}n × {0, 1}m} be a family of hash functions. From it, we derive a chained
constructionHi = {Hi | Hi : {0, 1}n×{0, 1}n×({0, 1}n)i ×({0, 1}n)i → {0, 1}n×{0, 1}m}
for a positive integer i.

Definition 4 (One-sided Chained Hash Functions) LetH ∈ H be given as above.We define
the instances Hi(X0, Y0, M1..i−1, C1..i−1) = (Wi, Vi) of Hi for all integers i ≥ 1 and all
inputs X0, Y0 ∈ {0, 1}n and M, C ∈ ({0, 1}n)i−1 recursively as

(Wi, Vi):=
{

H (X0, Y0) if i = 1,
H(Wi−1 ⊕ Mi−1, Wi−1 ⊕ Ci−1) otherwise,

where Wi−1 := Hi−1(X0, Y0,M1..i−2, C1..i−2)[1] denotes the first output of Hi−1.

184 Cryptogr. Commun. (2018) 10:177–193

Definition 5 (ε-Chained-Partial-AXU Hash Functions) Let H and Hc be given as above
for some positive integer c. For 1 ≤ i ≤ c −1, we define Xi = Wi ⊕Mi and Yi = Wi ⊕Ci ,
and for 1 ≤ i ≤ c, we define Boolean variables

Ei :=Hi (X0, Y0,M1..i−1, C1..i−1) ⊕ Hi
(

X0, Y0,M
′
1..i−1, C

′
1..i−1

) = (

�, 0m
)

.

We say that Hc is (n, m, c, ε)-chained-PAXU or short (n, m, c, ε)-CPAXU iff for all � ∈
{0, 1}n, X0, Y0 ∈ {0, 1}n, and all M,M ′, C, C′ ∈ ({0, 1}n)c−1 s. t. for all intermediate
values (Xi, Yi) �= (Xj , Yj) with 1 ≤ j < i ≤ c, it holds theat PrH�H [Ei] ≤ ε.

Note that sampling the instance H from H also defines Hi . Further note that a
(n, m, c, ε)-CPAXU hash function is also (n,m, ε)-PAXU since the partial-AXU notion
represents the case c = 1; however, for c > 1, CPAXU poses a stronger requirement to the
hash function than PAXU.

4.3 Security definitions for tweakable block ciphers

We briefly recall the security notions for tweakable block ciphers from [22, 32].

Definition 6 (TPRP/STPRP Advantage) Fix n ≥ 1. Let K and T denote a non-empty
key and tweak space, respectively. Let ˜E : K × T × {0, 1}n → {0, 1}n be a tweak-
able block cipher and ˜D its inverse. Further, let A, A′ be computationally bounded
adversaries, where A has access to an oracle and A′ has access to two oracles. Let
π̃ � TPerm(T , {0, 1}n) and K�K. Then, the TPRP advantage of A wrt. ˜E and the
STPRP advantage of A′ wrt. ˜E and ˜D are defined as AdvTPRP

˜E
(A) := �

A
(˜EK ; π̃) and

AdvSTPRP
˜E,˜D

(A′) := �A′(˜EK, ˜DK ; π̃ , π̃−1).

4.4 Security definitions for on-line ciphers

A secure cipher should behave like a random permutation. It is easy to see that on-line
ciphers cannot guarantee this property since the encryption of message block Mi must not
depend on the subsequent blocks Mj , for j > i. The on- line behavior implies that two
messages M, M ′ that share a p-block common prefix are always encrypted to two cipher-
texts C, C′ that also share a p-block common prefix. Hence, an on-line cipher � is called
secure iff no ciphertext reveals any further information about a plaintext than its length and
the longest common prefix with previous messages.

Definition 7 (Length of Longest Common Prefix [17]) Fix n ≥ 1 and let M ⊆
({0, 1}n)∗. Given M,M ′ ∈ M, we define the length of their longest common prefix as

LLCPn(M,M ′) := maxi

{

1 ≤ j ≤ i : Mj = M ′
j

}

. Given a set Q of messages M ′ ∈ M,

we define LLCPn(M,Q) := maxM ′∈Q
{

LLCPn(M,M ′)
}

.

Definition 8 (On-line Cipher) Fix n ≥ 1. LetM, C ⊆ ({0, 1}n)∗ and letK be a non-empty
space. Let E : K × ({0, 1}n)∗ → ({0, 1}n)∗ be a keyed family of permutations that takes a
key K ∈ K and a message M ∈ M, and outputs a ciphertext C ∈ C such that |C| = |M|.
We call � = (E,D) an on-line cipher iff for all i ∈ [1, |M|/n], Ci depends only on M1
through Mi , and iff D is the decryption algorithm corresponding to E .

Cryptogr. Commun. (2018) 10:177–193 185

Definition 9 (On-line Permutation) Define integers i, j,m, n ≥ 1, and let Pi : ({0, 1}n)i
→ {0, 1}n be a family of indexed n-bit permutations, i.e., for a fixed index j ∈ ({0, 1}n)i−1,
Pi(j, ·) is a permutation. We define an n-bit on-line permutation P : ({0, 1}n)m →
({0, 1}n)m as a composition of m permutations P1 ∪ P2 ∪ · · · ∪ Pm. An m-block input
M = (M1, . . . , Mm) is mapped to an m-block output C = (C1, . . . , Cm) by Ci =
Pi(M1 || · · · || Mi−1, Mi), for all 1 ≤ i ≤ m.

For any two distinct m-block inputs M, M ′ that share an exactly p-block common prefix
M1 || · · · || Mp, the corresponding outputs C = P(M), C′ = P(M ′) satisfy Ci = C′

i for
all i ∈ [1, p] and p ≤ m. However, it applies that Cp+1 �= C′

p+1; moreover, all further
blocks Ci, C

′
i , with i ∈ [p + 2,m], are pairwise different with high probability. We denote

by OPermn the set of all n-bit on-line permutations. A random on-line permutation can be
efficiently implemented by lazy sampling.

Definition 10 (OPRP/SOPRP Advantage) Let � = (E,D) be an on-line cipher with
block size n ≥ 1 and K be a non-empty set. Let K�K and P�OPermn. Let A and
A′ be computationally bounded adversaries, where A has access to an oracle O, and A′
has access to two oracles O1 and O2. Then, the OPRP advantage of A wrt. � is defined
as AdvOPRP

� (A) := �
A

(EK ; P) and the SOPRP advantage of A′ wrt. � and P i−1 as

AdvSOPRP
�,�−1 (A′) := �A′(EK,DK ; P,P −1).

5 Security analysis of POEX

Prior to the security analysis, we recall a theorem for XTX that will be used in the proof
later in this section. Throughout the remainder, fix τ, n ≥ 1. Let K1, K2, T = {0, 1}τ ,
and T ′ denote spaces and define K = K1 × K2. Further, let π̃ � TPerm(T , {0, 1}n) and
H = {H |H : T ′ → {0, 1}n × T } be a family of hash functions.

Theorem 1 ([28]) Let H be (n, τ, ε)-PAXU, where H ∈ H is defined by K2�K2. Let A
be a (q, t)-STPRP adversary on XTX[π̃ , H] with access to two oracles. Then,

AdvSTPRPXTX[π̃ ,H],XTX[π̃−1,H]−1(A) ≤ ε · q2.

Theorem 2 (SOPRP Security of Generic POEX) Let K1,K2�K and T ′ = {0, 1}n ×
{0, 1}n. Let ˜E : K1 × T × {0, 1}n → {0, 1}n be a tweakable block cipher and H be
(n, τ, 2n−1, ε)-CPAXU, where H ∈ H is defined by K2. Let A be a (q, σ, t)-SOPRP
adversary on POEX[˜E,H] with access to two oracles and let σ < 2n−1 blocks. Then,

AdvSOPRP
POEX[˜E,H],POEX[˜D,H]−1(A) ≤ 2σ 2ε

(

1 + 2τ

2n

)

+ 4σ

2n
+ AdvSTPRP

˜E,˜D−1 (σ,O(t)).

Proof Let A have access to two oracles that respond with either real encryptions (decryp-
tions) using POEX[˜E,H] (or POEX[˜D, H]−1), under a uniformly at random sampled
secret key (K1,K2) or with results from an ideal on-line permutation P � OPermn (or
P −1). W.l.o.g., assume thatA is deterministic and asks no queries to which it already knows
the answer. We apply a common strategy for handling bad events from both worlds: in the
real world, all secrets, i.e., the key, are revealed to the adversary A after it finished its

186 Cryptogr. Commun. (2018) 10:177–193

interaction with the available oracles and has output its decision bit regarding which world
it interacted with. Similarly, in the ideal world, the oracle samples the keys independently
and uniformly at random and also reveals them to A after A finished its interaction and
has output its decision bit. So, the internal variables can be computed by A in both worlds
afterwards.

Proof Idea We bound �A(EK,DK ; P,P −1) using a game-based approach. We define a
sequence of games G1 through G4, for which the definitions of G2 and G3 are provided
in Algorithm 3. We omit a separate definition of G1 since its oracles E and D function
identical to those in Algorithm 1, and we omit that of G4 since it models the ideal on-
line permutation. The second game G2 will differ from G1 in the sense that G2 will keep
track of the adversary’s queries, and will replace the concrete used block cipher ˜E, ˜D by
a uniformly at random sampled tweakable permutation π̃�TPerm(T , {0, 1}n) and ˜D by
π̃−1, where π̃ and π̃−1 are defined by lazy sampling. Moreover, G2 will define several bad
events, although they will not affect the outputs.

Subsequently, we will describe a third game G3, which will behave differently from
G2 iff those bad events occur. Finally, we will describe a Game G4, which models an
ideal on-line permutation, i.e., the encryption and decryption oracles of G4 are defined by
P � OPermn and P −1, respectively. The function INITIALIZE provided in Algorithm 2 is
identical for all games. Since it holds that

�
A

(G1;G4) ≤ �
A

(G1; G2) + �
A

(G2; G3) + �
A

(G3; G4),

we can upper bound the distance between G1 and G4 by successively bounding the distance
between every pair of two subsequent games.

Upper bound of �A(G1; G2) G2 keeps track of the adversary’s queries by storing them
in a setQ. Moreover,G2 stores the chaining values (Xi, Yi) into a setB. Storing them allows
to invoke an oracle LLCPn that returns the longest common prefix p, i.e., the maximum
number of common starting blocks p that the current plaintext M shares with any plaintext
of previous queries. Analogously, we define an oracle LLCPC

n which, given the current
ciphertext query C, always returns the longest common prefix p of the current ciphertext C
with any ciphertext of previous queries.

We define a function domain which takes π̃[Vi] and returns the combined set of all
previously occurred inputs to π̃ [Vi] and all previously occurred outputs of π̃ [Vi]−1 over
all queried blocks by A. Similarly, range takes π̃ [Vi] and returns the combined set of all
previously occurred outputs of π̃[Vi] and all previously occurred inputs to π̃ [Vi]−1 over
all blocks of A’s queries. We further define two functions for codomain and corange:

Cryptogr. Commun. (2018) 10:177–193 187

domain(π̃ [Vi]) := {0, 1}n \ domain(π̃[Vi]), range(π̃ [Vi]) := {0, 1}n \ range(π̃ [Vi]) for all
Vi ∈ {0, 1}τ . Moreover, recall that for a set B ⊆ A, the coset of B is defined as B := A\B.
Finally, we define a function find : ({0, 1}n)2 × T → ({0, 1}n)2

find(B, Vi) := (

domain (π̃ [Vi]) × range (π̃ [Vi])
) ∩ B.

Since for Game G2, none of the sets or flags affects its outputs, it holds that

�
A

(G1; G2) ≤ AdvSTPRP
˜E,˜D−1 (σ,O(t)).

Upper bound of �A(G2; G3) The third game G3 differs from G2 as follows: it
resamples internal values if bad events occur in blocks beyond a common prefix:

– In the encryption oracle, bad1 is set to true if both tweak and the cipher input for the
current block repeat, i.e., there exist i, j ≥ 0: (Vi, Xi) = (V ′

j , X
′
j).

– In the encryption oracle, bad2 is set to true if the pair of chaining values repeats, i.e.,
there exist i, j ≥ 0: (Xi, Yi) = (X′

j , Y
′
j).

– In the decryption oracle, bad3 is set to true if both tweak and the cipher input for the
current block repeat, i.e., there exist i, j ≥ 0: (Vi, Yi) = (V ′

j , Y
′
j).

– In the decryption oracle, bad4 is set to true if the pair of chaining values repeats, i.e.,
there exist i, j ≥ 0: (Xi, Yi) = (X′

j , Y
′
j).

188 Cryptogr. Commun. (2018) 10:177–193

The outputs of Game G3 differ from those of Game G2 only if a bad flag is set, i.e., they
are identical until bad. We let A win if G3 sets any of the bad flags. It follows from the
fundamental lemma of game playing [9] that

�
A

(G2; G3) ≤ Pr [G3(A) sets bad] .

Thus, we bound the probability that Game G3 sets bad. It holds that Pr[bad] ≤ Pr[bad1 ∨
. . . ∨ bad4]. In the following, we consider two fixed blocks Mi, M

′
j of two queries M,M ′.

First, we consider the probability that bad1 gets set, that is the probability that both tweak
Vi and chaining value Xi collide: (Vi, Xi) = (V ′

j , X
′
j). We are interested in the probability

Pr[bad1] ≤ Pr
[

(Vi = V ′
j) ∧ (Xi = X′

j)
]

= Pr
[

(Vi ⊕ V ′
j = 0τ) ∧ (Wi ⊕ W ′

j = Mi ⊕ M ′
j)

]

.

If the i-th and j -th blocks would be located directly after the common prefix of M and
M ′, it would automatically hold that Vi = V ′

j ; however, it would also hold that Wi = W ′
j

and Mi �= M ′
i . Hence, it can never follow that Xi = X′

j . So, we consider the probability
beyond being directly after a common prefix. This implies that (i, j) �= (1, 1), i.e., at least
one of the indices must be greater than one; otherwise, the considered blocks Mi and M ′

j

would be directly after the (empty) common prefix. W.l.o.g., we assume i > 1. Then, Yi

is the result of π̃ [Vi−1](·) and is therefore sampled at random from a set of size at least
r ≥ 2n −σ ≥ 2n−1. Since H is an (n, τ, 2n−1, ε)-CPAXU family of hash functions, it holds
for a fixed pair of blocks that

Pr[bad1] = Pr
[

(Vi ⊕ V ′
j = 0τ) ∧ (Wi ⊕ W ′

j = Mi ⊕ M ′
j)

]

≤ ε,

and Pr[bad1] ≤ ε · σ 2/2 over all queries of at most σ blocks.
Next, we consider the probability that bad2 gets set, that is the probability that a pair

of chaining values repeats: (Xi, Yi) = (X′
j , Y

′
j). If the tweaks Vi = V ′

j also collide, it
is easy to see that the permutation π̃ [Vi] maps equal inputs Xi = X′

j to equal outputs
Yi = Y ′

j . Though, this case is already covered by the probability that bad1 gets set, and we
can focus on the case that chaining values repeat for different tweaks Vi �= V ′

j , i.e., for two
permutations. It holds that

Pr[bad1 ∨ bad2] = Pr[bad1] + Pr[bad2] − Pr[bad1 ∧ bad2]
= Pr[bad1] + Pr[¬bad1 ∧ bad2].

We obtain

Pr[¬bad1 ∧ bad2] = Pr
[

(Vi �= V ′
j) ∧ (Xi = X′

j) ∧ (Yi = Y ′
j)

]

.

Again, it follows that (i, j) �= (1, 1) since otherwise, Vi = Vj would hold. It can happen
that one of the indices is 0; w.l.o.g., we assume j = 0, i.e., we consider a collision of the
form (Xi, Yi) = (X0, Y0). Since Yi is chosen by π̃ [Vi](·), the probability to hit Y0 is upper
bounded by 1/(2n − σ) for a single block and σ/(2n − σ) over at most σ blocks. So, we
can focus on i, j > 0 in the remainder, and assume w.l.o.g. i > 1.

Since we excluded events bad1 to have occurred before, Yi−1 has been chosen by
π̃ [Vi−1](·) randomly from a set of size at least 2n−1. From the fact that H is an ε-CPAXU
family of hash functions, it follows that

Pr
[

(Xi = X′
j) ∧ (Vi �= V ′

j)
]

= Pr
[

(Wi ⊕ W ′
j) = (Mi ⊕ M ′

j)
]

≤ 2τ · ε

Cryptogr. Commun. (2018) 10:177–193 189

since we allow all 2τ − 1 non-zero differences Vi ⊕ V ′
j from the assumption that bad1 and

bad2 have not already occurred. It follows from Vi �= V ′
j that π̃[Vi] and π̃ [V ′

j] are indepen-
dent random permutations, and hence the probability that Yi = Y ′

j holds is 1/(2n − |B|).
The term |B| results from the fact that the game resamples (Xi, Yi) uniformly at random
from all possible chaining values which are not in B and which do not conflict with earlier
values in the sets domain and range of π̃ [Vi] and π̃ [V ′

j]. There may be less than 2n values
to sample from, but always at least 2n − (σ + 1) values. The ‘1’ represents the fact that
(X0, Y0) is already contained in B at the initialization. So, we can upper bound

Pr[¬bad1 ∧ bad2] ≤ 2τ · ε

2n − (σ + 1)

for fixed query and blocks, and, over all queries of σ blocks follows that

Pr[¬bad1 ∧ bad2] ≤ σ 2

2
· 2τ · ε

2n − (σ + 1)
+ σ

2n − σ
.

Since bad3 and bad4 represent events similar to bad1 and bad2 (only in decryption direc-
tion), it also follows that Pr[bad3] ≤ ε · σ 2/2 and Pr[¬bad3 ∧ bad4] ≤ (σ 2/2) · 2τ ε/(2n −
(σ + 1)) + σ/(2n − σ). Hence, it holds that

Pr[bad] ≤ 2

(

σ 2

2
ε + σ 2

2
ε · 2τ

2n − (σ + 1)
+ σ

2n − σ

)

≤ σ 2ε

(

1 + 2τ

2n − (σ + 1)

)

+ 2σ

2n − σ
.

Upper bound of �A(G3; G4) We let the adversary already win if G3 has set bad. It
remains to consider the setting where G3 does not set bad for the current query. We consider
a pair of two distinct queries Q = (M,C), Q′ = (M ′, C′) ∈ Q with m = |M|/n and
m′ = |M ′|/n. W.l.o.g., we assume m ≥ m′ and denote by p = LLCPn(M, M ′) the length
of their common prefix. We study the difference in the outputs of Game G3 and an ideal on-
line permutation of Game G4 for three cases: (C1) for output blocks in a common prefix,
1 ≤ i ≤ p, (C2) for the diverging block, i.e., i = p + 1, and (C3) for output blocks after
the diverging block, i.e., i > p + 1.

Case C1: Behavior in the Common Prefix In Game G4, P is a deterministic on-line
cipher. In Game G3, the output blocks in the common prefix are chosen by an ideal tweaked
permutation π̃ [Vi](Xi) (or π̃ [Vi]−1(Yi)). For the first block, the tweak V1 is always fixed.
Hence, if M1 = M ′

1 holds for two queries, it follows from the definition of POEX that
C1 = C′

1. Clearly, the chaining values for the next block, (X1, Y1) and (X′
1, Y

′
1) are also

identical for both queries; since H is deterministic, the tweaks for the next block must
match, i.e., (W2, V2) = (W ′

2, V
′
2). In general, for all i ≤ p, the inputs Mi = M ′

i (or
the outputs Ci = C′

i) are identical in the prefix, and the tweaks and therefore the inputs
to π̃ [Vi] are also identical since Xi−1 = X′

i−1 and Yi−1 = Y ′
i−1. Hence, the advan-

tage of A to distinguish both games is zero in this case. A similar argument holds for the
decryption.

Case C2: Behavior Directly after the Common Prefix Since Mi = M ′
i for all 1 ≤ i ≤

p, it follows that Vp+1 = V ′
p+1 and Wp+1 = W ′

p+1. So, it follows from Mp+1 �= M ′
p+1 that

190 Cryptogr. Commun. (2018) 10:177–193

Xp+1 �= X′
p+1 and therefore Yp+1 �= Y ′

p+1 since π̃ [Vp] is a permutation. Consequently, it
follows that

Cp+1 = (Wp+1 ⊕ Yp+1) �= (W ′
p+1 ⊕ Y ′

p+1) = C′
p+1.

So, Cp+1 and C′
p+1 always differ in both games. A similar argument holds when con-

cerning decryption. Again, the advantage of A to distinguish both games is zero in this
case.

Case C3: Behavior after the (p + 1)-th Block In Game G4, each output block after a
common prefix is chosen uniformly at random from {0, 1}n. Let Vi denote a set that collects
all chaining-value pairs (Xi, Yi) for each occurring tweak Vi ∈ {0, 1}τ . In the real world,
each output block is chosen uniformly at random from {0, 1}n \Vi for the respective current
tweak Vi . We concern two subcases: (3.1) blocks, for which all the tweaks Vi �= V ′

j are
distinct, and (3.2) blocks, for which the corresponding tweaks collide, i.e., Vi = V ′

j for two
message blocks Mi and M ′

j . Recall that the interest of this subcase limits to blocks that are
not part of a common prefix nor follow directly after a common prefix, plus it assumes that
no bad flags are set, i.e., no simultaneous collision in tweaks Vi = V ′

j and inputs Xi = X′
j

(or Yi = Y ′
j in decryption direction) occurs.

Subcase 3.1 When the tweaks Vi �= V ′
j are distinct, π̃ [Vi] and π̃ [V ′

j] define independent
permutations. Therefore, there is no difference in the behavior between both games, i.e., the
distinguishing advantage of A is zero in this subcase.

Subcase 3.2 If Game G3 does not set bad, the tuples (Xi, Yi) are always distinct for blocks
that are not part of a longest common prefix. In the remainder of this subcase, we make
the adversary A stronger than it is by giving it control over the pairs (Xi−1, Yi−1) with the
restriction that (Xi−1, Yi−1) �= (X′

j−1, Y
′
j−1) always holds. So, A is able to choose Mi ,

Xi−1, and Yi−1, and must distinguish POEX with XTX[π̃ , H] from P only by observing
the outputs Ci (and similarly, chooses Ci , Xi−1, and Yi−1, and observes Mi in decryption
direction). It is easy to see that, due to Theorem 1, we can upper bound its advantage in this
subcase by

AdvSTPRPXTX[π̃ ,H],XTX[π̃−1,H]−1(σ,O(t)) ≤ ε · σ 2.

The bound in Theorem 2 follows then from adding up all individual terms.

6 Discussion and conclusion

Efficient tweakable block ciphers The TWEAKEY [20] framework is an efficient key-
scheduling approach for substitution-permutation networks where tweak and key words are

Cryptogr. Commun. (2018) 10:177–193 191

treated equally, and are mixed into a so-called tweakey. Three tweakable block ciphers have
been published in [20] alongside TWEAKEY: JOLTIK-BC, a lightweight cipher with 64-bit
state and tweakey sizes of 128 and 192 bits, DEOXYS-BC, is AES-like with a 128-bit state,
and tweakey sizes of 256 and 384 bits, and KIASU-BC, a 128-bit cipher with 64-bit tweak
that does not follow the TWEAKEY approach, but is identical to the AES if the tweak is
zeroed. Recently, Beierle et al. proposed SKINNY [6], another AES-like tweakable block
ciphers with a lightweight linear layer, also treating tweak and key as combined tweakey.
The specification of SKINNY proposes state sizes of n ∈ {64, 128} bits, and tweakey sizes
of n, 2n, and 3n bits. Hence, DEOXYS-BC-256 or SKINNY-n/2n could appear as an appro-
priate choice for instantiation. Though, the question which tweakable block cipher is suited
depends on the application setting. Less restricted environments may also allow wide-block
tweakable ciphers such as ThreeFish [16]. Note that POEX can also be instantiated with a
tweakable block cipher based on a classical block cipher, e.g., the well-known LRW/XEX
designs [22, 31]. Though, the term AdvSTPRP

˜E,˜D
(σ,O(t)) limits their security to the birth-

day bound, whereas designs such as, e.g., [26, 33] can achieve beyond-birthday-bound
security.

The bound A bound with 2τ /2n might look bad for tweakable block ciphers with larger
tweak length than state length, i.e., τ � n, as it is the case for, e.g., DEOXYS-BC-384 and
SKINNY-64/192. However, we stress that desirable universal hash functions should provide
a CPAXU bound of ε ≤ c/2τ+n, for some small c. Thus, a bound of 2σ 2ε · (1 + 2τ−n

)

will
then become (2cσ 2)(1/2τ+n + 1/22n), and provide security for up to O(2(τ+n)/2) message
blocks encrypted under the same key.

Comparison to TC2 POEX seems similar to TC2 by Rogaway and Zhang [32] if TC2
would be instantiated with the XTX [28] tweak-domain extender by Minematsu and Iwata
as black box. However, such a generic instantiation could yield only birthday-bound security
given a simple OPRP attack as in Algorithm 4. Assume, the adversary chooses the same
value for all blocks in a long message. Then, if some pair of ciphertext blocks Cj = C′

j ′
collides, the collision will continue to the subsequent blocks Cj+1 = C′

j ′+1 etc. since Cj+1

depends only on (Mj , Cj ,Mj+1) and C′
j ′+1 only on (M ′

j ′ , C′
j ′ ,M ′

j ′+1) which is equal to

(Mj , Cj ,Mj+1). Since the probability of such a collision is about σ 2/2n+1, it limits the
OPRP security to the birthday bound.

In contrast to TC2, POEX avoids to directly use the plain- and ciphertext blocks as chain-
ing values, but only their XOR with two pseudorandom internal values that the adversary
cannot fully control. Hence, two n-bit values have to match to get a collision in the chaining
values that would lead to a similar distinguisher as above.

Extension to on-line authenticated encryption The proposed on-line cipher can be
extended to an on-line authenticated encryption scheme, when combined with a MAC that
achieves beyond-birthday-bound security, e.g., PMAC2X [23], which can yield a 2n-bit
output that can be used as initial value for POEX. Since it is desirable to use only a single
key for the tweakable block cipher, a common approach is to introduce domains into the
tweak such that the tweakable block cipher defines domain-separated distinct permutations
for encrypting full message blocks, processing a partial final message block, the associ-
ated data, the nonce, as well as for computing the authentication tag. However, the details
of defining those operations have to be handled with care since they still need to provide
beyond-birthday-bound security.

192 Cryptogr. Commun. (2018) 10:177–193

Conclusion This work proposed POEX, an on-line cipher with beyond-birthday-bound
security that represents a chained construction of Iwata and Minematsu’s XTX domain
extender for tweakable block ciphers. Our construction appears well-suited for environ-
ments where parallelism plays a subordinate role but where security beyond the birthday
bound is essential due to small cipher block sizes and/or rare key changes. Moreover, POEX

may serve as a starting point towards more secure on-line nonce-misuse-robust AE schemes.
In this domain, all known existing schemes provide authenticity only up to the birthday
bound, which differs significantly from the expected security of standardized schemes such
as OCB and GCM. While there exist straight-forward approaches to transform an on-line
cipher into such a scheme (e.g. [17]), it remains an interesting future work to design a
beyond-birthday-secure on-line AE scheme from POEX which needs efficient complement-
ing algorithms for processing the associated data and deriving the tag. We defined POEX

in a generic manner to allow the choice of an appropriate family of hash functions and a
tweakable block cipher.

Acknowledgements The authors would like to thank the anonymous reviewers of the ArcticCrypt 2016
and of the journal for Cryptography and Communications for their very helpful comments and suggestions.
We would thank in particular Mridul Nandi and Ashwin Jha for pointing out that subsequent inputs to the
hash function are dependent, which helped to improve our work.

References

1. Abed, F., Forler, C., McGrew, D., List, E., Fluhrer, S., Lucks, S., Wenzel, J.: Pipelineable on-line
encryption. In: Cid, C., Rechberger, C. (eds.) FSE, volume 8540 of Lecture Notes in Computer Science,
pp. 205–223. Springer (2014)

2. Andreeva, E., Bogdanov, A., Datta, N., Luykx, A., Mennink, B., Nandi, M., Tischhauser, E., Yasuda, K.:
COLM v1. http://competitions.cr.yp.to/caesar-submissions.html (2016)

3. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Mouha, N., Yasuda, K.: How to securely release
unverified plaintext in authenticated encryption. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT (1), volume
8873 of LNCS, pp. 105–125. Springer (2014)

4. Andreeva, E., Bogdanov, A., Luykx, A., Mennink, B., Tischhauser, E., Yasuda, K., Sarkar, P.: Paral-
lelizable and authenticated online ciphers. In: Sako, K. (ed.) ASIACRYPT (1), vol. 8269, pp. 424–443.
Springer (2013)

5. Andreeva, E., Luykx, A., Mennink, B., Yasuda, K.: COBRA: A parallelizable authenticated online cipher
without block cipher inverse. In: Cid, C., Rechberger, C. (eds.) FSE, volume 8540 of LNCS, pp. 187–204.
Springer (2014)

6. Beierle, C., Jean, J., Kölbl, S., Leander, G., Moradi, A., Peyrin, T., Sasaki, Y., Sasdrich, P., Sim, S.M.:
The SKINNY family of block ciphers and its low-latency variant MANTIS. In: Robshaw, M., Katz,
J. (eds.) CRYPTO II, volume 9815 of LNCS, pp. 123–153. Springer (2016)

7. Bellare, M., Boldyreva, A., Knudsen, L.R., Namprempre, C.: Online ciphers and the Hash-CBC con-
struction. In: Kilian, J. (ed.) CRYPTO, volume 2139 of Lecture Notes in Computer Science, pp. 292–309.
Springer (2001)

8. Bellare, M., Rogaway, P.: Code-based game-playing proofs and the security of triple encryption. IACR
Cryptol ePrint Archive 2004, 331 (2004)

9. Bellare, M., Rogaway, P.: The security of triple encryption and a framework for code-based game-playing
proofs. In: Vaudenay, S. (ed.) EUROCRYPT, volume 4004 of LNCS, pp. 409–426. Springer (2006)

10. Bernstein, D.: Caesar: Competition for authenticated encryption: Security, applicability, and robustness.
https://competitions.cr.yp.to/caesar.html,Version2016.08.15

11. Bhaumik, R., Mridul, N.: OleF: An inverse-free online cipher. Trans Symmetric Cryptol Issue 2016(2),
30–51 (2016)

http://competitions.cr.yp.to/caesar-submissions.html
https://competitions.cr.yp.to/caesar.html, Version 2016.08.15

Cryptogr. Commun. (2018) 10:177–193 193

12. Bogdanov, A., Knudsen, L.R., Leander, G., Paar, C., Poschmann, A., Robshaw, M.J.B., Seurin,
Y.annick., Vikkelsoe, C.: PRESENT: An ultra-lightweight block cipher. In: Paillier, P., Verbauwhede,
I. (eds.) CHES, volume 4727 of LNCS, pp. 450–466. Springer (2007)

13. Boldyreva, A., Taesombut, N.: Online encryption schemes: New security notions and constructions. In:
Okamoto, T. (ed.) CT-RSA, volume 2964 of Lecture Notes in Computer Science, pp. 1–14. Springer
(2004)

14. Datta, N., Nandi, M.: ELmD. http://competitions.cr.yp.to/caesar-submissions.html (2014)
15. Datta, N., Nandi, M., Susilo, W., Mu, Y.: ELmE: A misuse resistant parallel authenticated encryption.

In: ACISP, volume 8544 of Lecture Notes in Computer Science, pp. 306–321. Springer (2014)
16. Ferguson, N., Lucks, S., Schneier, B., Whiting, D., Bellare, M., Kohno, T., Callas, J., Walker, J.: The

skein hash function family. Submission to NIST (Round 3) (2010)
17. Fleischmann, E., Forler, C., Lucks, S.: McOE: A family of almost foolproof on-line authenticated

encryption schemes. In: Canteaut, A. (ed.) FSE, volume 7549 of LNCS, pp. 196–215. Springer (2012)
18. Halevi, S., Rogaway, P.: A parallelizable enciphering mode. In: Okamoto, T. (ed.), pp. 292–304. Springer

(2004)
19. ISO/IEC. ISO/IEC 29192-2:2012, Information technology ? Security techniques ? Lightweight cryptog-

raphy ? Part 2: Block ciphers, 2012
20. Jean, J., Nikolic, I., Peyrin, T., Sarkar, P., Iwata, T.: Tweaks and keys for block ciphers: The TWEAKEY

framework. In: ASIACRYPT (2), volume 8874 of Lecture Notes in Computer Science, pp. 274?-288
(2014)

21. Krovetz, T., Rogaway, P.: The software performance of authenticated-encryption modes. In: Joux,
A. (ed.) FSE, volume 6733 of Lecture Notes in Computer Science, pp. 306–327. Springer (2011)

22. Liskov, M., Rivest, R.L., Wagner, D.: Tweakable block ciphers. In: Yung, M. (ed.) CRYPTO, volume
2442 of Lecture Notes in Computer Science, pp. 31–46. Springer (2002)

23. List, E., Nandi, M.: Revisiting full-PRF-secure PMAC and using it for beyond-birthday authenticated
encryption. In: Handschuh, H. (ed.) CT-RSA, volume 10159 of LNCS, pp. 258–274. Springer (2017)

24. Lu, J.: On the security of the COPA and marble authenticated encryption algorithms against (almost)
universal forgery attack. IACR Cryptology ePrint Archive 2015, 79 (2015)

25. McGrew, D., Viega, J.: The Galois/Counter Mode of Operation (GCM). Submission to NIST. http://csrc.
nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf (2004)

26. Mennink, B.: Optimally secure tweakable blockciphers. In: Leander, G. (ed.) FSE, volume 9054 of
Lecture Notes in Computer Science, pp. 428–448. Springer (2015)

27. Minematsu, K.: Parallelizable rate-1 authenticated encryption from pseudorandom functions. In:
Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT, volume 8441 of Lecture Notes in Computer Science,
pp. 275–292. Springer (2014)

28. Minematsu, K., Iwata, T.: Tweak-length extension for tweakable blockciphers. In: Groth, J. (ed.) IMA
International Conference, volume 9496 of Lecture Notes in Computer Science, pp. 77–93. Springer
(2015)

29. Nandi, M.: A simple security analysis of hash-cbc and a new efficient one-key online cipher. Cryptology
ePrint Archive, Report 2007/158 (2007)

30. Nandi, M.: Two new efficient CCA-secure online ciphers: MHCBC and MCBC. In: Chowdhury, D.R.,
Rijmen, V., Das, A. (eds.) INDOCRYPT, volume 5365 of LNCS, pp. 350–362. Springer (2008)

31. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to modes OCB and
PMAC. In: ASIACRYPT, volume 3329 of Lecture Notes in Computer Science, pp. 16–31. Springer
(2004)

32. Rogaway, P., Zhang, H.: Online ciphers from tweakable blockciphers. In: CT-RSA, volume 6558 of
Lecture Notes in Computer Science, pp. 237–249. Springer (2011)

33. Wang, L., Guo, J., Zhang, G., Zhao, J., Gu, D.: How to build fully secure tweakable blockciphers from
classical blockciphers. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT (1), volume 10031 of LNCS,
pp. 455?-483 (2016)

34. Young, E.A., Hudson, T.J.: OpenSSL: The Open Source toolkit for SSL/TLS. http://www.openssl.org/
(2011)

http://competitions.cr.yp.to/caesar-submissions.html
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://csrc.nist.gov/CryptoToolkit/modes/proposedmodes/gcm/gcm-spec.pdf
http://www.openssl.org/

	POEx: A beyond-birthday-bound-secure on-line cipher
	Abstract
	Introduction
	On-line Ciphers
	Limitations
	Applications
	Existing Block-Cipher-Based On-line Ciphers
	Beyond-Birthday-Bound Security
	Contribution
	Outline

	Preliminaries
	Generic definition of POEx
	Security notions
	Adversaries and Advantages
	Security Definitions for Universal Hashing
	Security definitions for tweakable block ciphers
	Security definitions for on-line ciphers

	Security analysis of POEx
	Proof Idea
	Upper bound of A(G1;G2)
	Upper bound of A(G2;G3)
	Upper bound of A(G3;G4)
	Case C1: Behavior in the Common Prefix
	Case C2: Behavior Directly after the Common Prefix
	Case C3: Behavior after the (p+1)-th Block
	Subcase 3.1
	Subcase 3.2

	Discussion and conclusion
	Efficient tweakable block ciphers
	The bound
	Comparison to TC2
	Extension to on-line authenticated encryption
	Conclusion

	Acknowledgements
	References

