
Cryptogr. Commun. (2018) 10:531–554
DOI 10.1007/s12095-017-0236-7

Permutation polynomials of the form cx + Trql/q(xa)

and permutation trinomials over finite fields with even
characteristic

Kangquan Li1 ·Longjiang Qu1,2 ·Xi Chen1 ·Chao Li1

Received: 25 November 2016 / Accepted: 16 June 2017 / Published online: 1 July 2017
© Springer Science+Business Media, LLC 2017

Abstract Permutation polynomials over finite fields constitute an active research area and
have applications in many areas of science and engineering. Particularly, permutation poly-
nomials with few terms are more popular for their simple algebraic form and additional
extraordinary properties. Very recently, G. Kyureghyan and M.E. Zieve (2016) studied per-
mutation polynomials over Fqn of the form x+γTrqn/q(xk), where q is odd, and nine classes
of permutation polynomials were constructed. In this paper, we present fifteen new classes
of permutation polynomials of the form cx + Trql/q(xa) over finite fields with even char-
acteristic, which explain most of the examples with q = 2k , k > 1, kl < 14 and c ∈ F

∗
ql .

Furthermore, we also construct four classes of permutation trinomials.
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1 Introduction

Let Fq be the finite field with q elements and F
∗
q be the multiplicative group with the nonzero

elements in Fq . A polynomial f (x) ∈ Fq [x] is called a permutation polynomial if the
induced mapping x → f (x) is a permutation of Fq . Permutation polynomials have various
applications in coding theory [20, 30], cryptography [22, 26, 27] and combinatorial designs
[8]. Therefore, the study about permutation polynomials attracts people’s interest for many
years. Particularly, permutation polynomials with few terms are more popular thanks to their
simple algebraic form and additional extraordinary properties. For example, in [10], Dob-
bertin first proved a well-known conjecture of Welch stating that the power function x2m+3

on F22m+1 is even maximally nonlinear, or, in other words the crosscorrelation function
between a binary maximum-length linear shift register sequence of degree n and a decima-
tion of that sequence by 2m + 3 takes on precisely the three values −1,−1± 2m+1. And the
key of his proof was a discovery of a class of permutation trinomials. More results about
permutation polynomials can be found in [5, 6, 12, 13, 15–18, 24, 29].

Let q = 2k . For α ∈ Fql , the trace function from Fql to its subfield Fq is defined as

Trql/q(α) = α + αq + · · · + αql−1
.

If q = 2, Trql/q(α) is called the absolute trace function, and it is simply denoted by Trql (α).
The trace function is often used in constructing permutation polynomials over finite fields
[5–7, 18, 33, 37]. In [5], P. Charpin and G. Kyureghyan considered a class of permutation
polynomials of the shape G(x) + γTrq(H(x)) over Fq , where q = 2k . They found that the
considered problem can be reduced to looking for Boolean functions with linear structures.
With this idea, they constructed sparse permutation polynomials by choosing both G(x)

and H(x) to be monomials. In [7], they extended these results from finite fields with even
characteristic to arbitrary finite fields. Very recently, G. Kyureghyan and M.E. Zieve [18]
studied all permutation polynomials over Fqn of the form x + γTrqn/q(xk) with γ ∈ F

∗
qn ,

q odd, n > 1, and qn < 5000. They constructed nine classes of permutation polynomials
with this special form, which explained most of the experimental results under the afore-
mentioned condition. This motivates us to study such permutation polynomials over finite
fields with even characteristic. Hence this paper is devoted to construct new permutation
polynomials of the form cx + Trql/q(xa), where q = 2k . To avoid repetitive work from [5],
we do not consider the absolute trace function, in other words, we assume that q > 2.

We notice that a permutation polynomial of the form cx + Trql/q(xa) is a permutation
trinomial when l = 2. Permutation trinomials have been widely studied for their simple
structure and wide applications. For instances, the discovery of a class of permutation tri-
nomials by Ball and Zieve [3] provided a way to prove the construction of the Ree-Tits
symplectic spreads of PG(3, q). Hou [16, 17] acquired a necessary and sufficient con-
dition about determining a special permutation trinomial. For more recent results about
permutation trinomials, please refer to [9, 14, 24, 25, 28].

We also notice that a permutation polynomial of the form cx + Trql/q(xa) may also

with the form xrh
(
x

(
ql−1

)
/d

)
in some special cases, while there are many results about

the polynomials with this form over Fql . For instances, let Q = qm
0 , where q0 ≡ 1

(mod d) and d | m, and h ∈ Fq0 [x]. Akbary and Wang [2], Laigle-Chapug [20] proved
that xrh

(
x (Q−1)/d

)
permutes FQ if and only if gcd(r + n, d) = gcd

(
r, (Q − 1)

/
d

) = 1.
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Zieve made important contributions to determining permutation polynomials with this
form. In [34], Zieve obtained a necessary and sufficient condition about a complex form
h(x) = hk(x)t ĥ

(
hl(x)d0

)
, where hk(x) = 1 + x + · · · + xk−1 and t, d0, ĥ satisfy some

conditions. For more results about permutation polynomials with this form, one can consult
[14, 35, 36].

In this paper, we construct fifteen new classes of permutation polynomials of the form
cx +Trql/q(xa) over finite fields with even characteristic. Moreover, four classes of permu-
tation trinomials are also presented. According to the difference on the Hamming weight
of a, which is defined to be the number of nonzero coefficients ai in the binary expansion∑s

i=0 ai2i of a, we use three different methods to prove these results. In the following, we
give the sketches of these methods. The first one is called the elementary approach. It was
used in the case where the Hamming weight of a is small. Let f (x) = cx +Trql/q (xa) = d

and u = cx + d. Then u = Trql/q (xa) ∈ Fq and x = 1
c
(u + d). Plugging x = 1

c
(u + d)

into f (x) = d leads to an equation of u with low degree. It is not difficult to show that this
low degree equation has at most one solution in Fq . We call the second method the frac-
tional approach. It has been used in [12, 25], where the permutation trinomials over Fq2

of the form xrh
(
xq−1

)
were mainly considered, and p(x) = xrh(x)q−1 was called a frac-

tional polynomial. In the present paper, several new classes of permutation trinomials over
Fq2 ,where q = 2k with such form are constructed, some of which are the generalizations
of those in [25]. The final method is the multivariate method introduced by Dobbertin [11].
That is to prove the permutation property of a polynomial by algebraic calculations with
multivariate equations. It had been widely used to prove permutation polynomials, such as
[9, 18] and so on.

By using Magma, we search all permutation polynomials over Fql of the form cx +
Trql/q(xa) with q = 2k , kl < 14, c ∈ F

∗
ql and a ∈ [1, ql − 2]. We also add some conditions

in the process of obtaining the data in Table 1. First, the restriction k > 1 is added to
distinguish our study from that of P. Charpin and G. Kyureghyan [5]. Second, we rule out
the trivial cases that Trql/q (xa) ≡ 0 for x ∈ Fql , a is divided by q, and a is a power of 2,
where the last case is corresponding to linearized polynomials. All experiment examples are
given in Table 1. In Table 1, ω is a primitive element of the corresponding finite field and
the overbar of an element denotes the set consisting of all its conjugate elements. Column
Ref. refers to the theorem that explains the corresponding examples. It should be noted that
an example may be explained by several theorems, however, we only list one for simplicity.
Lastly, the symbol ”-” means that an example can not be explained by us up to now. We
can see from Table 1 that most of the examples of this form can be generalized to a class of
permutation polynomials.

The rest of this paper is organized as follows. In Section 2 we introduce some useful
lemmas. Section 3 contains the permutation polynomials of the form cx + Trql/q(xa). It is
divided into three subsections according to the value of l, which are the case that l > 2 is
even, the case that l is odd and the case that l = 2. Four classes of permutation trinomials
are introduced in Section 4.

2 Preliminary

The following result was discovered independently by several authors. It is also worth point-
ing out that it is actually the multiplicative case of a more general AGW criterion [1, Lemma
1.2]. Lemma 2.1 will be frequently employed in the sequel.
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Table 1 Permutation polynomials of the form cx + Tr2kl /2k (xa) over F2kl , k > 1, kl < 14

k l a c Ref. k l a c Ref.

1 2 2 7 1 Th 3.6 21 3 4 9 F
∗
64 Th 3.1

2 3 2 15 F
∗
4 Th 3.6 22 3 4 18 F

∗
64 Th 3.1

3 3 2 22 ω9 Th 3.9 23 3 4 36 F
∗
64 Th 3.1

4 2 3 10 F4\{0, 1} Th 3.5 24 4 3 34 C1 Th 3.4

5 4 2 31 1 Th 3.6 25 4 3 136 F16\{0, 1} Th 3.5

6 4 2 61 1 Th 2.7 26 6 2 127 1 Th 3.6

7 4 2 91 1 Th 2.6 27 6 2 136 C2 −
8 4 2 76 1, ω119 Th 2.8(2) 28 6 2 505 1 Th 2.8(1)

9 4 2 106 F
∗
4 Th 3.7 29 6 2 505 ω819 −

10 2 4 5 F
∗
16 Th 3.1 30 6 2 568 1 Th 2.8(2)

11 2 4 10 F
∗
16 Th 3.1 31 6 2 1072 C3 Th 3.9

12 3 3 36 F8\{0, 1} Th 3.5 32 6 2 1324 1 Th 3.12

13 2 5 10 F4\{0, 1} Th 3.4 33 6 2 1387 1 Th 2.6

14 2 5 34 F4\{0, 1} Th 3.4 34 6 2 1450 F
∗
16 Th 2.7

15 5 2 63 F
∗
4 Th 3.6 35 6 2 1639 1 −

16 5 2 435 F
∗
4 Th 3.8 36 6 2 1828 F

∗
8 Th 3.13

17 5 2 125 1 − 37 2 6 5 F
∗
16 Th 3.1

18 5 2 466 1 Th 3.10 38 2 6 10 F
∗
16 Th 3.1

19 5 2 187 1, ω93 Th 3.11 39 2 6 17 F
∗
4 Th 3.2

20 5 2 280 1, ω231, ω363 Th 3.9 40 2 6 34 C4 Th 3.3

C1 : F∗
16\{c : c3 �= 1}

C2 : {c : c ∈ F32, x
3 + x + c = 0 has no solution in F32}

C3 : ω117, ω273, ω351, ω429, ω507, ω819

C4 : 1, ω231, ω819, ω1365

Lemma 2.1 [23, 31, 34] Pick d, r > 0 with d | (q − 1), and let h ∈ Fq [x]. Then f (x) =
xrh

(
x (q−1)/d

)
permutes Fq if and only if both

(1) gcd
(
r, (q − 1)

/
d

) = 1 and
(2) xrh(x) (q−1)/d permutes μd , where μd = {x ∈ Fq : xd = 1}, and Fq denotes the

algebraic closure of Fq .

The following results on the number of the solutions of quadratic and cubic equations in
Fq are useful in the subsequent proof.

Lemma 2.2 [19] Let q = 2k , where k is a positive integer. The quadratic equation x2 +
ux + v = 0, where u, v ∈ Fq and u �= 0, has roots in Fq if and only if Trq

(
v

u2

)
= 0.

Lemma 2.3 [4] Let a, b ∈ Fq , where q = 2k and b �= 0. Then the cubic equation x3 +
ax + b = 0 has a unique solution in Fq if and only if Trq

(
a3

b2
+ 1

)
�= 0.

We can work out a solution of a cubic equation by the following method.
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Theorem 2.4 [32] Let q = 2k and f (x) = x3 + ax + b ∈ Fq [x] and b �= 0. Let t1 be one
solution of the quadratic derived equation t2 + bt + a3 = 0. And let ε be one solution of
x3 = t1. Then ε + a

ε
is a root of f (x).

Philip A. Leonard and Kenneth S. Williams characterized the factorization of a quartic
polynomial over F2k in [21].

Lemma 2.5 [21] Let q = 2k and f (x) = x4 +a2x
2 +a1x +a0 ∈ Fq [x], where a0 �= 0. Let

g(y) = y3 + a2y + a1. Then f (x) is irreducible if and only if g(y) only has one solution r

in Fq and Trq

(
a0r

2

a21

)
= 1.

The following two theorems were obtained by G. Kyureghyan and M.E. Zieve in [18].
We list them here because they can explain some examples in Table 1.

Theorem 2.6 [18] If q ≡ 1 (mod 3), then f (x) = x + Trq2/q

(
x

q2+q+1
3

)
permutes Fq2 .

Theorem 2.7 [18] For any prime power q and any positive integers l, n with 2l | n, if γ ∈ Fqn

satisfies γ q2l−1 = −1, then the polynomial f (x) = x + γTrqn/q(xql+1) permutes Fqn .

The following results can be proved similarly as [18, Theorem 6.1].

Theorem 2.8 Let q = 2k and f (x) = cx + Trq4/q2 (xa) ∈ Fq4 [x]. Then f (x) is a
permutation polynomial over Fq4 if one of the following conditions occurs:

(1) a = q3 − q + 1 and c = 1;
(2) a = q4 − q3 + q and c = 1.

3 Permutation polynomials of the form cx + Trql/q(xa)

In this section, we describe a few classes of permutation polynomials of the form cx +
Trql/q(xa). We divide the results into three subsections according to the value of l. More
precisely, they are the case l > 2 is even, l is odd and l = 2. We put the case l = 2 alone
out since the results in this case constitute the majority.

3.1 The case l > 2 is even

Theorem 3.1 Let q = 2k and f (x) = cx+Trq2n/q

(
x2i (q+1)

)
, where c ∈ F

∗
q2

and n, k, i >

0 are integers. Then f (x) is a permutation polynomial over Fq2n .

Proof We show that for any d ∈ Fq2n , the equation f (x) = d has at most one solution

in Fq2n . Let u = cx + d. Then u = Trq2n/q(x2i (q+1)) ∈ Fq and x = 1
c
(u + d). Plugging

x = 1
c
(u + d) into f (x) = d, we get

u +
Trq2n/q

(
u2

i+1 +
(
d2i q + d2i

)
u2

i + d2i (q+1)
)

c2
i (q+1)

= 0.
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Thanks to u ∈ Fq , Trq2n/q (1) ≡ 0 and Trq2n/q

(
d2i q + d2i

)
≡ 0,we have

u =
Trq2n/q

(
d2i (q+1)

)

c2
i (q+1)

.

Hence f (x) = d has at most one solution in Fq2n . Moreover, f (x) is a permutation
polynomial over Fq2n .

Theorem 3.2 Let q = 2k and f (x) = cx + Trq2n/q

(
xq2+1

)
, where c ∈ F

∗
q and n, k > 0

are integers. Then f (x) is a permutation polynomial over Fq2n .

Proof It suffices to prove that for any d ∈ Fq2n , f (x) = d has at most one solution in Fq2n .

Let u = cx + d. Then u = Trq2n/q

(
xq2+1

)
∈ Fq and x = 1

c
(u + d). Plugging the above

expression of x into f (x) = d, we get

u + Trq2n/q

(
1

c2
(u2 + (dq2 + d)u + dq2+1)

)
= 0,

i.e.,

u =
Trq2n/q

(
dq2+1

)

c2
.

Hence f (x) = d has at most one solution in Fq2n . We finish the proof.

Theorem 3.3 Let q = 2k and f (x) = cx + Trq2n/q

(
x2i

(
q2+1

))
, where c ∈ F

∗
q2

and

n, k, i > 0 are integers. Then f (x) is a permutation polynomial over Fq2n if one of the
following conditions occurs:

(1) n is even;

(2) n is odd and
(

1
c2

i+1 + 1
c2

i+1q

) q−1
gcd(2i+1−1,2k−1) �= 1.

Proof We claim that f (x) = d has at most one solution in Fq2n for any d ∈ Fq2n in the

above two cases. Let u = cx + d. Then u = Trq2n/q

(
x2i

(
q2+1

))
∈ Fq and x = 1

c
(u + d).

Moreover,

x2i
(
q2+1

)
= 1

c2
i+1 (u + d)2

i
(
q2+1

)

= 1

c2
i+1

(
u2

i + d2i q2
) (

u2
i + d2i

)

= 1

c2
i+1

[
u2

i+1 + (d2i q2 + d2i

)u2
i + d2i q2+2i

]
.

Then plugging the above equation and x = 1
c
(u + d) into f (x) = d, we get:

(1) If n is even,

u = 1

c2
i+1 Trq2n/q2

(
d2i q2+2i

)
+ 1

c2
i+1q

Trq2n/q2

(
d2i q3+2i q

)
.

Under the first condition, f (x) = d has at most one solution in Fq2n .
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(2) If n is odd,
(

1

c2
i+1 + 1

c2
i+1q

)
u2

i+1+u = 1

c2
i+1 Trq2n/q2

(
d2i q2+2i

)
+ 1

c2
i+1q

Trq2n/q2

(
d2i q3+2i q

)
.

(1)

If c ∈ F
∗
q , then u = Trq2n/q

(
d2

i q2+2i

c2
i+1

)
. It follows that f (x) = d has at most one solution

in Fq2n .

If c ∈ Fq2\Fq , let a =
(

1
c2

i+1 + 1
c2

i+1q

)−1
and g(x) = x2i+1 + ax ∈ Fq [x]. Obvi-

ously, a �= 0, 1. Notice that g(x) permutes Fq if and only if g(x) only has zero root in

Fq . Considering x2i+1 = ax, then either x = 0 or x2i+1−1 = a which is impossible

since
(

1
c2

i+1 + 1
c2

i+1q

) q−1
gcd(2i+1−1,2k−1) �= 1. This means that x = 0 is the unique solution of

g(x) = 0 in Fq . Thus g(x) is a permutation polynomial over Fq . Therefore, (1) has at most
one solution in Fq2n .

Hence f (x) is a permutation polynomial over Fq2n in the above two cases.

3.2 The case l is odd

In this subsection, we construct two classes of permutation polynomials of the form cx +
Trql/q(xa).

Theorem 3.4 Let q = 2k , where k is even and k �≡ 0 (mod 3). Let n > 0, i �= j ≥ 0 be

integers and f (x) = cx + Trq2n+1/q

(
x2qi+2qj

)
, where c ∈ F

∗
q and c

q−1
3 �= 1. Then f (x) is

a permutation polynomial over Fq2n+1 .

Proof It suffices to show that for any d ∈ Fq2n+1 , f (x) = d has at most one solution in

Fq2n+1 . Let u = cx + d. Then u = Trq2n+1/q

(
x2qi+2qj

)
∈ Fq . Plugging x = 1

c
(u + d) into

f (x) = d, we get

u4 + c4u = Trq2n+1/q

(
d2qi+2qj

)
. (2)

Let g(u) = u4 + c4u ∈ Fq [u]. Then g(u) is a permutation polynomial over Fq if and
only if g(u) = 0 only has one solution in Fq . If there exists u ∈ F

∗
q such that g(u) = 0.

Then u3 = c4, we have c
q−1
3 = (

uq−1
) q
4 = 1, which is a contradiction. Therefore, g(u)

is a permutation polynomial over Fq . Moreover, (2) only has one solution in Fq for any
d ∈ Fq2n+1 . It follows that f (x) = d has at most one solution in Fq2n+1 . The proof is
finished.

Theorem 3.5 Let q = 2k and f (x) = cx + Trq2n+1/q

(
x

q2+q
2

)
, where c ∈ Fq\{0, 1} and

n, k > 0 are integers. Then f (x) is a permutation polynomial over Fq2n+1 .

Proof Let g(x) = f
(
x2

) = cx2 + Trq2n+1/q

(
xq2+q

)
. Then f (x) permutes Fq2 if and only

if so does g(x). We show that for any d ∈ Fq2 , the equation g(x) = d has at most one
solution in Fq2 .
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Let u = cx2 + d = Trq2n+1/q

(
xq2+q

)
∈ Fq . Then x = (

u+d
c

) 1
2 , and

xq2+q =
(
u2 + (dq2 + dq)u + dq2+q

) 1
2

c
.

Plugging the above equation into g(x) = d, we have

u + 1

c

(
u2 + Trq2n+1/q

(
dq2+q

)) 1
2 = 0,

i.e.,

u = 1

1 + c

(
Trq2n+1/q

(
dq2+q

)) 1
2
.

Hence, g(x) = d has at most one solution in Fq2n+1 . It follows that g(x) permutes Fq2n+1 .
Then so f (x) does. The proof is complete.

3.3 The case l = 2

Theorem 3.6 Let q = 2k and f (x) = cx + Trq2/q
(
x2q−1

) ∈ Fq2 [x]. Then f (x) is a
permutation polynomial over Fq2 if one of the following conditions occurs.

(i) k is even and c = 1,
(ii) k is odd and c3 = 1.

Proof (i) When k is even and c = 1, f (x) = x + x2q−1 + x2−q . We refer the proof to
Th 3.2 in [9].

(ii) Now, f (x) = cx + x2q−1 + x2q2−q . We show that for any d ∈ Fq2 , f (x) = d has at

most one solution in Fq2 . Put u = cx + d = Trq2/q
(
x2q−1

) ∈ Fq . Then x = c2 (u + d)

since c3 = 1.
If d ∈ Fq , so does cx, i.e., cqxq = cx. On the other hand, cq = c2 since k is odd

and c3 = 1. Then xq = c2x. Therefore, x2q−1 = c4x2

x
= cx ∈ Fq . Moreover, f (x) =

cx + Trq2/q(x2q−1) = cx = d. Hence x = d
c
is the unique solution of f (x) = d in Fq2 .

If d ∈ Fq2\Fq , then u + d = 0 is impossible. And x2q−1 = c4q−2(u + d)2q−1 = u2+d2q

u+d

thanks to cq = c2. Then plugging the above expressions of x and x2q−1 into f (x) = d, we
get

u + u2 + d2q

u + d
+ u2 + d2

u + dq
= 0,

i.e.,
u3 +

(
dq+1 + d2q + d2

)
u + d3q + d3 = 0. (3)

Let e = dq−1 and g(x) = x2 + x + e

e2+1
. Then it is easy to verify that e ∈ Fq2\Fq and

g(x) ∈ Fq [x]. Considering the equation g(x) = 0, we get

g(x) =
(

x + 1

e + 1

) (
x + e

e + 1

)
= 0.

Then 1
e+1 ,

e
e+1 are the solutions of g(x) = 0 in Fq2 . Thanks to

1
e+1 ,

e
e+1 �∈ Fq , g(x) = 0

has no solution in Fq . Therefore, according to Lemma 2.2,

Trq

(
e

e2 + 1

)
= 1. (4)
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Let us return to (3): u3+au+b = 0, where a = d2
(
e2 + e + 1

)
and b = d3

(
e3 + 1

)
. Then

Trq

(
a3

b2
+ 1

)
= Trq

[(
e2 + e + 1

)3
(
e3 + 1

)2 + 1

]

= Trq

(
e2 + e + 1

e2 + 1
+ 1

)

= Trq

(
e

e2 + 1

)
= 1.

Therefore, according to Lemma 2.3, (3) only has one solution in Fq . Then f (x) = d has at
most one solution in Fq2 . We finish the proof.

Theorem 3.7 Let q = 2k , where k > 0 is even. Let a = (3q−2)
(
q2+q+1

)
3 and f (x) =

cx +Trq2/q (xa) ∈ Fq2 [x], where c3 = 1. Then f (x) is a permutation polynomial over Fq2 .

Proof Let g(x) = f
(
xq−2

) = cxq−2 + x2q−3 + x2−3q = xq−2h(xq−1), where h(x) =
c + x + x−4. If g(x) is a permutation polynomial over Fq2 , then f (x) also permutes Fq2

since gcd
(
q − 2, q2 − 1

) = gcd(q − 2, 3) = 1. From Lemma 2.1, it suffices to show that
the fractional polynomial

p(x) = xq−2h(x)q−1 = x5 + cx + 1

x5 + cx4 + 1

permutes μq+1. If c = 1, then p(x) = x3+x2+1
x3+x+1

, one can refer the proof in [25].
If c �= 1, p(x) can not be simplified. However, we can also prove that p(x) permutes

μq+1. Assume that there exist two distinct elements x1, x2 ∈ μq+1 such that

x5
1 + cx1 + 1

x5
1 + cx4

1 + 1
= x5

2 + cx2 + 1

x5
2 + cx4

2 + 1
.

Let u = x1 + x2 and v = x1x2. Simplifying the above equation, we obtain

(1 + v)u3 + cvu2 + v4 + cv2 + 1 = 0. (5)

Let y = u−1 �= 0. The following relationship between u and v will be employed in the
sequel. And for convenience, we will use it directly in the following.

uq = x
q

1 + x
q

2 = 1

x1
+ 1

x2
= x1 + x2

x1x2
= u

v
.

Then v = u1−q = yq−1 and u = y−1. Substituting yq−1 and y−1 for u and v respectively
in (5), we have

yq + y + cyq+1 + y4q + cy2q+2 + y4 = 0. (6)

Let α = y + yq and β = yq+1. Then α, β ∈ Fq . Plugging them into the above equation, we
get

α + α4 + cβ + cβ2 = 0, (7)

i.e.,
β2 + β + c2α4 + c2α = 0.

Then β = cα2 + c2α or cα2 + c2α + 1. If β = cα2 + c2α, recalling that u = x1 + x2 and
v = x1x2, we know x1, x2 are the solutions of x2+ux+v = 0, i.e., (yx)2+yx+yq+1 = 0.
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That is (yx)2 + yx + cα2 + c2α = 0. Without loss of generality, let x1 = c2(1+ yq−1) and
x2 = c2(1 + yq−1) + y−1. Since x2 ∈ μq+1, we have

x
q+1
2 =

[
c2

(
1+ y1−q

)
+y−q

] [
c2

(
1 + yq−1+ y−1

)]
= c

(
y1−q + yq−1

)
+ y−1−q = 1.

Hence, yq+1 = c
(
y2 + y2q

) + 1, i.e., β = cα2 + 1. However, β = cα2 + c2α. Then
c2α = 1, α = c and β = y = 0. It is a contradiction.

If β = cα2 + c2α + 1, x1 and x2 are the solutions of (yx)2 + yx + cα2 + c2α + 1 = 0.
Without loss of generality, let x1 = c2(1 + yq−1) + cy−1 and x2 = c2(1 + yq−1) + c2y−1.
Similarly, we can check that it is impossible in the case.

Therefore, p(x) permutes μq+1. It follows from Lemma 2.1 that f (x) permutes Fq2 . We
complete the proof.

Theorem 3.8 Let q = 2k , where k > 0 is odd. Let a = (3q2−2)(q+4)
5 and f (x) = cx +

Trq2/q(xa) ∈ Fq2 [x], where c3 = 1. Then f (x) is a permutation polynomial over Fq2 .

Proof Let g(x) = f (x5) = cx + Trq2/q
(
xq+4

)
. Then f (x) is a permutation polynomial

over Fq2 if and only if g(x) permutes Fq2 since gcd(5, q2 − 1) = gcd
(
5, 42k+1 − 1

) =
gcd(5, 2) = 1. According to Lemma 2.1, it suffices to show that the fractional polynomial

p(x) = c2x5 + x4 + x

x4 + x + c

permutes μq+1. Assume that there exist two distinct elements x1, x2 ∈ μq+1 such that

c2x5
1 + x4

1 + x1

x4
1 + x1 + c

= c2x5
2 + x4

2 + x2

x4
2 + x2 + c

.

Let u = x1 + x2 and v = x1x2. After simplifying the above equation, we get

u4 +
(
c2v + c

)
u3 + vu2 + c2v4 + v2 + c = 0.

Let y = u−1. Then u = y−1 and v = yq−1. Plugging them into the above equation, we yield

1 + c2yq + cy + yq+1 + y2q+2 + cy4 + c2y4q = 0.

Then

Trq
(
1 + c2yq + cy + yq+1 + y2q+2 + cy4 + c2y4q

)
= 0.

However, we also have

Trq
(
c2yq + cy + yq+1 + y2q+2 + cy4 + c2y4q

)

= Trq

[
cy + c2yq +

(
cy + c2yq

)4 + yq+1 + y2q+2
]

= 0.

It follows that Trq(1) = 0, which contradicts the assumption that k is odd. Hence, p(x)

permutes μq+1.
Therefore, f (x) is a permutation polynomial over Fq2 .

Theorem 3.9 Let q = 2k , a = 22k−2 + 3 · 2k−2, c ∈ Fq and the equation x3 + x + c = 0
has no solution in Fq . Then f (x) = cx +Trq2/q (xa) is a permutation polynomial over Fq2 .
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Proof Let g(x) = f (x4) = cx4 + Trq2/q
(
x3q+1

) = cx4 + x3q+1 + x3+q = x4 (c+
x3q−3 + xq−1

) = x4h
(
xq−1

)
, where h(x) = c + x + x3. Because of gcd

(
4, q2 − 1

) = 1,
it suffices to show that g(x) permutes Fq2 . In the following, we will prove that

p(x) = x4h(x)q−1 = cx4 + x3 + x

x3 + x + c

permutes μq+1.
If the assertion would not hold, then there exist two distinct elements x1, x2 ∈ μq+1 such

that p(x1) = p(x2). We have

cx4
1 + x3

1 + x1

x3
1 + x1 + c

= cx4
2 + x3

2 + x2

x3
2 + x2 + c

.

Let u = x1 + x2 and v = x1x2. After simplifying the above equation and substituting u and
v for x1 + x2 and x1x2 respectively, we obtain

cu3 + (v + 1)u2 + v3 + v2 + v + 1 = 0. (8)

Let y = u−1. Then u = y−1, v = yq−1 and we have

c + yq + y + y3q + y2q+1 + yq+2 + y3 = 0,

i.e.,
α3 + α + c = 0,

where α = y + yq ∈ Fq . This leads to a contradiction thanks to our assumption on c.
Thus we conclude that f (x) is a permutation polynomial over Fq2 according to Lemma 2.1.

Theorem 3.10 Let q = 2k and f (x) = x + Trq2/q(xa), where

a =
{

(2q2−1)(q+6)
7 , if k ≡ 1 (mod 3);

− (q2−2)(q+6)
7 , if k ≡ 2 (mod 3).

Then f (x) is a permutation polynomial over Fq2 .

Proof Put g(x) = f (x7) = x7 + x6q+1 + xq+6 = x7h(xq−1),where h(x) = 1 + x + x6.
We show that

p(x) = x7h(x)q−1 = x7 + x6 + x

x6 + x + 1
permutes μq+1 when k �≡ 0 (mod 3). If there exist two distinct elements x1, x2 ∈ μq+1
such that

x7
1 + x6

1 + x1

x6
1 + x1 + 1

= x7
2 + x6

2 + x2

x6
2 + x2 + 1

.

Let u = x1 + x2 and v = x1x2. We get

u6 + (1 + v)u5 + vu4 + (v3 + v2)u + v6 + v3 + 1 = 0.

Denote y = u−1. Then u = y−1 and v = yq−1. Let α = y + yq and β = y1+q . Then we
have

β3 + (α2 + α)β2 + β + α6 + α + 1 = 0. (9)

Let γ = β + α2 + α. Then we get

γ 3 + aγ + b = 0, (10)
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where

a = α4 + α2 + 1,

b = α6 + α2 + 1.

Now we compute the number of the solution of (10).
Since

a3

b2
=

(
α4 + α2 + 1

)3
(
α6 + α2 + 1

)2

= 1 + α10 + α6 + α4 + α2

α12 + α4 + 1

= 1 + α4

α6 + α2 + 1
+ α8

α12 + α4 + 1
+ α2

α6 + α2 + 1
+ α4

α12 + α4 + 1

=
(

w + α4 + α2

α6 + α2 + 1

)
+

(
w + α4 + α2

α6 + α2 + 1

)2

,

wherew3 = 1 andw �= 1, Trq
(

a3

b2
+ 1

)
= 0. According to Lemma 2.3, (10) has no solution

or three solutions in Fq . In the following, we claim that (10) has one solution which is not
in Fq . Then it follows that (10) has no solution in Fq .

The quadratic derived equation of (10) is

t2 + bt + a3 = 0. (11)

Let t = bz. Plugging it into the above equation, we get

z2 + z + a3

b2
= z2 + z +

(
w + α4 + α2

α6 + α2 + 1

)
+

(
w + α4 + α2

α6 + α2 + 1

)2

= 0.

Then z = w + α4+α2

α6+α2+1
and t = bz = (

α6 + α2 + 1
)
w + α4 + α2 = w

(
wα2 + 1

)3
.

Thus ε3 = t has the solution ε = σ(wα2 + 1), where σ 3 = w, i.e., σ 9 = 1 and σ 3 �= 1.
Therefore,

ε + α4 + α2 + 1

ε
= σ(wα2 + 1) + σ 8(w2α2 + 1)

= (σ 4 + σ 5)α2 + σ + σ 8

= e4α2 + e,

where e = σ + 1
σ
, is one solution of (10). Next we show that e4α2 + e �∈ Fq . The following

of the proof is split into two cases.
Case I: k ≡ 1 (mod 3).
Let k = 3l + 1. Since σq = (σ 8l

)2 = σ±2, eq = σ 2 + 1
σ 2 = e2. Then (e4α2 + e)q =

e8α2 + e2. If e4α2 + e ∈ Fq , then e4α2 + e = e8α2 + e2. Therefore, we get

α2 = e2 + e

e8 + e4
.
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It follows from α2 ∈ Fq that

α2q = e4 + e2

e16 + e8
= e2 + e

e8 + e4
,

i.e., α4 = α2, α = 1. Then according to (9), we have β3+β+1 = 0. So β ∈ F23 ∩Fq = F2,
i.e., β = 1. Moreover, we have y2 + y + 1 = 0, y3 = 1 since y + yq = 1 and yq+1 = 1.
Due to y �∈ Fq and y3 = 1, k is odd. So v = yq−1 = y. On the other hand, x1, x2 ∈ Fq2 is

the solutions of x2 + ux + v = 0, i.e., x2 + y−1x + y = 0. According to Lemma 2.2 and

Trq
(

v

u2

)
= Trq

(
y3

) = Trq(1) = 1, we know that the equation x2 + ux + v = 0 has no

solution in Fq2 . It is impossible. Hence, in the case, e4α2 + e �∈ Fq .
Case II: k ≡ 2 (mod 3).
This case can be proved similarly as Case I. We omit it here.
Hence (10) has a solution which is not in Fq . It follows that p(x) permutes μq+1 when

k �≡ 0 (mod 3). Moreover, g(x) permutes Fq2 according to Lemma 2.1, so does f (x) since

gcd(7, q2 − 1) = 1 when k �≡ 0 (mod 3).

Theorem 3.11 Let q = 2k , where k is odd. Let a = 22k−1+3·2k−1+1
3 and f (x) = cx +

Trq2/q (xa) ∈ Fq2 [x],where c
q+1
3 = 1. Then f (x) is a permutation polynomial over Fq2 .

Proof Let h(x) = c + x
2k−1+2

3 + x
1−2k−1

3 . Then f (x) = cx + x
2k−1+2

3 (2k−1)+1 +
x

1−2k−1
3 (2k−1)+1 = xh(xq−1). Let p(x) = xh(x)q−1. Then for x ∈ μq+1,we have

p(x) = x
c−1 + x− 2k−1+2

3 + x
2k−1−1

3

c + x
2k−1+2

3 + x
1−2k−1

3

= c−1x
2k−1+2

3 + x
2k+1
3 + 1

cx
2k−1−1

3 + x
2k+1
3 + 1

.

Let p1(x) = p(x)2. In the following, we show that p1(x) permutes μq+1. Then according
to Lemma 2.1 and gcd(2, q + 1) = 1, we can conclude that f (x) permutes Fq2 .

Let y = x
2k+1
3 . Obviously, y3 = 1. And we have

p1(x) = yx2 + c2
(
y2 + 1

)
x

c4y + c2
(
y2 + 1

)
x

.

Let S1 = {x : x ∈ μq+1, y = 1} and S2 = {x : x ∈ μq+1, y �= 1}. Assume there exist
two distinct elements x1, x2 ∈ μq+1 such that p1(x1) = p1(x2). The following proof is
divided into four cases.

Case I: x1, x2 ∈ S1.
Then p1(x1) = 1

c4
x2
1 and p1(x2) = 1

c4
x2
2 . It is clear that we can conclude x1 = x2 from

p1(x1) = p1(x2), a contradiction.
Case II: x1, x2 ∈ S2.
Then p1(x1) = 1

c2
x1 and p1(x2) = 1

c2
x2. We have x1 = x2 from p1(x1) = p1(x2),

which is also impossible.
Case III: x1 ∈ S1 and x2 ∈ S2.

Then p1(x1) = 1
c4

x2
1 and p1(x2) = 1

c2
x2. So x2 = 1

c2
x2
1 . But x

q+1
3

2 =
(

1
c2

x2
1

) q+1
3 = 1,

which is a contradiction with x2 ∈ S2.
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Case IV: x1 ∈ S2 and x2 ∈ S1.
This case is similar as Case III.
Hence, p1(x) permutes μq+1. Moreover, f (x) permutes Fq2 .

Theorem 3.12 Let q = 2k and k be even. Then f (x) = x + Trq2/q

(
x

q2−2q+4
3

)
is a

permutation polynomial over Fq2 .

Proof Let h(x) = 1 + x
q−1
3 + x

4−q
3 . Then f (x) = x + x

q−1
3 (q−1)+1 + x

4−q
3 (q−1)+1 =

xh(xq−1). According to Lemma 2.1, it suffices to show that

p(x) = xh(x)q−1 = x
1 + x

1−q
3 + x

q−4
3

1 + x
q−1
3 + x

4−q
3

permutes μq+1. Let p1(x) = p(x3). Since gcd(3, q + 1) = 1, we only need to consider
p1(x) whether permutes μq+1. A direct computation leads to

p1(x) = x5 + x4 + x3 + x + 1

x5 + x4 + x2 + x + 1
.

Assume there exist two distinct elements x1, x2 ∈ μq+1 such that p1(x1) = p1(x2). Let
u = x1 + x2 and v = x1x2. After a lengthy but direct computation, we get

(
v2 + 1

)
u2 + (v + 1)3 u + v2 = 0.

Obviously, we have v �= 1 from the above equation. Multiplying both sides of 1
v4+1

yields
(

u

v + 1

)2

+ u

v + 1
+ 1

v2 + 1
+ 1

v4 + 1
= 0. (12)

Then u = 1
v+1 or u = 1

v+1 + v + 1. If u = 1
v+1 , then uq = 1

vq+1 = v
v+1 . However,

uq = x
q

1 + x
q

2 = 1
x1

+ 1
x2

= u
v
. So v

v+1 = u
v

= 1
v2+v

, i.e., v2 = 1, a contradiction. If

u = 1
v+1 + v + 1, we can also obtain v2 = 1, which is impossible. Thus p1(x) permutes

μq+1.
Hence, f (x) is a permutation polynomial over Fq2 . The proof is complete.

The following theorem is proved by the multivariate method.

Theorem 3.13 Let q = 2k , a = 24k−1 − 23k−1 + 22k−1 + 2k−1 and c ∈ F
∗
q . Then f (x) =

cx + Trq4/q2 (xa) is a permutation polynomial over Fq4 .

Proof Let g(x) = f (x2) = cx2 + Trq4/q2
(
x2a

) = cx2 + xq4−q3+q2+q + xq3+q2−q+1. It
suffices to show that g(x) permutes Fq4 .

First of all, we claim that g(x) = 0 only has zero solution in Fq4 . If g(x) = 0, then either

x = 0 or c + x−q3+q2+q−1 + xq3+q2−q−1 = 0. So we only need to prove the equation

c + x−q3+q2+q−1 + xq3+q2−q−1 = 0 (13)
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has no solution in F
∗
q4
. Raising (13) to its q-th power leads to

c + xq3+q2−q−1 + xq3−q2−q+1 = 0. (14)

Adding (13) and (14), we have

x−q3+q2+q−1 = xq3−q2−q+1,

i.e.,
xq3−q2−q+1 = 1.

Since gcd
(
q3 − q2 − q + 1, q4 − 1

) = q2 − 1, we have x ∈ Fq2 . Plugging it into (13), we
get c = 0, which is contradiction. Thus g(x) = 0 only has zero solution in Fq4 .

Next, we show that g(x) = α has at most one solution in Fq4 for any α ∈ F
∗
q4
. Obviously,

x = 0 is not a solution of g(x) = α if α �= 0. Let y = xq , z = yq , w = zq , β = αq , γ = βq

and δ = γ q . Then x, y, z, w, α, β, γ, δ �= 0, and we have

cx2 + xyz

w
+ xzw

y
= α. (15)

Raising (15) into its q-th, q2-th and q3-th power, we get the following equations respectively.

cy2 + yzw

x
+ xyw

z
= β, (16)

cz2 + xzw

y
+ xyz

w
= γ (17)

and
cw2 + xyw

z
+ yzw

x
= δ. (18)

We compute the sum of (15) and (17), and get z = x + B, where B =
(

α+γ
c

) 1
2
. Likely, we

have w = y + A, where A =
(

β+δ
c

) 1
2
through adding (16) and (18). Plugging z = x + B

and w = y + A into (15) and (16) and then simplifying, we obtain(
α + cx2

)
y2 +

(
αA + cAx2

)
y + BA2x + A2x2 = 0 (19)

and (
B2 + Bcx + cx2

)
y2 + B2Ay + βx(B + x) = 0. (20)

Computing (19) ∗B2+ (20) ∗ (
α + cx2

)
, we yield

D1y
2 = D0, (21)

where
D1 = c

(
α + cx2

)

and
D0 = B2A2 + αβ + βcx2.

We compute (19) ∗c+ (21), we get

D3y = D2, (22)

where
D3 = cA

(
α + cx2

)

and
D2 = B2A2 + αβ + cBA2x + cA2x2 + βcx2.
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If α + cx2 = 0, then x = (
α
c

) 1
2 . Then g(x) = α has at most one solution in Fq4 .

Otherwise, computing (22) 2/ (21) and simplifying it, we obtain

D5x
4 = D4,

where
D5 = βA2c3 + c2A4 + β2c2

and
D4 = B4A4 + α2β2 + α2βA2c + αB2A4c.

We claim that D5 �= 0 when β �= 0. If D5 = 0, then we have

β2 + δ2 + c2βδ = 0. (23)

Let t = δ
β
. Then c2 = t + 1

t
∈ Fq . Thus

(
t + 1

t

)q = t + 1
t
, i.e.,

(
tq+1 + 1

) (
tq−1 + 1

) =
0. Therefore, tq+1 = 1 or tq−1 = 1. In the first case, β

(
q2−1

)
(q−1) = 1. Due to

gcd
(
q4 − 1,

(
q2 − 1

)
(q − 1)

) = q2 − 1, β ∈ Fq2 . Then δ = β. Moreover, it follows that
c = 0 from (23), which is a contradiction. The other case is the same as the first one, we
omit it here.

Above all, x4 = D4
D5

. Thus, g(x) = α has at most one solution in Fq4 . We finish the proof.

4 Permutation trinomials

In this section, we construct four classes of permutation trinomials over finite fields with
even characteristic.

Theorem 4.1 Let q = 2k , k ≥ 1, l be integers and f (x) = xlq+l+3 + x(l+6)q+l−3 +
x(l−2)q+l+5 . Then f (x) is a permutation trinomial over Fq2 if gcd(3 + 2l, q − 1) = 1 and
k �≡ 0 (mod 4).

Proof Let h(x) = 1 + x6 + x−2. Then f (x) = xlq+l+3h(xq−1). According to Lemma 2.1,
f (x) permutes Fq2 if and only if gcd(lq + l +3, q −1) = 1,i.e., gcd(3+2l, q −1) = 1 and

p(x) = x3+lq+lh(x)q−1 = x8 + x6 + 1

x9 + x3 + x

permutes μq+1. Assume that there exist two distinct elements x1, x2 ∈ μq+1 such that

x8
1 + x6

1 + 1

x9
1 + x3

1 + x1
= x8

2 + x6
2 + 1

x9
2 + x3

2 + x2
.

After a complex computation and substituting u and v for x1 +x2 and x1x2 respectively, we
get

u8 + (v3 + v)u4 + (v6 + v4 + v3 + v2 + 1)u2 + v8 + v7 + v5 + v4 + v3 + v + 1 = 0. (24)

Let y = u−1. Then u = y−1 and v = yq−1. Plugging them into (24), we obtain

β4 + β3 + (α6 + α2)β + α8 + α6 + 1 = 0, (25)

where

β = yq+1,

α = y + yq.
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Let g(x) = x4 + x3 + (α6 + α2)x + α8 + α6 + 1 ∈ Fq [x]. In the following, we prove that
g(x) has no root in Fq when k �≡ 0 (mod 4). The rest of the proof is split into two cases.

Case I: k is odd.
We show that g(x) is an irreducible polynomial. Let g1(x) = x4g

(
1
x

+ α3 + α
)
. Then

we can compute
g1(x) = a1x

4 + a2x
2 + x + 1,

where

a1 = α12 + α8 + α6 + α4 + 1,

a2 = α3 + α.

We claim that a1 �= 0 for any α ∈ Fq . Otherwise, there exists α ∈ Fq such that a1 = 0. Then

α6 + α4 + α3 + α2 + 1 = 0,

i.e., (
α4 + α3 + α2 + α + 1

) (
α2 + α + 1

)
= 0.

Thus, α4 + α3 + α2 + α + 1 = 0 or α2 + α + 1 = 0. In the first case, let α1 = α + 1. Then
α4
1 + α3

1 = 1. Moreover, we have
(

1

α1

)4

+ 1

α1
= 1. (26)

Raising the above equation to its 4-th power, we obtain
(

1

α1

)16

+
(

1

α1

)4

= 1. (27)

Computing (26) + (27) , we get
(

1
α1

)15 = 1. Then thanks to gcd(15, q − 1) = 1 when k is

odd, we get α1 = 1. However α1 = 1 is not the solution of (26). Therefore, α4 + α3 + α2 +
α + 1 �= 0. In the other case, let t (α) = α2 + α + 1 ∈ Fq [α]. Obviously, t (α) is irreducible
in F2[α]. Thanks to gcd(2, k) = 1, t (α) is also irreducible in Fq [α]. So, α2 + α + 1 �= 0 for
any α ∈ Fq . Hence, a1 �= 0.

Next we let g2(x) = 1
a1

g1(x) = x4 + a2
a1

x2 + 1
a1

x + 1
a1

∈ Fq [x]. Then it suffices to show
that g2(x) is irreducible in Fq [x]. Let us consider the cubic equation

y3 + a2

a1
y + 1

a1
= 0. (28)

Then the quadratic derived equation of (28) is

t2 + 1

a1
t +

(
a2

a1

)3

= 0. (29)

Let t = 1
a1

z. Then z2 + z + a32
a1

= 0. In fact,

a32

a1
=

(
α3 + α

)3
α12 + α8 + α6 + α4 + 1

= α9 + α7 + α5 + α3

α12 + α8 + α6 + α4 + 1

= α3

α6 + α4 + α3 + α2 + 1
+

(
α3

α6 + α4 + α3 + α2 + 1

)2

.
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On one hand, for (28), we have Trq
(

(a2/a1)
3

(1/a1)2
+ 1

)
= Trq

(
a32
a1

+ 1

)
= 1. According to

Lemma 2.3, (28) only has one solution in Fq . On the other hand, for (29),

t1 = 1

α12 + α8 + α6 + α4 + 1
·
(

α3

α6 + α4 + α3 + α2 + 1

)

=
(

α

α6 + α4 + α3 + α2 + 1

)3

,

is one solution of (29). Let ε = α

α6+α4+α3+α2+1
be a solution of x3 = t1. Then

r = ε + a2

a1ε
= 1

α4 + α3 + α2 + α + 1

is the unique solution of (28) in Fq . In the following, we compute

Trq
(
a1r

2
)

= Trq

[(
α12 + α8 + α6 + α4 + 1

)(
1

α4 + α3 + α2 + α + 1

)2
]

= Trq
(
α4 + α2 + 1

)

= 1.

According to Lemma 2.5, in the Case k is odd, g(x) is irreducible in Fq [x]. Particularly,
g(x) has no roots in Fq .

Case II: k ≡ 2 (mod 4).
Assume that ω satisfies ω2 + ω = 1. Then g(x) = G1(x)G2(x), where

G1(x) = x2 + (α + ω)x + ω2α2 + ωα + ω,

G2(x) = x2 + (α + ω2)x + ωα2 + ω2α + ω2.

We have

Trq

(
ω2α2 + ωα + ω

α2 + ω2

)
= Trq

(
ωα

α2 + ω2
+ ω2

)

= Trq

(
ωα

α2 + ω2

)
+ 1

= Trq

(
ω

α + ω
+ ω2

α2 + ω2

)
+ 1

= 1,

since

Trq(ω) = ω + ω2 + · · · + ω + ω2
︸ ︷︷ ︸

k

= 1 + · · · + 1︸ ︷︷ ︸
k
2

= k

2
= 1

when k ≡ 2 (mod 4). Hence G1(x) has no roots in Fq according to Lemma 2.2. Similarly,
we claim that G2(x) = 0 has no solution in Fq . Thus g(x) = G1(x)G2(x) has no roots in
Fq .

Therefore, g(x) has no roots in Fq when k �≡ 0 (mod 4). Moreover, (25) can not hold.
Then p(x) permutes μq+1. We complete the proof.
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Theorem 4.2 Let q = 2k , where k is odd, and f (x) = x + x
q2−3q+5

3 + x
2q2−3q+4

3 . Then
f (x) is a permutation trinomial over Fq2 .

Proof Let f (x) = x
(
1 + x

q−2
3 (q−1) + x

2q−1
3 (q−1)

)
= xh

(
xq−1

)
, where h(x) = 1+x

q−2
3 +

x
2q−1
3 . Put p(x) = xh(x)q−1 ∈ μq+1[x] and y = x

q+1
3 . Obviously, y3 = 1. Then for x ∈

μq+1,we have

p(x) = x
1 + x

2−q
3 + x

1−2q
3

1 + x
q−2
3 + x

2q−1
3

= x2

(
y2 + y

)
x + 1

y2 + y + x
,

Let S1 = {x|x ∈ μq+1, y = 1} and S2 = {x|x ∈ μq+1, y �= 1}. We claim that
p(x) permutes μq+1. Otherwise, there exist two distinct elements x1, x2 ∈ μq+1 such that
p(x1) = p(x2). The following proof is divided into four cases.

Case I: x1, x2 ∈ S1.
Then p(x1) = x1 and p(x2) = x2. So x1 = x2 from p(x1) = p(x2).
Case II: x1, x2 ∈ S2.
Then p(x1) = x2

1 and p(x2) = x2
2 . We have x1 = x2 from p(x1) = p(x2).

Case III: x1 ∈ S1 and x2 ∈ S2.

Then p(x1) = x1 and p(x2) = x2
2 . So x1 = x2

2 . But x
q+1
3

1 = (
x2
2

) q+1
3 �= 1, which is a

contradiction with x1 ∈ S1.
Case IV: x1 ∈ S2 and x2 ∈ S1.
This case is similar as Case III.
Hence, p(x) permutes μq+1. Moreover, f (x) permutes Fq2 according to Lemma 2.1.

Theorem 4.3 Let q = 2k and k �≡ 1 (mod 3). Then f (x) = x + xq2+q−1 + xq3−q2+q is a
permutation polynomial over Fq3 .

Proof First, we show that f (x) = 0 only has zero solution in Fq3 . If f (x) = 0, then either

x = 0 or 1 + xq−q2 + xq2+q−2 = 0. Thus, we only need to prove that the equation

1 + xq−q2 + xq2+q−2 = 0 (30)

has no solution in F
∗
q3
. Let t = xq−1 �= 0. Then tq

2+q+1 = 1, and (30) turns to

1 + t−q + tq+2 = 0,

i.e.,
1 + tq + t2q+2 = 0. (31)

Raising (31) to its q-th power, we get

1 + tq
2 + t2q

2+2q = 0.

Plugging tq
2+q+1 = 1 into the above equation leads to

t + tq + tq+2 = 0. (32)

Computing (31) + (32), we get
(
1 + tq+1

) (
1 + t + tq+1

) = 0. Then either tq+1 + 1 = 0
or tq+1 + t + 1 = 0.
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If tq+1 = 1, then t = 1 since gcd
(
q + 1, q2 + q + 1

) = gcd
(
q + 1, q2

) = 1. However,
t = 1 is not the solution of (31). Therefore,

1 + t + tq+1 = 0. (33)

Computing (31) + (33)2, we yield tq−2 = 1, then tgcd
(
q−2,q2+q+1

)
= 1. Moreover, t = 1

thanks to gcd
(
q − 2, q2 + q + 1

) = gcd(2k−1−1, 7) = 1 when k �≡ 1 (mod 3). However,
it is impossible!

Therefore, f (x) = 0 only has zero solution in Fq3 .
Next, we prove f (x) = a has at most one solution in Fq3 for any a ∈ F

∗
q3
. It is obvious

that x = 0 is not the solution of f (x) = a when a �= 0. Let y = xq , z = yq , b = aq , c = bq

and A = a+b+c. Then a, b, c, x, y, z �= 0 and A ∈ Fq . And it follows from f (x) = a that

x + xy

z
+ yz

x
= a. (34)

Raising (34) to its q-th and q2-th power respectively, we get

y + yz

x
+ xz

y
= b (35)

and
z + zx

y
+ xy

z
= c. (36)

Computing (34) + (35) + (36), we have

x + y + z = a + b + c = A.

On one hand, after computing xz∗ (34) +xy∗ (35), we get y(x + z)A+ x(by + az) = 0.
Plugging y = x + z + A into the above equation and simplifying it, we have

(A + b)x2 + Az2 + (a + b)xz + A(A + b)x + A2z = 0. (37)

Let x = uz. Plugging it into (37), we have

B1z + B0 = 0, (38)

where
B1 = (A + b)u2 + (a + b)u + A,

B0 = A(A + b)u + A2.

On the other hand, plugging y = x + z + A into (34) ∗xz, we get x3 + z3 + xz2 + A(x2 +
z2) + axz = 0. And plugging x = uz into the above equation, we obtain

C1z + C0 = 0, (39)

where
C1 = u3 + u + 1,

C0 = Au2 + au + A.

Computing (38) ∗C1+ (39) ∗B1, we have

B0C1 + B1C0 = 0,

i.e.,
D1u + D0 = 0, (40)

where
D1 = A2 + Ab + ab,

D0 = A2 + a2 + ab.
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We claim that D1 �= 0. Otherwise,

A2 + Ab + ab = 0. (41)

Computing (41) + (41) q+ (41) q2 , we get ab + ac + bc = 0, i.e., 1+ aq2−q + aq2−1 = 0.
Let e = a1−q . Then 1 + e + eq+1 = 0, which is (33). And it is impossible. Thus

u = D0

D1
.

Recalling the definition of A, we know y = A+x + z = A+ (1+u)z. Plugging x = uz

and y = A + (1 + u)z into (34), we get
(
u3 + u + 1

)
z =

(
u2 + 1

)
A + au.

If u3 + u + 1 = 0, we can conclude that u7 = 1 easily. In fact,

uq =
⎧⎨
⎩

u2, if k ≡ 1 (mod 3),
u4, if k ≡ 2 (mod 3),
u, if k ≡ 0 (mod 3).

When k ≡ 2 (mod 3), z = u−1x = u6x and y = xq = (uz)q = uqx = u4x. Plugging
them into (34), we get

(
1 + u3 + u5

)
x = a. If 1+u3 +u5 = 0, then 1+u3 +u−2 = 0,i.e.,

1 + u2 + u5 = 0 due to u7 = 1. So u3 = u2, u = 1. However, u = 1 does not satisfy
1 + u3 + u5 = 0. Therefore, 1 + u3 + u5 �= 0. It follows that x = a

1+u3+u5
is the unique

solution of f (x) = a in the case. When k ≡ 0 (mod 3),the case is similar as the above one,
we omit it here.

If u3 + u + 1 �= 0, then x = zq,where z =
(
u2+1

)
A+au

u3+u+1
. In other words, f (x) = a also

has at most one solution in Fq3 in the case.
Therefore, for any a ∈ Fq3 , f (x) = a has at most one solution in Fq3 . We finish the

proof.

Theorem 4.4 Let q = 2k and k �≡ 1 (mod 3). Let f (x) = x + xq2 + xq3−q2+q . Then f (x)

is a permutation polynomial over Fq3 .

Proof It suffices to prove that f (x) = a has at most one solution in Fq3 for any a ∈ Fq3 . If
a = 0, then we obtain x = 0 or

1 + xq2−1 + xq−q2 = 0. (42)

We claim that (42) has no solution in F
∗
q3
. Otherwise, Trq3/q

(
1 + xq2−1 + xq−q2

)
= 0.

Moreover, it follows from Trq3/q
(
xq2−1 + xq−q2

)
= 0 that Trq3/q (1) = 0, which is a

contradiction.
In the following, we assume that a �= 0. Put y = xq , z = yq , b = aq , c = bq and

A = a + b + c. Obviously, x, y, z, b, c �= 0 when a �= 0 and A ∈ Fq . Then we have

⎧⎨
⎩

x + xy
z

+ z = a,

y + yz
x

+ x = b,

z + zx
y

+ y = c.

(43)
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Let α = xy
z
, β = yz

x
, γ = zx

y
. They are clear that β = αq and γ = αq2 . Then

⎧⎨
⎩

x2 = αγ,

y2 = αβ,

z2 = βγ.

(44)

Plugging (44) into (43), we obtain
⎧⎨
⎩

α2 + αγ + βγ = a2,

β2 + αβ + αγ = b2,

γ 2 + βγ + αβ = c2.

(45)

Adding the above three equations together leads to α + β + γ = a + b + c = A. Then
plugging γ = A + α + β into (45), we yield

β2 + Aβ + Aα + a2 = 0, (46)

and
β2 + α2 + Aα + b2 = 0. (47)

If A = 0,then (α, β, γ ) = (c, a, b),and x = (αγ )
1
2 = (cb)

1
2 is uniquely determined.

If A �= 0,after adding (46) and (47), we can get β = 1
A

(
α2 + a2 + b2

)
. Then plugging

it into (46), we have

α4 + A2α2 + A3α + a4 + b4 + A2b2 = 0. (48)

To finish the proof, it suffices to prove that there exists at most one element α ∈ Fq3

satisfying (47) and (48) since then x is uniquely determined by α by (44).
Otherwise, suppose that there exist α1 �= α2 ∈ Fq3 satisfy (47) and (48) and put δ =

α1+α2
A

�= 0. Then we can obtain

δ2q + δ2 + δ = 0 (49)

and
δ4 + δ2 + δ = 0 (50)

from (47) and (48) respectively. It is trivial to obtain δ7 = 1 from (50). In fact,

δ2q =
⎧⎨
⎩

δ4, if k ≡ 1 (mod 3),
δ, if k ≡ 2 (mod 3),
δ2, if k ≡ 0 (mod 3).

When k ≡ 2 (mod 3),according to (49), we have δ2 = 0, which is impossible! The case
k ≡ 0 (mod 3) is the same as the above case, we omit it here.

Therefore, when k �≡ 1 (mod 3), f (x) = a has at most one solution in Fq3 for any
a ∈ Fq3 . We finish the proof.
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