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Abstract Separable code (SC, Cheng and Miao IEEE Trans. Inf. Theory 57, 4843–4851,
2011), frameproof code (FPC, Boneh and Shaw IEEE Trans. Inf. Theory 44, 1897–1905,
1998) and strongly separable code (SSC, Jiang et al. Des. Codes Cryptogr. 79:303–318,
2016) are used to construct anti-collusion codes. SSC is better than FPC and SC in the
applications for multimedia fingerprinting since SSC has lower identifying complexity than
that of SC (the same complexity as FPC) and weaker structure than that of FPC. In this
paper, we first derive several upper bounds on the number of codewords of a t-SSC. Then
we focus on 3-SSCs with codeword length 3 and obtain the following two main results:
(1) An equivalence between an SSC and an SC is derived; (2) An improved lower bound
�(q5/3 + q4/3 − q) on the size of a q-ary SSC when q = q6

1 for any prime power q1 ≡ 1
(mod 6), which is better than the previously known bound �√q�3, is obtained by means of
a difference matrix and a known result on the subsets of Fn
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line.
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1 Introduction

With the advancement of multimedia technologies, coupled with the development of
an infrastructure of ubiquitous broadband communication networks, a large amount of
multimedia content, such as image, video, audio and speech, is available in the digital
marketplace. However, pirate copies are an increasingly serious problems in copyright
protection of multimedia contents.

In order to against pirate copies, fingerprinting system, in which each multimedia content
has a unique embedded fingerprint, has recently become quite popular in the field of copy-
right protection for multimedia content. Clearly each customer obtains an embedded version
which consists of a unique fingerprint and the same content. Consequently attacks mounted
by individuals are no longer a main security issue in digital rights management. However,
multiuser could carry out attacks against the embedded fingerprints by comparing their dif-
ferent embedded versions collectively. There are a variety of embedding techniques such as
[2, 12, 19]. Spread spectrum embedding technique which can be used to restrict multiuser’s
attacking strategy as largely as possible [22], is widely used in fingerprinting systems [6,
12, 18, 22]. Such a system is called multimedia fingerprinting. Averaging attack is one of
the most feasible approaches to perform a collusion attack in multimedia fingerprinting
[17].

Cheng et al. [11] proposed a concept of a logical anti-collusion code (LACC), which
can be used to against the averaging attack. They also showed that separable codes and
frampeproof codes can be used to construct LACCs. There are several researches on sep-
arable codes and frameproof codes, for instances, [5, 7, 9–11, 14] and so on. The LACCs
constructed by t-separable codes can identify all colluders with computation complexity
exponential in the number of authorized users, and those constructed by frameproof codes
can identify all the colluders with computational complexity linear in the number of autho-
rized users (by Theorem 5.5 and tracing algorithm LACCIdenAlg in [11]). This is in
contrast to the fact that frameproof codes have no traceability properties under the embed-
ding technique in [2]. In fact, the number of codewords in a frampeproof code is too small
to be of practical use in most cases. Jiang et al. introduced a new concept of a strongly sep-
arable code which is weaker than a frameproof code but can also be used to identify all
colluders with the same complexity (by Algorithm SSCTraceAlg(R) in [15]) as that of
a frameproof code. Usually, strongly t-separable codes have much more codewords than
t-frameproof codes could have. So compared with frameproof codes, strongly separable
codes have an advantage in copyright protection. In this paper, we will pay our attention to
strongly separable codes.

When t = 2, some strongly t-separable codes were studied in [15]. Especially the cases
of codeword length 2 and 3 were discussed in detail. When t ≥ 3, the structure of a strongly
t-separable code becomes more complex so that little is known about strongly t-separable
codes. In this paper, we will focus on strongly t-separable codes with t ≥ 3. First several
upper bounds and a lower bound on the size of a strongly separable code are derived. Then
we further improve the above lower bound when t and codeword length equal 3.

The remainder of the paper is organized as follows. Section 2 introduces preliminaries
about separable codes, strongly separable codes and frameproof codes. In Section 3, several
upper bounds on the size of strongly separable codes are derived by discussing the relation-
ships among separable codes, strongly separable codes and frameproof codes. In Section 4,
an improved lower bound �(q5/3 + q4/3 − q) on the size of a q-ary SSC when q = q6

1
for any prime power q1 ≡ 1 (mod 6), which is better than the previously known bound
�√q�3, is obtained. Finally, conclusions are drawn in Section 5.
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2 Preliminaries

Let n, M and q be positive integers, and Q an alphabet with |Q| = q. A set C =
{c1, c2, . . . , cM } ⊆ Qn is called an (n, M, q) code and each ci is called a codeword. With-
out loss of generality, we may assume Q = {0, 1, . . . , q − 1}. When Q = {0, 1}, we also
use the word “binary”.

For any code C ⊆ Qn, we define the set of ith coordinates of C as

C(i) = {c(i) ∈ Q | c = (c(1), c(2), . . . , c(n))T ∈ C}
for any 1 ≤ i ≤ n. For any subset of codewords C0 ⊆ C, we define the descendant code of
C0 by

desc(C0) = {(x(1), x(2), . . . , x(n))T ∈ Qn | x(i) ∈ C0(i), 1 ≤ i ≤ n},
that is,

desc(C0) = C0(1) × C0(2) × . . . × C0(n).

Clearly the set desc(C0) consists of the n-tuples that could be produced by a coalition
holding the codewords in C0.

Definition 1 ([11, 15]) Let C be an (n,M, q) code and t ≥ 2 be an integer.

– C is a t-separable code, or t-SC(n, M, q), if for any C1, C2 ⊆ C such that 1 ≤ |C1| ≤ t ,
1 ≤ |C2| ≤ t , and C1 
= C2, we have desc(C1) 
= desc(C2), that is there is at least one
coordinate i, 1 ≤ i ≤ n, such that C1(i) 
= C2(i).

– C is a strongly t-separable code, or t-SSC(n,M, q), if for any C0 ⊆ C such that 1 ≤
|C0| ≤ t , we have

⋂
C′∈S(C0) C

′ = C0, where S(C0) = {C ′ ⊆ C|desc(C ′) = desc(C0)}.
– C is a t-frameproof code, or t-FPC(n, M, q), if for any C ′ ⊆ C such that |C ′| ≤ t , it

holds that desc(C ′)
⋂ C = C ′, that is, for any c = (c(1), . . . , c(n))T ∈ C \ C ′, there is

at least one coordinate i, 1 ≤ i ≤ n, such that c(i) 
∈ C ′(i).

Since the parameter M of a t-SSC(n, M, q) corresponds to the number of fingerprints
assigned to authorized users who purchased the right to access the copyrighted multimedia
data, we should try to construct strongly separable codes with M as large as possible, given
length n. Let M(t, n, q) = max{M | there exists a t-SSC (n, M, q)}. A t-SSC(n, M, q) is
said to be optimal if M = M(t, n, q). Similarly, a t-SC(n, M, q) (or a t-FPC(n, M, q)) is
optimal if M is the largest possible value given n, q and t .

3 Upper bounds

In this section, we first investigate the relationships among SC, SSC and FPC, and then
derive the upper bounds on M(t, n, q) according to these relationships.

3.1 SC, SSC and FPC

The relationship between SC and FPC was described in [11].

Lemma 1 ([11]) Any t-FPC(n, M, q) is a t-SC(n, M, q), t ≥ 1. Conversely any t-
SC(n,M, q) is a (t − 1)-FPC(n, M, q), t ≥ 2.
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Jiang et al. [15] established the following relationships among SC, SSC and FPC.

Lemma 2 ([15]) Any t-FPC(n, M, q) is a t-SSC(n, M, q).

The following example shows that the converse of Lemma 2 does not always hold.

Example 1 ([15]) The following (3, 4, 2) code C is a 2-SSC(3, 4, 2), but is not a 2-
FPC(3, 4, 2).

c1 c2 c3 c4

C =
⎛

⎝
0 1 0 0
0 0 1 0
0 0 0 1

⎞

⎠

Lemma 3 ([15]) Any t-SSC(n,M, q) is a t-SC(n, M, q).

Although, the converse of Lemma 3 does not always hold, when t = n = 2, Jiang et al.
proved that the converse of Lemma 3 is also true.

Example 2 ([15]) Let ci , 1 ≤ i ≤ 5, be the ith codeword of the following code C, then C is
a 2-SC(3, 5, 2), but not a 2-SSC(3, 5, 2), because desc({c1, c5) = desc({c2, c3, c4}).

C =
⎛

⎝
0 1 0 0 1
0 0 1 0 1
0 0 0 1 1

⎞

⎠

Lemma 4 ([15]) A (2,M, q) code C is a 2-SSC(2,M, q) if and only if C is a 2-SC(2,M, q).

Example 3 The following code C is an optimal 3-SC(3, 3, 2), and we can check that it is
also a 3-SSC(3, 3, 2).

C =
⎛

⎝
0 1 1
0 1 0
0 0 1

⎞

⎠

Furthermore, it is very interesting that the converse of Lemma 3 also holds for t = n = 3
and q ≥ 3. We first state the two useful results. From Lemmas 1 and 3, the following
statement holds.

Corollary 1 Any t-SSC(n,M, q) is a (t − 1)-FPC(n,M, q) where t ≥ 2.

Lemma 5 Suppose C is a 3-SC(3, M, q). Then for any C0 ⊆ C with |C0| ≤ 3, and any
c ∈ C0, the Hamming distance d(c, c′) ≥ 2 holds for any c′ ∈ desc(C0)

⋂ C \ C0.

Proof By Lemma 1, C is a 2-FPC. By the definition of an FPC, we have desc(C0)
⋂ C = C0

when |C0| = 1, 2. This implies desc(C0)
⋂ C \ C0 = ∅. Clearly the statement holds. So we

only need to consider the case |C0| = 3. For any C0 = {c1, c2, c3}, where ci = (ai, bi, ei)
T ,

1 ≤ i ≤ 3, suppose that there exits one codeword c′ = (a′, b′, e′)T ∈ desc(C0)
⋂ C \ C0,

such that d(c1, c′) = 1. Without loss of generality, assume a1 = a′, b1 = b′, e1 
= e′.
This implies that e′ equals e2 or e3 since c′ ∈ desc(C0). If e′ = e2 (or e′ = e3), we have
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c′ ∈ desc({c1, c2}) (or c′ ∈ desc({c1, c3})), a contradiction to the definition of a 2-FPC. So
the statement also holds when |C0| = 3.

Theorem 1 For any q ≥ 3, a (3,M, q) code C is a 3-SSC(3,M, q) if and only if C is a
3-SC(3, M, q).

Proof The necessity of the condition directly follows from Lemma 3. We now show that
any 3-SC(3, M, q) C over Q is also a 3-SSC(3,M, q). That is, for any C0 ⊆ C, |C0| ≤ 3,
we should show

⋂
C′∈S(C0) C

′ = C0 from the definition of an SSC.

By Lemma 1, C is a 2-FPC. From Lemma 2, we have C is a 2-SSC. So when |C0| = 1,
2,

⋂
C′∈S(C0) C

′ = C0 holds. Now we consider the case |C0| = 3. For any C0 = {c1, c2, c3},
ci = (ai, bi, ei), we have desc(C0):
⎛

⎝
a1 a2 a3 a1 a2 a1 a2 a3 a3 a1 a1 a1 a1 a1 a1 a2 a2 a2 a2 a2 a2 a3 a3 a3 a3 a3 a3
b1 b2 b3 b2 b1 b3 b3 b1 b2 b1 b1 b2 b2 b3 b3 b2 b3 b3 b2 b1 b1 b3 b3 b1 b1 b2 b2
e1 e2 e3 e3 e3 e2 e1 e2 e1 e2 e3 e1 e2 e1 e3 e3 e2 e3 e1 e2 e1 e1 e2 e3 e1 e3 e2

⎞

⎠ (1)

Let ci , 1 ≤ i ≤ 27, be the ith codeword of desc(C0) in (1).
According to Lemma 5, ci /∈ desc(C0)

⋂ C, 10 ≤ i ≤ 27. Hence we have

desc(C0)
⋂

C ⊆
⎛

⎝
a1 a2 a3 a1 a2 a1 a2 a3 a3
b1 b2 b3 b2 b1 b3 b3 b1 b2
e1 e2 e3 e3 e3 e2 e1 e2 e1

⎞

⎠ (2)

Now we consider formula (2) by discussing cardinalities of sets C0(i), 1 ≤ i ≤ 3.

• If there exists an integer 1 ≤ i ≤ 3 such that |C0(i)| ≤ 2, without loss of generality,
assume |C0(1)| ≤ 2 and a1 = a2. According to Lemma 5, we have ci /∈ desc(C0)

⋂ C,
4 ≤ i ≤ 7. So we only need to consider c8 and c9.

– If a1 = a3, then c8, c9 /∈ desc(C0)
⋂ C from Lemma 5. So ∩C′∈S(C0)C ′ = C0.

– If a1 
= a3, |{b1, b2, b3}| < 3 or |{e1, e2, e3}| < 3 holds, then c8, c9
/∈ desc(C0)

⋂ C from Lemma 5. So ∩C′∈S(C0)C ′ = C0.
– If a1 
= a3 and |{b1, b2, b3}| = |{e1, e2, e3}| = 3, then desc(C0)

⋂ C con-
tains at most one of c8 and c9. Otherwise, we have desc({c1, c2, c8}) =
desc({c1, c2, c9}), a contradiction to the definition of a 3-SC. Without loss
of generality, suppose that c8 ∈ desc(C0)

⋂ C. We have desc(C0)
⋂ C =

{c1, c2, c3, c8}. Clearly S(C0) = {C0, C1}where C1 = {c1, c2, c3, c8}. It is easy
to check that ∩C′∈S(C0)C ′ = C0.

• If |C0(i)| = 3 for any 1 ≤ i ≤ 3, it is easy to check that d(cj1 , cj2) = 2 for all
j1 = 1, 2, 3 and j2 = 4, 5, . . . , 9. If desc(C0)

⋂ C = C0, clearly it is a 3-SSC. Now
we consider the case that there is at least one codeword ci ∈ desc(C0)

⋂ C, 4 ≤ i ≤ 9,
without loss of generality, we assume c4 ∈ desc(C0)

⋂ C. By the distance, ci , 5 ≤
i ≤ 9, can be divided into two subsets C1 = {c5, c6, c9} and C2 = {c7, c8} such that
d(c4, c) = 2 if c ∈ C1 and d(c4, c) = 3 if c ∈ C2.

– If desc(C0) ∩ C = {c1, c2, c3, c4}, then S(C0) = {C0, C ′}, where C ′ =
{c1, c2, c3, c4}. Clearly ∩C′∈S(C0)C ′ = C0.

– If {c1, c2, c3, c4, c} ⊆ desc(C0) ∩ C, c ∈ C1, we claim that this case does not
happen. We take c = c5 as an example. Then we have desc({c1, c2, c4}) =
desc({c1, c2, c5}), a contradiction to the definition of a 3-SC.
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– If desc(C0) ∩ C = {c1, c2, c3, c4, c}, c ∈ C2, we claim that this case sat-
isfies the conditions of 3-SSC. We take c = c7 as an example. Let C ′ =
{c1, c2, c3, c4}, C ′′ = {c1, c2, c3, c7} and C ′′′ = {c1, c2, c3, c4, c7}. It is easy
to check that S(C0) = {C0, C ′, C ′′, C ′′′} and ∩C′∈S(C0)C ′ = C0.

– If desc(C0) ∩ C = {c1, c2, c3, c4, c7, c8}, then desc({c1, c2, c3}) =
desc({c4, c7, c8}), a contradiction to the definition of a 3-SC.

From the above discussions, we know that C is a 3-SSC. Then the proof is complete.

3.2 Upper bounds on M(t, n, q)

As an important class of anti-collusion codes in multimedia copyright protection, separable
codes and frameproof codes were widely studied, e.g., [5, 7, 9–11, 14].

Lemma 6 ([8]) Given a t-SC(n,M, q) with t ≥ 3 and n ≥ 2, let r ∈ {0, 1, . . . , t − 2} be
the remainder of n on division by t − 1. If M > q, then

M ≤ max
{
q�n/(t−1)�, r(q�n/(t−1)� − 1) + (t − 1 − r)(q�n/(t−1)� − 1)

}
.

Lemma 7 ([9]) For any positive integers t and q ≥ 2,

– when 2 ≤ n < t , there always exists an optimal t-SC(n, n(q − 1), q) and an optimal
t-FPC(n, n(q − 1), q);

– when n = t , for any t-SC(n, M, q) we have M ≤ q2 if n ≤ q, otherwise M ≤ nq.

When t = 3, n = 3, Cheng et al. improved the above result.

Lemma 8 ([9]) The maximum value of M in a 3-SC(3,M, q) must be between �√q�3 and
�3q

2

4
�, where q ≥ 4.

From Lemmas 3 and 6, the following upper bounds on M(t, n, q) can be obtained.

Corollary 2 Let n, q and t be positive integers such that t ≥ 3 and n ≥ 2, and r ∈
{0, 1, . . . , t − 2} the remainder of n on division by t − 1. If M(t, n, q) > q, then

M(t, n, q) ≤ max
{
q�n/(t−1)�, r(q�n/(t−1)� − 1) + (t − 1 − r)(q�n/(t−1)� − 1)

}
.

From Lemmas 2, 3 and 7, the following statement holds.

Corollary 3 For any positive integers t , n and q ≥ 2,

– when 2 ≤ n < t , M(t, n, q) = n(q − 1);
– when n = t , M(t, n, q) ≤ q2 if n ≤ q, and otherwise M(t, n, q) ≤ nq.

From Theorem 1 and Lemma 8, we have the following result.

Corollary 4 �√q�3 ≤ M(3, 3, q) ≤ �3q
2

4
� holds for q ≥ 4.
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To our best knowledge, the lower bound in [9] is the best known result on 3-SC(3,M, q).
In the following section, we will improve the lower bound in Corollary 4 to �(q5/3+q4/3−
q) for some prime powers q.

4 Construction

From Theorem 1, it is sufficient to consider 3-SC(3, M, q) for studying 3-SSC(3,M, q).
First the following notations are necessary.

For any (3, M, q) code C defined on Q = {0, 1, · · · , q−1}, we define the column vector
setsA(1)

i for i ∈ Q as follows:

A(1)
i = {(x2, x3)T | (x1, x2, x3)

T ∈ C, x1 = i}.

Obviously, A(1)
i ⊆ Q2 for any i ∈ Q and |A(1)

0 | + · · · + |A(1)
q−1| = M hold. Similar to the

above notation, vector setsA(j)
i for j = 2, 3 can be also defined.

Lemma 9 ([9]) A (3,M, q) code is a 2-FPC(3, M, q) if and only if |A(j)
i

⋂A(j)

i′ | ≤ 1

holds for any j ∈ {1, 2, 3} and distinct i, i′ ∈ Q, where if |A(j)
i

⋂A(j)

i′ | = 1, then |A(j)
i | =

|A(j)

i′ | = 1.

Cheng et al. showed that for any 3-SC(3, M, q), C, there is no subcode �i ⊆ C described
in (3), a 
= b, c 
= d, e 
∈ {f, g}, and there is no subcode ∇ ⊆ C described in (4),
|{ai, bi, ci}| = 3, i = 1, 2, 3.

�1 =
⎛

⎝
a a b b

e f g e

c d c d

⎞

⎠ �2 =
⎛

⎝
a a b b

c d c d

e f g e

⎞

⎠ �3 =
⎛

⎝
e f g e

a a b b

c d c d

⎞

⎠ (3)

∇ =
⎛

⎝
a1 b1 c1 a1 b1 c1
a2 b2 c2 b2 c2 a2
a3 b3 c3 c3 a3 b3

⎞

⎠ (4)

We call such �i and � forbidden configurations of C.

Theorem 2 ([9]) A (3,M, q) code C is a 3-SC(3, M, q) if and only if it satisfies the
following conditions:

(i) C is a 2-FPC(3,M, q);
(ii) Configurations in (3) and (4) are all the forbidden configurations of C.

In the following, for any prime power q, we will take advantage of difference matrices
to construct 3-SC(3,M, q)s.

Definition 2 ([3]) For any prime power q, a difference matrix (q, 3, 1)DM is a 3×q matrix
D = (dj,i ) with dj,i ∈ Fq such that for any 1 ≤ j1 
= j2 ≤ 3, the differences dj1,i − dj2,i

over Fq , i ∈ Fq , comprise all the elements of Fq .
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Given a 3× s matrix N with entries from Fq and s distinct columns n1,n2, . . . , ns , we can
define a (3, qs, q) code C on Fq as

C = {N + g | g ∈ Fq} = {ni + g | g ∈ Fq, 1 ≤ i ≤ s}. (5)

We say N is a base of C, or C is constructed by N .
For any given (q, 3, 1)DM, D, we can obtain a (3, q2, q) code C = {D+g | g ∈ Fq}. By

the definition of a DM, we know that |A(j)
i1

∩A(j)
i2

| = 0 holds for any 1 ≤ j ≤ 3 and for any

distinct i1, i2 ∈ Fq , which implies that C is a 2-FPC(3, q2, q) by Lemma 9. Unfortunately,
this code is not always a 3-SC.

Example 4 The following code C is constructed by (3, 3, 1)DM in (5). Let ci denote the ith
codewode, 1 ≤ i ≤ 9. From the above discussion, C is a 2-FPC(3, 9, 3), but is not a 3-SC
since desc({c1, c4, c7}) = desc({c2, c5, c8}).

C =
⎛

⎝
0 0 0 1 1 1 2 2 2
0 1 2 1 2 0 2 0 1
0 2 1 1 0 2 2 1 0

⎞

⎠

In fact, we can obtain the base of a 3−SC(3,M, q) by deleting some codewords of C
constructed by (q, 3, 1)DM in (5). For any prime power q, if q ≥ 3, the following array D

is a (q, 3, 1)DM

D =
⎛

⎝
0 0 ... 0
0 1 ... εq−2

0 α ... αεq−2

⎞

⎠ , (6)

where ε is a primitive element of Fq and α is an element of Fq \ {0, 1} [13]. For any subset
S ⊆ Fq , let sub-matrix N = D|S obtained by deleting the columns i ∈ Fq \ S. Clearly
the code C constructed by N in (5) is a 2-FPC(3, q|S|, q). From Theorem 2, in order that C
may be a 3-SC(3, M, q), we only need to consider the forbidden configurations in (3) and
(4). Suppose C ⊆ C,
(I) When C ∈ {�1,�2, �3}, we may assume

C =
⎛

⎝
k1 k2 k3 k4

x + k1 y + k2 z + k3 w + k4
αx + k1 αy + k2 αz + k3 αw + k4

⎞

⎠ ,

where x, y, z, w, k1, k2, k3, k4 ∈ Fq .

– When C = �1, we have

k1 = k2, x + k1 = w + k4, αy + k2 = αw + k4.

This means

x + (α − 1)w = yα (7)

with |{x, y, w}| = 3. In fact, if x = y, we have that the first codeword equals the
second codeword of �1, a contradiction to the assumption. This implies x 
= y.
Similarly we can check that x 
= w and y 
= w.

– When C = �2, we have

k1 = k2, y + k2 = w + k4, αx + k1 = αw + k4.
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This means

y + (α − 1)w = xα. (8)

It is easy to check that |{x, y,w}| = 3 holds in (8).
– When C = �3, we have

k1 = k4, x + k1 = y + k2, αy + k2 = αw + k4.

This means

x + (α − 1)y = wα. (9)

It is easy to check that |{x, y,w}| = 3 holds in (9).

(II) When C = ∇, we may assume

C =
⎛

⎝
k1 k2 k3 k1 k2 k3

x + k1 y + k2 z + k3 u + k1 v + k2 w + k3
αx + k1 αy + k2 αz + k3 αu + k1 αv + k2 αw + k3

⎞

⎠ .

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

x + k1 = w + k3
y + k2 = u + k1
z + k3 = v + k2
αx + k1 = αv + k2
αy + k2 = αw + k3
αz + k3 = αu + k1

=⇒

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

k3 − k1 = x − w

k2 − k1 = u − y

k3 − k2 = v − z

k2 − k1 = αx − αv

k3 − k2 = αy − αw

k3 − k1 = αu − αz

. (10)

This means
{

αx + α(α − 1)z = (α − 1)y + (α2 − α + 1)u
αw + α(α − 1)u = (α − 1)v + (α2 − α + 1)z

(11)

Then we know {x, y, z} ∩ {u, v,w} = ∅ always holds.

– x 
∈ {u, v,w} always holds. If x = u, we have the first codeword equals the forth
codeword of ∇, a contradiction to the assumption. Similarly, we can prove that
x 
= w, v always holds.

– y 
∈ {u, v,w} always holds. If y = u, we have k1 = k2 from y+k2 = u+k1. This
implies that the second codeword equals the forth codeword of ∇, a contradiction
to the assumption. Similarly, we can prove that y 
= w, v.

– z 
∈ {u, v,w} always holds. If z = u, we have k1 = k3 from αz + k3 =
αu + k1. This implies that the third codeword equals the forth codeword of ∇, a
contradiction to the assumption. Similarly, we have z 
= w, v.

For any prime power q1 and positive integer n, let Fn
q1

be the n-dimensional vector space
over Fn

q1
. When q = qn

1 , it is well known that the element of Fq can be represented by the
n-dimensional vector over Fq1 . Suppose that S is a subset of Fn

q1
, of which no three distinct

elements are collinear. Then (7), (8) and (9) have no solution in S. This implies that C does
not contain �1, �2 and �3. Together with (11), we have the following result.

Theorem 3 For any subset S ⊆ Fq , of which no three distinct elements are collinear,
if there is no solution of (11) in S, then the code constructed by N = D|S in (5) is a
3-SC(3, q|S|, q).
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Combining forbidden configurations with subsets containing no nontrivial solution to
certain equations is an efficient method. This similar idea was also used in [1] and [20].
Now, we focus on the formula (11). Let q1 = 6t + 1 be a prime power, and α be a primitive
6th root of unity in Fq1 , where t ≥ 1. Clearly α is a root of f (x) = x2 − x + 1. Then (11)
can be written as

{
x + (α − 1)z = αy

w + (α − 1)u = αv
(12)

From (12), if |{x, y, z}| < 3 (or |{u, v, w}| < 3), then |{x, y, z}| = 1 (or |{u, v,w}|
= 1) always holds. Furthermore, from (10) we claim if x = y = z (or u = v = w), then
|{u, v,w}| = 3 (or |{x, y, z}| = 3) always holds in (11). If x = y = z and u = v = w, then
x + k1 = w + k3 and αx + k3 = αw + k1 hold by (10). We have (α + 1)x = (α + 1)w.
This implies x = w, k1 = k3 since α 
= −1. That is, the first codeword equals the sixth
codeword in C, a contradiction. So we have

|{x, y, z, u, v,w}| = 6; or

|{x, y, z}| = 3 and |{u, v,w}| = 1; or

|{x, y, z}| = 1 and |{u, v,w}| = 3. (13)

According to (12) and (13), Theorem 3 can be written as follows.

Corollary 5 Let q = qn
1 , where q1 = 6t + 1 is a prime power, t ≥ 1. For any subset

S ⊆ Fq , of which no three distinct elements are collinear, the code constructed by N = D|S
in (5) is a 3-SC(3, q|S|, q).

Denoting by r(qn
1 ) the maximum size of a subset of Fn

q1
that contains no three points

on a line. There are many studies on the value of r(qn
1 ) over Fn

q1
. The interested reader is

referred to [4, 16, 21].

Lemma 10 ([16]) For any prime power q1 ≥ 3, we have r(F6
q1

) = �(q4
1 + q2

1 − 1).

From Corollary 5 and Lemma 10, the following lower bound can be obtained.

Theorem 4 For any prime power q = q6
1 , where q1 = 6t + 1 is a prime power, there exists

a 3-SSC(3,M, q), where M = �(q5/3 + q4/3 − q).

5 Conclusion

In this paper, we first derived several upper bounds on the number of codewords of t-SSC.
Then we focused on 3-SSCs with codeword length 3, and obtained the following two main
results: (1) An equivalence between an SSC and an SC was derived. (2) An improved lower
bound �(q5/3 + q4/3 − q) on the size of a q-ary SSC when q = q6

1 for any prime power
q1 ≡ 1 (mod 6), which is better than the previously known bound �√q�3, was obtained
by means of a difference matrix and a known result on the subsets of Fn

q containing no three
points on a line.

It would be of interest if we could improve the upper bounds �3q
2

4
� or the lower bound

�(q5/3 + q4/3 − q). It would be also interesting if we could get more properties and
constructions of strongly separable codes.
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