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Abstract Permutation polynomials over finite fields have significant applications in cod-
ing theory, cryptography, combinatorial designs and many other areas of mathematics and
engineering. In this paper, we study the permutation behavior of polynomials with the form
(xpm − x + δ)s + xpm + x over the finite field Fp2m . By using the Akbary-Ghioca-Wang
(AGW) criterion, we present several new classes of permutations over Fp2m based on some

bijections over the set {t ∈ Fp2m |tpm + t = 0} or the subfield Fpm .
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1 Introduction

Let p be a prime, n be a positive integer and Fpn be a finite field with pn elements. A
polynomial f (x) ∈ Fpn [x] is called a permutation polynomial (PP) over Fpn if it induces a
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bijection from Fpn to itself. A linearized polynomial or p-polynomial [10, Definition 3.49]
over Fpn is defined by

L(x) =
n−1∑

i=0

aix
pi ∈ Fpn [x].

It has a unique zero root in Fpn if and only if L(x) permutes Fpn , which means that the
equation L(x) + b = 0 has a unique nonzero solution for any b ∈ Fpn \ {0}. PPs are
an interesting subject of mathematics and engineering, and have significant applications
in coding theory, cryptography, combinatorial designs and so on. For more details of the
recent advances and contributions to the area, the reader is referred to [4, 7, 12, 20] and the
references therein.

Helleseth and Zinoviev [6] first proposed PPs of the form
(

1

x2 + x + δ

)2l

+ x

for the goal of deriving new identities on Kloosterman sums over F2n , where δ ∈ F2n

and l = 0 or 1. Yuan et al. [15, 16] further investigated the permutation behavior of the
polynomials with the form

(xpk − x + δ)s + L(x) (1)

over Fpn , where k, s are integers, δ ∈ Fpn and L(x) is a linearized polynomial. Akbary
et al. [1] proposed a criterion of PPs by the following lemma:

Lemma 1 [1] (The AGW criterion) Let A, S and S be finite sets with �S = �S, and let
f : A → A, h : S → S, λ : A → S and λ : A → S be maps such that λ ◦ f = h ◦ λ. If
both λ and λ are surjective, then the following statements are equivalent:

(1) f is a bijection (a permutation over A); and
(2) h is a bijection from S to S and f is injective on λ−1(t) for each t ∈ S.

Yuan and Ding [17, 18] gave a unified treatment of some earlier constructions of PPs
and get many new specific PPs by using the AGW criterion. Followed by Yuan and Ding’s
work, many researchers began to study PPs having the form as in (1). They obtained many
important results and advances, which can be seen in [3, 9, 19, 21, 23] and the references
therein.

Very recently, Tu et al. [13, 14] presented several classes of PPs over Fp2m with the form
(1), where k = m, s andm are integers satisfying s ≡ 1(mod pm+1) or s ≡ 1(mod pm−1).
For this kind of exponents s, Zeng et al. [22] proposed several classes of PPs based on trace
functions over F2n . This motivated Zha and Hu [24] to construct PPs of the form (1) with
new such exponents s.

As we know, both xpm − x and xpm + x are not permutations on Fp2m . In this paper, we
further study the permutation behavior of polynomials with the form

(xpm − x + δ)s + xpm + x

over Fp2m . By using the AGW criterion, we find some new exponents s and present several

new classes of PPs over Fp2m based on some bijections over the set {t ∈ Fp2m |tpm + t = 0}
or the subfield Fpm .

The rest of this paper is organized as follows. In Section 2, some preliminaries needed
later are presented. In Section 3, we propose three classes of PPs based on some bijections
over the set {t ∈ Fp2m |tpm + t = 0}. In Section 4, by determining some bijections over the



Cryptogr. Commun. (2018) 10:567–578 569

subfield Fpm we exhibit some new classes of PPs with exponents s = ipj (pm + 1) + pj or
ipj (pm + 1) + 2pj for some integers i and j . Finally, we conclude the paper in Section 5.

2 Preliminaries

Throughout this paper, we always let p be an odd prime, and let j , s, m and n be positive
integers. Denote the multiplicative group of Fpm by F

∗
pm . For each element δ in the finite

field Fp2m , we denote δpm
by δ in analogy with the usual complex conjugation. Obviously,

δ + δ ∈ Fpm and δδ ∈ Fpm . Denote the p-adic order of an integer m by vp(m) and let
vp(m) = n if pn|m and pn+1

� m.
By the AGW criterion, we have the following propositions.

Proposition 1 Let δ ∈ Fp2m . The polynomial f (x) = (xpm − x + δ)s + xpm + x induces a
permutation on Fp2m if and only if the polynomial

h(t) = (−t + δ)s − (t + δ)s

is a bijection over the set S = {t ∈ Fp2m |tpm + t = 0}.

Proof Note that the set S = {t ∈ Fp2m |tpm + t = 0} can be denoted as {xpm −x|x ∈ Fp2m}.
Let λ(x) = λ(x) = xpm − x and h(x) = (x + δ)s·pm − (x + δ)s . It can be verified that the
following diagram commutes

For each t ∈ S, we have that λ−1(t) = {x ∈ Fp2m |xpm −x = t} and f (x) = (t +δ)s +t +2x

is injective on λ−1(t). Then by the AGW criterion, f permutes Fp2m if and only if

h(t) = (t + δ)s·pm − (t + δ)s = (−t + δ)s − (t + δ)s

is a bijection over S.

Remark 1 Let λ ∈ F
∗
pm . We note that t ∈ S if and only if λt ∈ S, where S is defined in

Proposition 1.

Proposition 2 Let δ ∈ Fp2m . The polynomial f (x) = (xpm − x + δ)s + xpm + x permutes

Fp2m if and only if the polynomial g(x) = (xpm − x + δ)s·pj + xpm + x permutes Fp2m for
any integer j ≥ 0.

Proof According to Proposition 1, the polynomials f (x) and g(x) permute Fp2m if and only

if h(t) = (−t+δ)s−(t+δ)s and hpj
(t) permute S respectively. Moreover, the mapping h(t)

is a bijection on S if and only if hpj
(t) is a bijection on S. Hence the proof is completed.
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3 Three classes of PPs over Fp2m derived from bijections over the set
{t ∈ Fp2m|tpm + t = 0}
In this section, we present three classes of permutation polynomials over Fp2m by applying
Propositions 1 and 2.

Theorem 1 Let δ ∈ Fp2m with δ + δ = 0. Then

f (x) = (xpm − x + δ)s + xpm + x

permutes Fp2m if and only if s is odd and gcd(s, pm − 1) = 1.

Proof By Proposition 1, f (x) permutes Fp2m if and only if h(t) = (−t + δ)s − (t + δ)s is a

bijection on the set S = {t ∈ Fp2m |tpm +t = 0}. Since δ+δ = 0, we get (t+δ)p
m +t+δ = 0,

which implies that t + δ = 0 or (t + δ)2(p
m−1) = 1. It can be easily checked that

h(t) = (t + δ)s((−1)s − 1).

If s is even, h(t) = 0 is not a bijection on S. If s is odd and gcd(s, pm − 1) = i > 1, then
there exist two different values t1, t2 ∈ S such that t1 + δ = β(t2 + δ) and h(t1) = h(t2),
where β ∈ Fpm , βi = 1 and β �= 1. It follows that h(t) is not a bijection on S. If s is odd
and gcd(s, pm −1) = 1, then gcd(s, 2(pm −1)) = 1. It can be verified that h(t) = 2(t +δ)s

is an injection on S, which implies that h(t) permutes S. Hence the proof is finished.

Theorem 2 Let k be an integer with k < m and let δ ∈ Fp2m with δ + δ �= 0. Then

f (x) = (xpm − x + δ)s + xpm + x

permutes Fp2m in the following two cases:

(i) s = pj or 2pj ;
(ii) s = (pk + 1) · pj with m−k

gcd(m,k)
is odd.

Proof By Propositions 1 and 2, we just need to prove that h(t) = (−t + δ)s − (t + δ)s is a
bijection on the set S = {t ∈ Fp2m |tpm + t = 0} in the case of j = 0.

(i) If s = 1, h(t) = −2t + δ − δ is an affine permutation of S. If s = 2, h(t) =
−2(δ + δ)t + δ

2 − δ2 is also an affine permutation of S since δ + δ �= 0.

(ii) If s = pk +1, then h(t) = −(δ+δ)tp
k − (δ+δ)p

k
t +δ

pk+1−δpk+1. Since δ+δ �= 0,
h(t) is a bijection on S if and only if

h1(t) = h((δ + δ)t) = −(δ + δ)p
k+1(tp

k + t) + δ
pk+1 − δpk+1

is a bijection on S. Assume t1, t2 ∈ S with t1 �= t2 and h1(t1) = h1(t2). It leads to
(t1 − t2)

pm + (t1 − t2) = 0 and (t1 − t2)
pk + (t1 − t2) = 0. Let u = t1 − t2. Then we

have u �= 0 and

upm−1 = upk−1 = −1,

which implies that upm−k−1 = 1, i.e., u ∈ F
∗
pm−k . We note that upk−1 = −1 has a

solution u in F∗
pm−k if and only if

m−k
gcd(k,m−k)

is even. Since gcd(k,m− k) = gcd(m, k)
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and m−k
gcd(m,k)

is odd, there is no solution of upk−1 = −1 over F∗
pm−k . Therefore, h1(t)

and h(t) are bijections on S.

Lemma 2 [5] Let a, b be integers and l = gcd(a, b). Let a′ = a/l and b′ = b/l. Then

gcd(pa + 1, pb − 1) =
{

pl + 1, for odd a′ and even b′,
2, otherwise.

Theorem 3 Let k be an integer and δ ∈ Fp2m with δ + δ �= 0. Then

f (x) = (xpm − x + δ)s + xpm + x

permutes Fp2m in the following cases:

(i) p = 3, s = (3k+1)·3j

2 or (32m+3k+1+2)·3j

2 , where gcd(k, 2m) = 1;

(ii) s = (pk+1)·pj

2 or (p2m+pk+1+p−1)·pj

2 , where v2(k) ≥ v2(2m).

Proof Let S1 = {z ∈ Fp2m |z+z = δ+δ} and ρ be a mapping from S1 to S with ρ(z) = z−δ.
It is clear that ρ is a one to one mapping. According to Proposition 1, we need to prove that
h(t) = (−t + δ)s − (t + δ)s is a bijection on the set S = {t ∈ Fp2m |tpm + t = 0}, which is
equivalent that

h ◦ ρ(z) = (−1)s(z − δ − δ)s − zs(:= h1(z))

is a one to one mapping from S1 = {z ∈ Fp2m |z + z = δ + δ} to S. Note that |S1| = |S|. It
is sufficient to show that for any γ ∈ S, there is at most one solution z ∈ S1 of equation

h1(z) = γ. (2)

Let u = δ+δ
4 and z = η + u2

η
+2u, where η ∈ F

∗
p2m satisfying η +η = 0 or ηη +u2 = 0.

Then z = (η+u)2

η
and z − δ − δ = η + u2

η
− 2u = (η−u)2

η
. Equation (2) can be written as

h1

(
η + u2

η
+ 2u

)
= (−1)s(η − u)2s − (η + u)2s

ηs
= γ. (3)

By Proposition 2, we only consider the following exponents s in the case of j = 0.

(i) Since gcd(k, 2m) = 1, both 3k+1
2 and 32m+3k+1+2

2 are even. If s = 3k+1
2 , (3) turns to be

h1(η + u2

η
+ 2u) = (η − u)3

k+1 − (η + u)3
k+1

η(3k+1)/2
= −2uη3

k − 2u3
k
η

η(3k+1)/2

= −2u(η
3k−1
2 + (

u2

η
)
3k−1
2 ) = γ. (4)

Assume θ = η
3k−1
2 . Equation (4) turns to

−2u

(
θ + u3

k−1

θ

)
= γ.
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Since δ + δ �= 0 and η ∈ F
∗
32m

, we obtain u �= 0 and θ �= 0. The above equation
implies that

θ2 + γ

2u
θ + u3

k−1 = 0,

which has at most two solutions θ1 and θ2 with θ1θ2 = u3
k−1. Note that

gcd

(
3k − 1

2
, 32m − 1

)
= 3gcd(k,2m) − 1

2
= 1.

Both θ1 and θ2 lead to one solution η1 and η2 respectively, where η1 = u2

η2
. It is obvious

that η1 and η2 give the same value z. Therefore, (2) has at most one solution of z.

If s = 32m+3k+1+2
2 , (3) leads to

h1(η + u2

η
+ 2u) = (η − u)3

k+1+3 − (η + u)3
k+1+3

η(32m+3k+1+2)/2
= −2u3η3

k+1 − 2u3
k+1

η3

η(32m+3k+1+2)/2

= −2u3

⎛

⎜⎝η
32m+3k+1−4

2 +
(

u2

η

) 32m+3k+1−4
2

⎞

⎟⎠ = γ (5)

since η, u ∈ F
∗
32m

. Note that gcd( 3
2m+3k+1−4

2 , 32m − 1) = gcd( 3
k+1−3
2 , 32m − 1) = 1.

Similarly, we can show that (2) has at most one solution of z.

(ii) Since v2(k) ≥ v2(2m), we get k is even and pk ≡ 1(mod 4), which means that pk+1
2

and p2m+pk+1+p−1
2 are both odd. If s = pk+1

2 , (3) turns to be

h1

(
η + u2

η
+ 2u

)
= −(η − u)p

k+1 − (η + u)p
k+1

η(pk+1)/2

= −2

⎛

⎜⎝η
pk+1

2 +
(

u2

η

) pk+1
2

⎞

⎟⎠ = γ. (6)

From the known condition v2(k) ≥ v2(2m), we can deduce that k
gcd(2m,k)

is even or

both k
gcd(2m,k)

and 2m
gcd(2m,k)

are odd. Then by Lemma 2, we obtain

gcd

(
pk + 1

2
, p2m − 1

)
= gcd(pk + 1, p2m − 1)

2
= 1,

which implies that (2) has at most one solution of z.

If s = p2m+pk+1+p−1
2 , (3) leads to

h1

(
η + u2

η
+ 2u

)
= −(η − u)p

k+1+p − (η + u)p
k+1+p

η(p2m+pk+1+p−1)/2

= −2

⎛

⎜⎝η
p2m+pk+1+p−1

2 +
(

u2

η

) p2m+pk+1+p−1
2

⎞

⎟⎠ = γ (7)
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since η, u ∈ F
∗
p2m . It can be checked that

gcd

(
p2m + pk+1 + p − 1

2
, p2m − 1

)
= gcd

(
pk+1 + p

2
, p2m − 1

)
= 1.

This implies that (2) has at most one solution of z.

Remark 2 It is clear that the set S = {t ∈ Fp2m |tpm +t = 0} can be denoted as the following
simpler way

S = {t ∈ Fp2m |t = apm − a, a ∈ Fp2m}.

4 Some classes of PPs over Fp2m with exponents s = ipj (pm + 1) + pj or
ipj (pm + 1) + 2pj

In this section, we present some new classes of permutation polynomials f (x) = (xpm −
x + δ)s + x + xpm

over Fp2m with exponents s = ipj (pm + 1) + pj or ipj (pm + 1) + 2pj ,
where δ ∈ Fp2m . By Proposition 2, we just need to prove the case of j = 0 in the sequel.
Firstly, we give some lemmas needed later.

Lemma 3 [14] For an odd prime p and a positive integer m, if δ ∈ Fp2m with δ + δ = 0,

then the polynomial f (x) = (xpm − x + δ)i(p
m+1)+1 + xpm + x permutes Fp2m , where the

integer i satisfies 0 < i < pm − 1 and gcd(1 + 2i, pm − 1) = 1.

Lemma 4 Let i be an integer and δ ∈ Fp2m with δ + δ �= 0. The polynomial f (x) =
(xpm − x + δ)i(p

m+1)+1 + xpm + x permutes Fp2m if and only if the polynomial g(x) =
(xpm − x + δ)i(p

m+1)+2 + xpm + x permutes Fp2m .

Proof According to Proposition 1, the polynomial f (x) permutes Fp2m if and only if

h1(t) = (−t + δ)i(p
m+1)+1 − (t + δ)i(p

m+1)+1

= (−t + δ)i(t + δ)i(−t + δ − (t + δ))

= (−t2 + (δ − δ)t + δδ)i(−2t + δ − δ) (8)

is a bijection over the set S = {t ∈ Fp2m |tpm + t = 0}. Similarly, the polynomial g(x)

permutes Fp2m if and only if

h2(t) = (−t + δ)i(p
m+1)+2 − (t + δ)i(p

m+1)+2

= (−t + δ)i(t + δ)i((−t + δ)2 − (t + δ)2)

= (−t2 + (δ − δ)t + δδ)i(−2t + δ − δ)(δ + δ). (9)

is a bijection on S. Since δ + δ �= 0, the mappings of (8) and (9) are linear equivalent. This
completes the proof.
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Lemma 5 Let i be an integer and δ ∈ Fp2m with δ + δ �= 0. The polynomial f (x) =
(xpm − x + δ)i(p

m+1)+1 + xpm + x permutes Fp2m if the polynomial

h′(λ) = λ(λ2 − c2)i (10)

permutes Fpm for any c ∈ F
∗
p2m with c + cpm = 0.

Proof As stated in Lemma 4, the polynomial f (x) permutes Fp2m if and only if

h1(t) = (−t2 + (δ − δ)t + δδ)i(−2t + δ − δ)

is a bijection on the set S = {t ∈ Fp2m |tpm + t = 0}.
If δ = δ, then h1(t) = −2t (−t2 + δ2)i . Assume θ ∈ S with θ �= 0. The mapping


 : z 
−→ θz from Fpm to S is a bijection. Let t = θz for z ∈ Fpm . The mapping h1(t) can
be rewritten as

h1(θz) = −2θz(−θ2z2 + δ2)i = (−1)i+12θ1+2iz(z2 − θ−2δ2)i .

Note that h1(t) is a bijection over S if and only if the mapping

h′
1(z) = z(z2 − θ−2δ2)i

is a bijection on Fpm . Since δ + δ �= 0, we have δ �= 0. Then θ−1δ �= 0 and θ−1δ +
(θ−1δ)p

m = 0.
If δ �= δ, the mapping 
1 : z 
−→ (δ − δ)z from Fpm to S is a bijection. Let t = (δ − δ)z

for z ∈ Fpm . The mapping h1(t) turns to be

h1((δ − δ)z) = (δ − δ)(−1)i+1((δ − δ)2z2 + (δ − δ)2z − δδ)i(2z + 1).

Since δ + δ �= 0, h1(t) is a bijection on S if and only if the mapping

h′
2(z) =

(
z2 + z − δδ

(δ − δ)2

)i

(2z + 1)

permutes Fpm . Let λ = 2z+1. Then λ ∈ Fpm and h′
2(z) is affine equivalent to the following

mapping

h′′(λ) = λ

(
λ2 − 1

4
− δδ

(δ − δ)2

)i

=
(
1

4

)i

λ

⎛

⎝λ2 −
(

δ + δ

δ − δ

)2
⎞

⎠
i

over Fpm . It can be easily check that δ+δ

δ−δ
�= 0 and δ+δ

δ−δ
+ ( δ+δ

δ−δ
)p

m = 0.

If the polynomial h′(λ) = λ(λ2 − c2)i permutes Fpm for any c ∈ F
∗
p2m with c+ cpm = 0,

then h′
1(z) and h′′(λ) are both permutations on Fpm . Hence the proof is finished.

Lemma 6 [14] For a, b ∈ Fpm , the equation xp − ax + b = 0 has the unique solution in
Fpm if and only if a = 0 or a is not a (p − 1) power in F

∗
pm .

Lemma 7 [11] Let p be an odd prime and k be a positive integer. Then f (x) = x(x2−t)
p−1
2

is a permutation polynomial over Fpk , where t is a non-square element in Fpk .

Lemma 8 Let c ∈ F
∗
p2m with c + cpm = 0. Then c2 ∈ Fpm and c2 is not a square in Fpm .
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Proof Since c ∈ F
∗
p2m with c+ cpm = 0, we get cpm−1 = −1, which implies that c2p

m−2 =
1. It follows that c2p

m = c2, i.e., c2 ∈ Fpm .
If c2 is a square in Fpm , then we have c ∈ Fpm . From c + cpm = 0 we get c = 0, which

is a contradiction.

With the above preparations, we have the following results by determining the permuta-
tion behavior of the polynomial in (10).

Theorem 4 Let δ ∈ Fp2m . The polynomial

f (x) = (xpm − x + δ)(
p−1
2 ·pm+ p+1

2 )·pj + xpm + x

permutes Fp2m .

Proof The exponent s = p−1
2 · pm + p+1

2 = p−1
2 (pm + 1) + 1 implies i = p−1

2 . Since
gcd(1 + 2i, pm − 1) = 1, if δ + δ = 0, we get that f (x) is a permutation over Fp2m by

Lemma 3. Below we consider the case of δ + δ �= 0.
For any c ∈ F

∗
p2m with c+cpm = 0, from Lemma 8 we have that c2 ∈ Fpm and c2 is not a

square in Fpm . By Lemma 7, we get that h′(λ) = λ(λ2−c2)
p−1
2 is a permutation polynomial

over Fpm . Then the desired conclusion of this theorem follows from Lemma 5.

According to Lemma 4 and Theorem 4, we get the following corollary directly.

Corollary 1 Let δ ∈ Fp2m with δ + δ �= 0. The polynomial

f (x) = (xpm − x + δ)(
p−1
2 ·pm+ p+3

2 )·pj + xpm + x

permutes Fp2m .

Theorem 5 Let δ ∈ F32m . The polynomial

f (x) = (x3m − x + δ)
(32m+2·3m+3)·3j

2 + x3m + x

permutes F32m .

Proof The exponent

s = 32m + 2 · 3m + 3

2
= 3m + 1

2
(3m + 1) + 1

implies i = 3m+1
2 . Since gcd(1 + 2i, 3m − 1) = 1, by Lemma 3 we get that f (x) is a

permutation over F32m if δ + δ = 0. Next we consider the case of δ + δ �= 0.
By Lemma 5, we need to prove that h′(λ) permutes F3m . It is sufficient to prove that for

any γ ∈ F3m , the equation

λ(λ2 − c2)
3m+1

2 = γ (11)

has at most one solution for any c ∈ F
∗
32m

with c + c3
m = 0. Squaring both sides of (11)

gives
λ2(λ2 − c2)2 = γ 2.
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The above equation leads to
λ3 − c2λ = γ

or
λ3 − c2λ = −γ.

It follows from Lemma 8 that c2 ∈ F3m and c2 is not a square in F3m . By Lemma 6 the
above two equations have one solution λ1 and λ2 respectively, where λ1 = −λ2. If γ = 0,
we get λ1 = λ2 = 0. If γ �= 0, it can be verified that λ1 and λ2 are not the solutions of
(11) simultaneously. That is to say, there is at most one solution λ of (11). The proof is
completed.

A direct consequence of Lemma 4 and Theorem 5 is the following.

Corollary 2 Let δ ∈ F32m with δ + δ �= 0. The polynomial

f (x) = (x3m − x + δ)
(32m+2·3m+5)·3j

2 + x3m + x

permutes F32m .

Theorem 6 Let δ ∈ F32m . The polynomial

f (x) = (x3m − x + δ)(2·32m−1−3m−1)·3j + x3m + x

permutes F32m .

Proof The exponent

s = 2 · 32m−1 − 3m−1 = (2 · 3m−1 − 1)(3m + 1) + 1

implies i = 2 · 3m−1 − 1. Since gcd(1 + 2i, 3m − 1) = gcd(3m + 3m−1 − 1, 3m − 1) = 1,
by Lemma 3 we have that f (x) is a permutation over F32m if δ + δ = 0.

Now we discuss the case of δ + δ �= 0. By Lemma 5, it suffices to prove that for each
γ ∈ F3m , the equation

λ(λ2 − c2)2·3m−1−1 = γ (12)

has a unique solution for any c ∈ F
∗
32m

with c + c3
m = 0. According to Lemma 8, c2 ∈ Fpm

and c2 is not a square in Fpm . If γ = 0, then λ = 0 is the unique solution of (12) since c2 is
not a square in F3m . If γ �= 0, then λ �= 0 and λ2 − c2 �= 0. Raising both sides of (12) to the
third powers gives

λ3(λ2 − c2)−1 = γ 3,

which implies that (
1

λ

)3

− c−2 1

λ
= −γ −3c−2. (13)

According to Lemma 6, there is exactly one solution λ of (13). We complete the proof.

An immediate consequence of Lemma 4 and Theorem 6 is the following result.

Corollary 3 Let δ ∈ F32m with δ + δ �= 0. The polynomial

f (x) = (x3m − x + δ)(2·32m−1−3m−1+1)·3j + x3m + x

permutes F32m .
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Theorem 7 Let δ ∈ F32m . The polynomial

f (x) = (x3m − x + δ)
(32m−2·3m+3)·3j

6 + x3m + x

permutes F32m .

Proof The exponent

s = 32m − 2 · 3m + 3

6
= 3m − 3

6
(3m + 1) + 1

implies i = 3m−3
6 . Since gcd(1+2i, 3m −1) = gcd(3m, 3m −1) = 1, as stated before, f (x)

is a permutation over F32m if δ + δ = 0.
Assume δ + δ �= 0. By Lemma 5, for any γ ∈ F3m we need to show that the equation

λ(λ2 − c2)
3m−3

6 = γ (14)

has at most one solution for any c ∈ F
∗
32m

with c + c3
m = 0. By Lemma 8 we have that

c2 ∈ F3m is not a square in F3m . Similarly as the proof of Theorem 6, there is a unique
solution of (14) when γ = 0. Next we suppose γ �= 0. It leads to λ �= 0. Taking the sixth
powers on both sides of (14), we obtain

λ6(λ2 − c2)−2 = γ 6. (15)

We can deduced that
λ3 = γ 3c2 − γ 3λ2

or
λ3 = −γ 3c2 + γ 3λ2,

which implies that (
1

λ

)3

− c−2
(
1

λ

)
= γ −3c−2 (16)

or (
1

λ

)3

− c−2
(
1

λ

)
= −γ −3c−2. (17)

Then by Lemma 6, we get that (16) and (17) have one solution λ1 and λ2 respectively, where
λ1 = −λ2 �= 0. It can be verified that λ1 and λ2 are not the solutions of (14) simultaneously.
That is to say, there is at most one solution λ of (14). The proof is finished.

Similarly, we can deduce the following result by Lemma 4 and Theorem 7.

Corollary 4 Let δ ∈ F32m with δ + δ �= 0. The polynomial

f (x) = (x3m − x + δ)
(32m−2·3m+9)·3j

6 + x3m + x

permutes F32m .

5 Conclusion

In this paper, we continued the work in [9, 14, 16, 19, 24] and proposed several new classes
of permutation polynomials f (x) = (xpm −x +δ)s +xpm +x over Fp2m for some δ ∈ Fp2m

by using the AGW criterion. Note that the AGW criterion can be used to investigate the
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permutation behavior of more explicit polynomials of the form (xpm +ax+δ)s +bxpm +cx

over Fp2m , where s is an integer and a, b, c, δ ∈ Fp2m .
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