=
Cryptogr. Commun. (2018) 10:123-137 @ CrossMark
DOI 10.1007/s12095-017-0225-x

KISS: A bit too simple

Gregory G. Rose!

Received: 5 November 2016 / Accepted: 10 April 2017 / Published online: 2 May 2017
© The Author(s) 2017. This article is an open access publication

Abstract KISS (‘Keep it Simple Stupid’) is an efficient pseudo-random number generator
originally specified by G. Marsaglia and A. Zaman in 1993. G. Marsaglia in 1998 posted
a C version to various USENET newsgroups, including sci.crypt. Marsaglia himself
has never claimed cryptographic security for the KISS generator, but others have made the
intellectual leap and claimed that it is of cryptographic quality. In this paper we show a
number of reasons why the generator does not meet some of the KISS authors’ claims, why
it is not suitable for use as a stream cipher, and that it is not cryptographically secure. Our
best attack requires about 70 words of generated output and a few hours of computation to
recover the initial state. In early 2011, G. Marsaglia posted a new version of KISS, which
falls to a simple divide-and-conquer attack.

Keywords Stream cipher - PRNG - Cryptanalysis

Mathematics Subject Classification (2010) 94A60

1 Introduction

KISS (‘Keep it Simple Stupid’) is an efficient pseudo-random number generator specified
by G. Marsaglia and A. Zaman in 1993 [1]. G. Marsaglia in 1998 posted a C version to
various USENET newsgroups, including sci.crypt, culminating in a final version [3].
While Marsaglia himself has never claimed cryptographic security for the KISS generator,
he does hint about it, and others have made the intellectual leap and claimed that it is of

This article is part of the Topical Collection on Recent Trends in Cryptography.

P4 Gregory G. Rose
ggr@seer-grog.net
www.Allocrypt.com

1 Allocrypt, Inc., San Diego, CA, USA

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s12095-017-0225-x&domain=pdf
mailto:ggr@seer-grog.net
www.Allocrypt.com

124 Cryptogr. Commun. (2018) 10:123-137

cryptographic quality. In this paper we show a number of reasons why the generator does not
meet some of the KISS authors’ claims, why it is not suitable for use as a stream cipher, and
that it is not cryptographically secure as a pseudo-random number generator. Indeed, this
paper is written as a cautionary tale; stream ciphers and cryptographically secure random
number generators are hard to get right, even for some of the world’s preeminent experts
on the subject of randomness. We present a number of standard attacks that damage KISS to
some extent, and our best attack requires only 70 words of generated output and on average
2291 operations of a simple algorithm to recover the initial state. We attempt to present the
reasoning that leads to the attacks.

Since 1998 Marsaglia has posted a number of variants of KISS (without version
numbers), including [4] in January 2011. In the sequel, we refer to this as KISS// for dis-
ambiguation. These variants have similar design elements but ever increasing state sizes,
making them impractical for most cryptographic uses anyway. We present a straightfor-
ward divide-and-conquer attack on this (currently) latest version of KISS, requiring 2*!
operations equivalent to key initializations.

Marsaglia’s generators are primarily intended for scientific applications such as Monte
Carlo simulations. There are many other generators in use, often with (ridiculously) long
periods, for example the Mersenne Twister [6], and later versions of KISS. We choose to
examine the 1999 version of KISS rather than some of these later proposals, because:

— Itis proposed by well known and respected authors

— It has a reasonably long but not excessive (claimed) period
— It has a compact state

— The output ‘looks random’ immediately after initialization.

Other proposals often involve large state variables, often calling on simpler RNGs to initialize
these large states. For cryptographic purposes, the lack of a well-specified initialization or
keying phase, the large state, and the time required for initialization are all undesirable. It
is our opinion that most of these other proposals are also cryptographically weak, but that
doesn’t matter because they are also impractical in the context of a stream cipher. In any
case, one recent proposal is examined below.

In Section 2 we describe KISS and the components that make it up. Section 4 discusses
some simple structural attacks. Mathematical properties of the components are described
in Section 3, and in Section 5 these properties are combined to form a cryptanalytic key
recovery attack in the known-keystream model. A variation of the attack would even apply
to unknown plaintext, if the input language is sufficiently biased and with a significant
slowdown. Finally Section 6 examines the 2011 version of KISS (KISS11) and presents a
simple attack.

Quotations in this document are from Marsaglia’s USENET posting [3] unless mentioned
otherwise.

2 Description of KISS

KISS consists of a combination of four sub-generators each with 32 bits of state, of three kinds:

— one linear congruential generator modulo 232
— one general binary linear generator over the vector space GF(2)?

— two multiply-with-carry generators modulo 2'¢, with different parameters

@ Springer

Cryptogr. Commun. (2018) 10:123-137 125

The four generators are updated independently, and their states are combined to form a
stream of 32-bit output words. The four state variables are treated as unsigned 32-bit words.
Figure 1 shows C code from [3], while Fig. 2 shows the structure pictorially. We refer to the
state registers using the names of the C macros.

The KISS generator, (Keep It Simple Stupid), is
designed to combine the two multiply-with-carry
generators in MWC with the 3-shift register SHR3 and
the congruential generator CONG, using addition and
exclusive-or. Period about 27123.

Note that only half of the state of znew contributes directly to the output of KISS. Its
placement in the diagram is intended to show this, and is not an error.

3 Properties of components

The four registers, of three kinds, that make up KISS are independently updated, then com-
bined using shifts, adds, and one XOR operation. As is often the case, the registers that use
arithmetic operations are combined with XOR, while the results that are produced bitwise
are combined with addition modulo 232.

3.1 Multiply with carry registers

Two of the registers, wnew and znew, are Multiply With Carry generators. At each step, the
low-order 16 bits is multiplied with a constant, and the high order 16 bits from the previous
step are added. The low order 16 bits are random looking, and with a period determined
by the entire construct. The most significant bits of the register are not very random; in
particular the MSB will be almost always zero. But these most significant bits contribute to
the long period. The low 16 bits of znew are shifted left before being added to the whole
register wnew, presumably to cover up this nonrandomness.

With a multiplier C, this generator calculates x,, = Cx;,_1 mod2'°C — 1. With the stated
constants, the modulus is prime, so the generator is readily inverted.

The MWC generator concatenates two 16-bit multiply-
with-carry generators, x(n)=36969x(n-1)+carry,
y(n)=18000y (n-1) +carry mod 2716, has period about
2760 and seems to pass all tests of randomness. A
favorite stand-alone generator---faster than KISS,
which contains it. [sic]

The word ‘concatenates’ is somewhat misleading, as the high order bits of wnew contribute
to the output, even though Marsaglia appears to consider it to be a 16-bit generator, but this
does not affect either the period of the MWC construction, or our later cryptanalysis.

For cryptographic purposes, initialization of these registers is somewhat important. It is
easy to see that the value zero will repeat forever. Large values will, at the first update,
become smaller values that collide with the results of updating some smaller value, and
the generators will then follow the same path as if they were initialized with those smaller

@ Springer

126 Cryptogr. Commun. (2018) 10:123-137

#define znew (2z=36969%(z&65535)+(z>>16))

#define wnew (w=18000%(w&65535)+(w>>16))

#define MWC ((znew<<16)+wnew)

#define SHR3 (jsr =(jsr<<17), jsr =(jsr>>13), jsr =(jsr<<b))
#define CONG (jcong=69069%jcong+1234567)

#define KISS ((MWC~CONG)+SHR3)

Fig. 1 C code of KISS

values. For each register, there are two distinct cycles of equal prime period. (We were not
aware of any analytical result, but the small state space allowed us to enumerate the cycles
in a few minutes of CPU time.) There is also another fixed point (besides zero) for each
register. Table 1 summarizes these details. In the table, a cycle length of ‘n/a’ denotes a
value that collides and enters an existing cycle.

The values shown in the table are the least values that occur in the cycle, or the values
that lead into the existing cycles.

For cryptographic purposes there are thus two bad values for each register, and approx-
imately half of random values enter the same cycles as other values, which might be seen
as nearly equivalent keys: only the first word generated would be different, but the same
thereafter.

Since the periods of the two registers are prime, if the initial values are not bad, the
period of MWC (that is, the combination of the two subgenerators) will be about 2°7-3. The
period of the least significant 16 bits will only be that of wnew, which is about 227!,

Two consecutive 16-bit outputs from either generator suffice to recover the unknown
upper 16 bit carry value, once the generator is in a cycle. It is only slightly more complicated
to go backwards in the cycle. Given the least significant 16 bits of an initial (out of cycle)
value, and the next (in cycle) state, it is easy to recover the most significant 16 bits of the
initial value.

Z
R 1 :
w Wil » M, —»1e10
| |
HE w9
w C G
—_ _ _ _ _ _ _ J
S v K
H > o 1
R - S
3 S

Fig. 2 Diagram of KISS

@ Springer

Cryptogr. Commun. (2018) 10:123-137 127

Table 1 Properties of the Multiply-With-Carry registers

Register Constant No. cycles Cycle length Value

wnew 18,000 2 1 0 and Ox4064fffff
2 589,823,999 1 and 31
3,115,319,296 n/a > 0x46500000

znew 36,969 2 1 0 and 0x9068ffff
2 1,211,400,191 land 5
1,872,166,912 n/a > 0x90690000

3.2 Properties of the linear congruential generator

The linear congruential generator CONG is well studied in the literature. With the specified
parameters it has period 232.

CONG 1is a congruential generator with the widely used 69069
multiplier: x(n)=69069x(n-1)+1234567. It has period

2732. The leading half of its 32 bits seem to pass

tests, but bits in the last half are too regular.

Observe that if the value is odd, the next value will be even, and vice versa. That is, the least
significant bit toggles ...010101.... Other bits exhibit patterns with longer periods, but the
attack we describe only needs the least significant bit.

Observation For each n < 32, the least significant n bits of CONG form a smaller Linear
Congruential Generator modulo 2", with recurrence

x; = (69069 mod 2")x;_1 + (1234567 mod 2"*) (modulo2”™)

where mod represents a remainder operation as in C. The behaviour of the least significant
bit is just the simplest application of this observation.

Plumstead [7] gives a method of inferring the state of a linear congruential generator from
information about its most significant bits, which appear more random, but the above obser-
vation implies that information from the least significant bits cannot be extended upward;
consider the analogy with knowing the least significant bits of a simple counter.

3.3 The 3-shift register generator
The generator SHR3 is updated using shifts and XOR operations that are efficient. However
for analysis purposes this is most easily understood as multiplication modulo 2 of a 32 by

32 bit update matrix with the 32-bit register state. The system is by definition linear and
amenable to standard techniques.

@ Springer

128 Cryptogr. Commun. (2018) 10:123-137

SHR3 is a 3-shift-register generator with period
2732-1. It uses y(n)=y(n-1) (I+L"17) (I+R"13) (I+L"5),
with the y’s viewed as binary vectors, L the 32x32
binary matrix that shifts a vector left 1, and R its
transpose. SHR3 seems to pass all except those
related to the binary rank test, since 32 successive
values, as binary vectors, must be linearly
independent, while 32 successive truly random 32-bit
integers, viewed as binary vectors, will be linearly
independent only about 29% of the time.

The sequence of values generated by SHR3 is not maximal length. Appendix lists the pos-
sible cycles. The bit sequence generated by each bit position of the register is the output
of some Linear Feedback Shift Register of degree D < 32. There are 16 different polyno-
mials, with 64 disjoint cycles, with lengths ranging from 1 to 306,706,140 (approximately
228.2) The expected cycle length (although no such cycle exists) is approximately 2%77;
more than half of initial values lie on one of the longest cycles. The values 0 and Oxaea21b8f
are self-perpetuating.

McQueen [5] pointed out that later versions of KISS exchange the values 13 and 17 in the
formula, and do indeed lead to a single cycle with maximum length. In particular KISS11,
analyzed below, uses the correct version of this generator.

Any sequence of 32 output bits (in particular, we use the least significant bit of consec-
utive output words) suffices to recover the initial state of the SHR3 register, via a simple
matrix multiplication.

4 Cryptographic deficiencies and simple structural attacks

Keying Since the authors of KISS did not envision the generator being used for crypto-
graphic purposes, they did not think about issues such as setting up ‘keys’, or reinitializing
with nonces. Since the state of KISS is only 128 bits, it makes sense to simply use a 128-bit
key by dividing it into 4 32-bit words, and defining that words (both key and output) should
be treated as Little- or Big- Endian. None of the components show obvious output relation-
ships with related keys after a few words of output; if a nonce or initialization vector is to
be used, it could be simply XORed or added to the key, with a few rounds of output being
discarded to allow any similarities to dissipate. We equate key recovery with recovering the
exact initial state.

Time-Memory Tradeoff Since the keyspace is the same as the state space, standard time-
memory tradeoff attacks could be easily applied. See [8] for an overview of the past and
current application of such attacks. We do not explore them further here.

Weak keys If the first output word is ignored, only about 2'2° output sequences can be
generated, due to the colliding behaviour of the Multiply-With-Carry generators. CONG is
the only generator for which zero is not a bad value. Any key in which one of the words

@ Springer

Cryptogr. Commun. (2018) 10:123-137 129

initializing another register is zero will effectively take that register out of the combined gen-
erator, leading to a shortened cycle and possibly exposing the generator to simpler attacks.
In particular, the all-zero key results in the generator being exactly the output from CONG,
a simple and easily recognized linear congruential generator.

Cycle length The maximum cycle length is about 232+39-3+28:2 — 2119.5 Thig contradicts
the KISS authors’ claim of ‘about 2123, We hypothesize that they expected SHR3 to gener-
ate a maximum length sequence, as in the quotation above. Significantly shorter cycles are
possible but correspondingly less likely to happen. The shortest cycle is 232 (from CONG)
occurring with probability 2793, since there are two minimum-cycle-length values for each
of the other three generators.

Divide and Conquer KISS updates the four sub-generators independently, and only
combines them for the output. This structure invites attacks where one or more of the com-
ponents can somehow be ignored or cancelled out to enable an attack on the remainder.
Indeed the attack below uses this technique to some extent. Another way to apply divide-
and-conquer attacks would be to take output words from a long keystream, and combine
words separated by the period of one of the subgenerators, in such a way as to cancel it out.
For example, if the output of SHR3 really had period 232 — 1, words that far apart in the
keystream could be subtracted to remove the effect of that sub-generator. This technique
was used successfully in the cryptanalysis of the SSC2 stream cipher [9].

5 Key recovery attack in the known keystream model

Marsaglia, in a different article [2], writes:

"A random number generator is like sex:

When it’s good, its wonderful;

And when it’s bad, it’s still pretty good."
Add to that, in line with my recommendations
on combination generators;

"And if it’s bad, try a twosome or threesome."

It is a common theme in both amateur and professional cryptography to start with a
design, and as defects are discovered, to try to cover them with another feature or another
generator. In the case of KISS, this design is apparent with the use of simple generators
with known flaws to cover each others’ deficiencies. The job of the cryptanalyst, conversely,
is to find ways to expose the flaws and defeat them in detail. In this section we not only
show a key recovery attack against KISS, but we attempt to reveal the thought process,
and experiments conducted, to arrive at this attack. This paper hopes to teach a little bit of
cryptanalysis technique.

Our goal is to take some amount of known keystream (a standard assumption for
cryptanalysis of stream ciphers) and recover the initial state of the four registers.

We first began by analyzing the components, to better understand them, as Marsaglia’s
USENET posting was short on details. We did not try to obtain the original technical report
[1], which probably contains more analysis, in favor of developing our own understanding.
CONG was already well understood. The Multiply With Carry generators wnew and znew

@ Springer

130 Cryptogr. Commun. (2018) 10:123-137

were new to us, so we wrote code to enumerate the cycle structure, and looked at how easy
it was to run the generators backwards.

When it came time to analyze the SHR3 generator, at first we accepted the implication
that it had the maximum possible period of 232 — 1, and wanted to find the equivalent LFSR,
as we were more familiar with cryptanalyzing such structures. Using the default initial value
from the KISS paper, we generated 128 output words, and selected the least significant bits
for input to the Berlekamp-Massey algorithm. As expected, a degree-32 polynomial was the
output, which did not contradict our belief that it might have a maximum length cycle. We
continued on that assumption.

Sorting out the combination of four generators seems already to be difficult, but one of
the generators, znew, only contributes to the upper half of the output words. Concentrating
on the lower half reduces the number of generators to three. This is already an application
of the Divide and Conquer strategy. The generators are combined with both integer addition
and XOR. Either the carries from the addition must be accomodated, or we could focus on
the least significant bit, in which addition and XOR are equivalent since there is no carry in.
This approach looked promising, as the behaviour of the least significant bits of two of the
generators were easily analyzed.

The least significant bit of wnew did not exhibit any linearity or other non-random prop-
erties we could detect, as was to be expected from Marsaglia’s description. Further, it
depended on the entire 32-bit state of the register. But only the very first output depended
on the full state; the second and all subsequent outputs were in one of the known cycles. By
skipping the first output word, at least for now, only 1,179,648,000 values (about 230‘1) for
the state needed to be considered.

This suggests the first part of the attack. Assume that the cryptanalyst knows some
amount of output keystream words Z;,0 <i < N for some as yet undetermined number
N. We want to apply some sort of Guess and Determine attack. In such an attack, we guess
a value for some unknown quantity, determine from the known and guessed values some
other values, and then attempt to verify whether or not the guess was correct, that is, con-
sistent with known values or properties. If the verification fails, we try another guess, thus
eventually enumerating some subset of the unknown state.

Step 1. Ignore Zj. Ignore all but the least significant bits of Z;. We will worry about
the actual initial state later; for now we try to recover the state after the first output word.
We now have a sequence of N bits of known keystream.

Step 2. Guess wnew (that is, the state of the register wnew immediately after the first
output). We only have to enumerate the values in cycles. From this guess, generate the
stream of least significant bits w; = wnew;&1,1 <i < N.

Step 3. Guess the LSB of CONG . As discussed above, the stream of LSBs is alter-
nating zeros and ones, but we don’t know which it starts with. We need to test both. Let
¢;i = 010101010.. .. If this guess doesn’t work out, invert it; in fact, we can just invert the
entire sequence used in steps 4 and 5.

Step 4. Determine the possible LSBs of the SHR3 output. Sets; = Z; dw; ®¢;, 1 <
i <N.

Step 5. Verify that s; is the output of an LFSR. When we first implemented this step,
we used the discovered polynomial 1 4+ x3 + x> + x8 4+ x!8 4+ x?2 4+ x30 4 x32 to check
the parity of the corresponding output bits, with N = 100. If our guesses for the wnew
and CONG registers were correct, the sums of the bits should all be zero, otherwise with
overwhelming probability (1 —2797) at least one of the parity equations would be one. This
worked fine for the set of initial values used by default in KISS, but our second trial did
not find a solution! After a bit of thought, the only reason we could think of was that there

@ Springer

Cryptogr. Commun. (2018) 10:123-137 131

was not a single LFSR that described the system. We already had a very simple program to
enumerate cycles in a 32-bit function, so with one minute of editing and three minutes of
computation on an Apple laptop, we were able to find the details in Appendix. We could
have proceeded with the verification by checking all 16 of the distinct sets of LFSR taps, but
instead chose the simpler approach of just using the Berlekamp-Massey algorithm again.
64 bits of input are necessary to discover the longest LFSR, and only surprisingly few more
bits are needed to detect if the bit stream is not linear. With high probability, an extra 5 bits
will show that. It is faster to let a small number of false positive results through this stage
and eliminate them later than to run extra bits through the Berlekamp-Massey algorithm,
which has O (n?) behaviour in the number of bits. This turns out to be the limiting step in
the attack, and could perhaps be optimized further.

Step 6. Recover SH R3;. A simple matrix multiplication turns the bits 5;, 1 < i < 32
into the initial state SH R3;. At this point, with high probability, we know all 32 bits of
SHR3.

Step 7. Recover the least 16 bits of C O N G|. Given the known output, and full (assumed
correct for now) values for SHR3 and wnew, the least significant 16 bits of CONG are
recovered. At first we assumed that the well known result [7] would reveal the full initial
state, but we had misremembered the result. At this point we know the full state of two of
the registers, half the state of CONG, and nothing about znew.

Step 8. Guess the high 16 bits of C O NG . We have to apply the Guess and Determine
attack again, guessing one of the registers and determining the other. It is obviously most
efficient to guess the remaining contents of the register that is partially known, rather than
the whole 32 bits of the other unknown register. We then generate 3 output words from the
three known or guessed registers.

Step 9. Determine the least 16 bits of znew. From the known keystream and the other
registers, we recover the low 16 bits of znew;, 1 <i < 3.

Step 10. Verify consistency of the guess of C O NG . From the low 16 bits of the first
two values of znew, we derive the full state of znew. From this we generate znews and ver-
ify that the least 16 bits agree with those generated in Step 9. If not, we continue enumerating
the high order bits of CONG.

Step 11. Verify the entire state. We now have a candidate for the state of all four reg-
isters after the first output. We generate 8 words of output from KISS with that state, and
check that they agree with Z;, 1 < i < 8. Checking 8 values is almost certainly more than
necessary.

Step 12. Recover the true initial state. Remember that we skipped the first output Z,
because the multiply-with-carry registers might not have started with values in their cor-
responding cycles. For each of the registers there are two (or for wnew sometimes three)
possible initial states. We simply need to check which of the (up to 6) possibilities are
consistent with the known output Z.

The algorithm above is completely dominated by the time taken in Step 5; at most a hand-
ful of candidates get through to steps 7-12. This step runs the Berlekamp-Massey algorithm
on 69 bits; in the worst possible case it will be run on about 23!-! inputs (the possible cycles
of the wnew register, times two for the LSB of the CO NG register). It takes on average
about 2 hours on a single CPU of an Apple Macbook Pro (2.66 GHz Intel Core i7), with
negligible memory usage. We did not bother optimizing or parallelizing the code. By the
nature of the Guess and Determine steps, there are no obstacles to parallelization. Possible
optimizations of this step include performing the parity checks instead; we think this would
result in a significant speed increase but we didn’t actually try it.

@ Springer

132 Cryptogr. Commun. (2018) 10:123-137

We note in passing that Step 5 could be done by applying a Fast Correlation Attack
to unknown plaintext, if the least significant bits of the plaintext language are sufficiently
biased and enough output is available. Of course this would take significantly longer to run
the attack.

6 KISS11

In January 2011, just after we completed the above analysis, Marsaglia posted an article to
sci.crypt and other Usenet newsgroups with a new version of KISS, which we refer to
as KISS11. In this article he presented two generators, one based on 32-bit integer variables,
and the other on 64-bit integer variables. Here we examine only the 32-bit version, but the
attack applies equally to the larger version with correspondingly larger complexity.

KISS11 (shown in Fig. 3, with one declaration moved for readability) has three com-
ponents. The congruential generator and the 3-shift generator (CNG and XS respectively)
have new names but are otherwise the same as described above (with XS corrected). The
real change is that the two small Multiply With Carry generators have been replaced with
a single, huge Complementary Multiply With Carry generator, implemented by the func-
tion b32MWC. This generator has 222 + 1 words of state (the array Q and integer carry
above). We don’t try to explain how it works; for that see [4]. Marsaglia does mention its
cryptographic weakness, and attempting to hide it:

Of course, if you can observe [4194304] successive values,

then, after a little modular arithmetic to determine

the carry, you are OK.

[...] Even though the MWC RNGs perform very well on

tests of randomness, combining with Congruential (CNG)

and Xorshift (XS) probably provides extra insurance

at the cost of a few simple instructions, (and making

the resulting KISS even harder to crack).
Really, the only cryptographic strength of this subgenerator is its huge (just over 227 bits)
state. For the first 16 megabytes of output, it is behaving like a Vernam cipher. For simplicity

static unsigned long Q[4194304],carry=0;
unsigned long int i,x,cng=123456789,xs=362436069;

unsigned long b32MWC(void)

{unsigned long t,x; static int j=4194303;
3=(3+1)&4194303;

x=Q[j]1; t=(x<<28)+carry;
carry=(x>>4)-(t<x);

return (Q[jl=t-x);

}

#define CNG (cng=69069%cng+13579)
#define XS (xs~=(xs<<13), xs8"=(xs>>17), xs"=(xs<<5))
#define KISS (b32MWC()+CNG+XS)

Fig. 3 C code of KISS11

@ Springer

Cryptogr. Commun. (2018) 10:123-137 133

in the discussion below, we refer to R = 222 as the number of outputs in a “round”, that is,
a full pass through the array Q.

We assume that the contents of Q, cng and xs are initialized completely randomly and
independently of each other. Note that the initial value of carry is explicitly set to zero. We
assume that the output stream from KISS is known to the attacker (a standard cryptographic
assumption); call this output stream Z;,i = 1...

Some observations:

1) at every stage, carry will usually be only 28 bits in length. The exception is when the
high order 28 bits of the input Q value are all zero, carry will (almost never, but depending
on the input carry value) become OxFFFFFFFF. This is rare enough not to worry about in
the attack below.

1a) if you know the input value Q[t], the output carry value is almost entirely defined
by the most significant 28 bits. 15/16ths of the time, whether the optional subtraction of 1
happens is determined by comparing the least significant and most significant 4 bits of the
input Q[¢], independent of the input carry.

2) at every stage ¢, the output of b32MWC will be the input value of Q[tr mod R] to the
calculation of b32MWC R steps later.

3) CNG and XS are easily invertible (see above).

4) b32MWC is also invertible; if you know both the input Q[j] and the output Q[;] not
only can you derive the output carry, you can also derive the input carry.

5) given (3) and (4), you can run the generator backwards if you need to.

The simple attack we present is a trivial application of the divide-and-conquer method,
splitting the generator into two parts.

1. Start by guessing (enumerating) the 2064 possible pairs (xsg and cngo).

2. Run the subgenerators CNG and XS forward R+3 rounds, and calculate M;_; = Z; —
cngi —xs;i, (1 <=1i <= R+3). These are possible candidate values for the Q[i — 1 mod R]
values.

3. If we guessed the initial values correctly in the first step, then Mg should be the output
Q[0] (hence also the input to the calculation of Q[R]), and Mg should be the output Q[0]
after R steps. From these, we can calculate carryg, and from carryr and Mgy (which we
hope equals output Q[1]) we can check whether, in fact, the computation given input and
output Q[1], and what we just calculated, agree with each other. If they don’t, go back to
step 1. If they do (which might happen randomly), do the same for R+2, and R+ 3. At this point,
if all checks worked, with high probability we must have guessed CNG and XS correctly.

4. Run b32MWC backwards to recover the initial settings of Q[i].

The expected work to do this is about 28 times the work to generate output words, which
is a pretty normal measure. That is 24 /2 (since you expect to search half the values) times
about 222 words generated (because of the huge state space). The attack requires a little
more than 222 words of known keystream, again because of the size of the state. Another
way to look at this is that it’s about 2%3 times the cost of doing a key setup (independent of
how you actually set up that huge key!).

However this attack can be significantly optimized. First we note that most of the gen-
erated values of from CNG and XS are not used in the important validation step; of the
R + 3 pairs of values generated, only the first three and last three are used. Secondly,
we note that both generators can be jumped forward a known amount (in our case R

@ Springer

134 Cryptogr. Commun. (2018) 10:123-137

steps) with very much less complexity than simply evaluating the functions R times. In
the case of XS, we can precompute the update matrix, and compute xsg by multiplying
xso by it. Similarly, CNG can be jumped forward using a modular “square and multiply”
exponentiation calculation.

When enumerating the possible initial values of XS and CNG, there is no reason to
enumerate them as counters. Since the values all fall on cycles (a single cycle in both cases,
given the corrected values in XS) the values can be enumerated in the sequence produced by
the cycle. For example, we start with cngg = 0, and quickly calculate cngg from that. By
iterating CNG we easily calculate cng;..cngs and cngry1..cngg43 as required above. After
testing this value (and presumably failing), we can test the next value by discarding cngo,
using the old cng; as the new cngg, similarly rolling over cngg and so on. The cycle of XS
can be handled in the same way. Only once the correct values for cngp and xsg have been
identified is it necessary to run the generators R steps to recover the initial values of the O
array. Parallelization of this attack is a bit more tricky, but still easy. With this optimization,
about 2% operations on average can be expected to recover the key. Since the Q array is so
large, this corresponds to about 2*! key setup operations.

7 Conclusion

We conclude that the KISS generator, unsurprisingly, should not be used in any context
where cryptographic security is important. Its period is more than sufficient for tasks like
simulations, so long as it is correctly initialized, but care should be taken with this initial-
ization step. Its period (maximum, expected, and minimum) is not as long as its authors
claim.

As a design rule, updating the component generators independently leads to easy anal-
ysis, which is both a good and a bad thing. Exchanging values between the various state
registers might defeat the kind of attack we have applied, but it would also make any kind of
rigorous analysis impossible, and might make the generator weaker in ways that are difficult
to deduce but damaging in practice.

We would like to thank our colleague David Jacobson for help with the linear algebra,
and the anonymous reviewers who provided suggestions for improvement.

Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0 Inter-
national License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source,
provide a link to the Creative Commons license, and indicate if changes were made.

Appendix: Cycles of the SHR3 Generator

The register SHR3 in the original KISS has a number of disjoint cycles, as shown in the
following table. For each cycle, the hexadecimal value of the smallest value in the cycle is
shown, along with the cycle length, and the characteristic polynomial of the shortest LFSR
that generates the same bits as the least significant bit position in the word. The LFSR is
found using the Berlekamp-Massey algorithm on some sample output. There are 12 distinct
cycle lengths, and 16 distinct polynomials (LFSRs).

@ Springer

http://creativecommons.org/licenses/by/4.0/

Cryptogr. Commun. (2018) 10:123-137 135

Cycle length ~ Value LFSR Polynomial

1 0 0

1 Oxaea21b8f 1 +x

2 0x4655eacd 1 + x2

4 0x3aca807f 1+x+x2+x3

585 0x86c8 L4 a2+ 25 420 4+ x4 x10 4 x12

585 0x163de9 14+ x2+ x5 +x0 4+ x% 4 x10 4 x12

585 0x16bb21 T x4+ 24+ 3+ x5 a7 4249 x4 12 4 413

585 0x247919 T x4+ +x3+ x5 + x4+ x F xpx12 4 413

585 0x32¢2d8 T4 x4+ 243+ + a7+ 2%+ x4 x124 413

585 0x4305a3 14+ x4+ 240 +x5 417+ 2% + x4 x12 4,13

585 0x43836b 14+ x2 4+ x% 4+ x0 4+ x% 4+ x10 4 x12

585 0x55384a 14+ x2+ x5 +x0+x% +x10 4 x12

585 0x677c5a T x4+ x24T+ x F xpx12 4 413

585 0x67fa92 T a2+ x5 4 x0 449 4 x10 4 412

585 0x835009 14+ x2+ x5 +x6 +x% 4+ x10 4 x12

585 0x956de0 x4+ x2 43 x5 xT 4 x9pxl g x124 413

585 0xa729f0 T+x24+x5 420+ 2% +x10 4412

585 0xf211ba T+x4+x2 43+ x7 22 x o x12 4 413

1170 Oxcde50 T+ x5 a0 a7 x84 x% 4 x10 4 x11 4 14

1170 0xcc898 T x5 a0 a7 a8 4 x% x10 p 11y x4

1170 0x1a7369 14+ x* + x5 4+ x0 4 x7 4+ x8 4 4% 4+ 210 4 x11 4 414

1170 Oxlaf571 T4 x? 4+ x5 a0+ x7 + x84 2% 4 x10 p x 11 4 414

1170 0x28b161 14+ x* + x5 4+ x6 4 x7 4+ x8 4 19 4 x10 4 11 4 414

1170 0x7d0fe3 Tt x5 a0 a7 4 x84 x9 4 x10 4 x11 4 14

1170 0x7d892b 1 4+x* + x5 +x6 4+ x7 +x8 + 1% + x10 4 11 4 x14

2340 0x1883 I4+x 4+ x4+ x2 4 x4 415

2340 0xc56d3 L+ x +x* +x12 4 x4 4 x5

2340 0xcd01b Thx4xd+x12 4 x4 4515

2340 0x16a322 14x +x* +x24 x4 x5

2340 Ox laedf2 x4 xt+x12 4 x4 4 515

2340 0x24617a 14 x +x4+x12 4 x4 4415

2340 0x3e12c3 T+x+xt+x24 x84 4405

131071 0x2114a T x a2 xt xS £ x9 410 p 1y 14 4 416 4 17

131071 Oxdfa T3+ xt a0 420 a2 x4 15 4416 4 418

262142 Oxc7de Thx4 a3+ x5 +x6 b x7 4 x2 4 x10 4 512
413 14 17 18 (19

524284 0x13f0 12+ 23+ x% x5 428 29 + 11l 4 512
+x1% 4 x17 4 x20

76676535 0x1 b x a3 426+ 27+ a8 442 4 10 4 11 4 y12
B xS g x 10 17 420 4 20 4 22 5B
4x24 4§ 25 4 26 4 (27 4 (28 4 29

76676535 Oxd 14 x2 4+ x3 4 x% 4+ x6 4 x18 4 420 4 430

76676535 0x12 b x a3 426+ x7 + a8 4+ 42 4+ x10 4 11 4 x12

+x13 +x14+x15 +xl6+x17 _,’_x20+x21 +x22 +x23
+x24+x25 +x26 +x27 +x28 +X29

@ Springer

136

Cryptogr. Commun. (2018) 10:123-137

(continued)
Cycle length Value LFSR Polynomial
76676535 0x13 14 x24x3 +x* +x0 4 x18 4 x20 4 x30
76676535 Oxle 14+x2+4x3 4+ x4+ x0 4 x18 4 x20 4 x30
76676535 Ox1f T+x+x3+x0+x7+ x84+ x% +x10 4 411 4 412
+x13 +x14 +x15 +x16+x17+x20+x21 +x22+x23
+x24 +x25 +x26 +x27 +x28 +x29
76676535 0x26 14+ x24+x3 +x* +x0 4+ x18 4 x20 4 x30
76676535 0x27 T+x4+x3+x0+x7 +x8 + 2% + x10 4 x1T 4 12
+x13 +xl4 +x15 +x16+x17+x20+x21 +x22+x23
+x24 +x25 +x26 +x27 +x28 +x29
76676535 0x38 14+ x24x3 +x* +x0 4 x18 4 x20 4 430
76676535 0x39 IT+x+x3+x0+x7 +x8 427 4 x10 4 21T 4 12
+xl3 +xl4+x15 +x16+x17+x20+x21 +x22+x23
+x24 +x25 +x26 +x27 +x28 +x29
76676535 0x43 14+x4+x3 +x0+x7 +x8 + 2% +x10 x4 x12
+x13 +x14 +x15 +x16+x17+x20+x21 +x22 +x23
+x24 +x25 —l—x26 +x27 +x28 +x29
76676535 0x50 T+x+x3+x0+x7 +x8 +x% +x10 4 11 4 412
+x13 +xl4 +xl5 +x16+x17+x20+x21 +x22+x23
+x24 +x25 +x26 +x27 +x28 +x29
76676535 0x77 14 x24x3 +x* +x0 4+ x18 4 x20 4 x30
76676535 Oxae T+ x2+x3 x4+ x0 4 x18 4 x20 4 130
153353070 0x11 T+x+x24+ x5 +x0+x7 +x18 4 x19 4 520 4 521 4 30 4 431
153353070 0x2 T+x4+x2 40+ 20+ x7 x84 x19 4 x20 4 21 4 30 4 531
153353070 0x3 T+x4+x2 4+ x5+ 20+ x7 4 x84 x19 4 x20 4 21 4 30 4 431
153353070 Oxe T+x+x2 4+ x5+ x0+x7 +x18 4 19 4 520 4 21 4 30 4 431
153353070 Oxf T+x+x2 4+ 200 + x4 x7 4118 4 119 4 x20 4 221 4 x30 4,31
153353070 Ox1c Thx+x24+x7 +x0+x7 +x18 4 x19 4 520 4 521 4 30 4 431
153353070 0x24 14 x+x2+x° +x0 4+ x7 + x18 4 x19 4 x20 4 x21 4 530 4 x31
306706140 Ox4 L4x3 4+ x4 x84 18 4 x22 4 x30 4 32
306706140 0x6 T4+ x3 400 a8 4 x18 4 222 4 30 4 432
306706140 0x8 14 x3 +x7 +x8 4 x18 4 222 4 x30 4 x32
306706140 0x9 T4 x3 20 x84 18 222 4 430 4 432
306706140 Oxa T4x3 4+ + x84 x18 4 x22 4 x30 4 32
306706140 Oxb L4x3 4+ x4 x84 a8 4 x22 4 x30 4 32
306706140 0x2c 14 x3 4 x7 +x8 4 x18 4 222 4 x30 4 x32
References

1. Marsaglia, G., Zaman, A.: The KISS generator. Technical report, Department of Statistics, Florida State
University, FL, USA (1993)

2. Marsaglia,

G.:

Random numbers in C: Some suggestions, Message-ID

369B9AE9.52C98810@stat.fsu.edu, various newsgroups including sci.crypt (1999)
3. Marsaglia, G.: Random numbers for C: The END?, Message-ID 36 ASFC62.17C9CC33 @stat.fsu.edu in
newsgroups sci.math and sci.stat.math (1999)

@ Springer

Cryptogr. Commun. (2018) 10:123-137 137

4. Marsaglia, G.: RNGs with periods exceeding 10(40million), Message-ID 603ebel5-a32f-4fbb-bad4-
6¢73f7919a33 @t35g2000yqj.googlegroups.com in newsgroups sci.math, comp.lang.c and sci.crypt
(2011)

5. McQueen, C.: Private communication

6. Matsumoto, M., Nishimura, T.: Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-
random number generator. ACM Trans. Model. Comput. Simul. 8(1), 3-30 (1998)

7. Plumstead, J.: Inferring a sequence generated by a linear congruence. In: Proceedings of the 23rd IEEE
Symposium on Foundations of Computer Science, pp. 153-159. IEEE, New York (1982)

8. Hong, J., Sarkar, P.: Rediscovery of time memory tradeoffs, IACR Eprint Report 2005/090. http://eprint.
iacr.org/2005/090 (2005)

9. Hawkes, P, Rose, G.: A Practical Cryptanalysis of SSC2, Selected Areas in Cryptography 2001, LNCS

@ Springer

http://eprint.iacr.org/2005/090
http://eprint.iacr.org/2005/090

	KISS: A bit too simple
	Abstract
	Introduction
	Description of KISS
	Properties of components
	Multiply with carry registers
	Properties of the linear congruential generator
	Observation

	The 3-shift register generator

	Cryptographic deficiencies and simple structural attacks
	Keying
	Time-Memory Tradeoff
	Weak keys
	Cycle length
	Divide and Conquer

	Key recovery attack in the known keystream model
	KISS11
	Conclusion
	Open Access
	Appendix A Cycles of the SHR3 Generator
	References

