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Abstract Linear codes with few weights have applications in data storage systems, secret
sharing schemes, and authentication codes. In this paper, a class of p-ary two-weight linear
codes is constructed using a generic construction developed by Ding et al. recently, where p

is a prime. Their length and weight distribution are closed-form expressions of Kloosterman
sums over prime finite fields, and are completely determined when p = 2 and p = 3. The
dual of this class of linear codes is also studied and is shown to be optimal or almost optimal
in the binary case.
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1 Introduction
Let q = pm and Fq denote the finite field with q elements, where p is a prime and m is a
positive integer. An [n, k, d] linear code C over Fp is a k-dimensional subspace of Fn

p with
minimum (Hamming) distance d. Let Ai denote the number of codewords with Hamming
weight i in a code C of length n. The weight enumerator of C is defined by

1 + A1z + A2z
2 + · · · + Anz

n.

Accordingly, the sequence (1, A1, · · · , An) is called the weight distribution of C. Clearly,
the weight distribution gives the minimum distance of the code, and thus the error correcting
capability. Moreover, the weight distribution of a code allows the computation of the error
probability of error detection and correction with respect to some error detection and error
correction algorithms (see [14] for details). Thus the study of the weight distribution of a
linear code is important in both theory and applications.

A code C is said to be a t-weight code if the number of nonzero Ai in the sequence
(A1, A2, · · · , An) is equal to t . Linear codes with few weights have applications in secret
sharing schemes [1, 3, 18], authentication codes [5, 6], and association schemes [2], in addi-
tion to their applications in consumer electronics, communication and data storage systems.
They are also closely related with strongly regular graphs and combinatorial design. An
[n, k, d] linear code C is called optimal if its parameters n, k and d meet a bound on linear
codes [13]. An [n, k, d] linear code C is called almost optimal if [n, k, d +1] meets a bound
on linear codes [13].

Design of (almost) optimal linear codes with fewweights has been an interesting research
topic in coding theory. Much progress has been made in recent years. One of known
approaches for obtaining such linear codes is based on subsets of a finite field and the trace
function over this field. Specifically, let D = {d1, d2, · · · , dn} be a subset of F∗

q , a linear
code of length n over Fp can be obtained as

CD = {(
Trm1 (ad1),Tr

m
1 (ad2), · · · ,Trm1 (adn)

) : a ∈ Fq

}
, (1)

where Trm1 is the absolute trace function from Fq to Fp and D is called the defining set
of this code. It turns out in [7, 8] that this approach is very promising in the sense that
it can generate many (almost) optimal linear codes with a few weights if the subset D is
appropriately chosen. This is further confirmed by a number of recent papers [11, 12, 17].

An objective of this paper is to construct a class of two-weight linear codes over Fp with
new parameters using the approach mentioned above. They are optimal or almost optimal
linear codes in many cases. Another objective of this paper is to study the weight distribution
and the dual of this class of linear codes. Thanks to some known results on Kloosterman
sums over finite fields, the length and weight distribution of this class of linear codes have a
closed-form expression, and are completely determined when p = 2 and p = 3. The para-
meters of its dual are also determined which are optimal or almost optimal in the binary case.

2 Preliminaries

Throughout this paper, we adopt the following notations unless otherwise stated:

– p is a prime and m = 2k, where k is a positive integer with k > 2.
– q = pm and r = pk .
– Tr�2�1(x) is the trace function from the finite field Fp�2 to Fp�1 for any positive integers

�1|�2.
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– χ is the canonical additive character on Fq , i.e., χ(x) = e2π
√−1Trm1 (x)/p for any x ∈ Fq .

– For any positive integer �|m, χ� is the canonical additive character on Fp� , i.e., χ�(x) =
e2π

√−1Tr�1(x)/p for any x ∈ Fp� .

Let α be a generator of F∗
q and β = αr−1. Let � be the cyclic group generated by β and

� = {
αj : 0 ≤ j ≤ r

}
. The following results will be useful to prove our main results.

Fact 1 With notations defined above, we have

1.
{
vr−1 : v ∈ �

} = �; and
2. for each x ∈ F

∗
q , it has a unique decomposition as x = uv, where u ∈ F

∗
r and v ∈ �.

Lemma 1 For any given a ∈ F
∗
q , there is one and only one va ∈ � such that

Trmk (ava) = 0.

Proof By Fact 1, x has a unique decomposition as x = uv, where u ∈ F
∗
r and v ∈ �. There-

fore Trmk (x) = Trmk (uv) = uTrmk (v) which implies that the number of solutions x ∈ F
∗
q to

Trmk (x) = 0 is r−1 times as the number of solutions v ∈ � to Trmk (v) = 0. The conclusion then
follows from the fact that the equation Trmk (x) = 0 has qm−k−1 = r−1 solutions in F∗

q .

The length and weights of the linear code proposed in this paper will be expressed by
means of the Kloosterman sums over finite field. For any a ∈ Fp� , the Kloosterman sum
over Fp� at the point a is defined by

K�(a) =
∑

x∈F∗
p�

χ�

(
ax + 1

x

)
,

where � is a positive integer with �|m. The following bound on |K�(a)| will be needed in
the sequel.

Lemma 2 [16]With notations as above, we have

|K�(a)| ≤ 2
√

p�

for any nonzero a ∈ Fp� .

The following result on an incomplete exponential sum was firstly proven in [15] in the
binary case and was extended to the nonbinary case by the last author in [10].

Lemma 3 For any a ∈ F
∗
q , we have

∑

x∈�

χ(ax) = −Kk

(
a2

)
.

The following lemma is due to Carlitz [4] and will be needed in the sequel.

Lemma 4 For any a ∈ F
∗
q ,

Kk(a) = −
�k/2�∑

t=0

(−1)k−t k

k − t

(
k − t

t

)
pt (K1(a))k−2t .
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3 A Class of Two-Weight Linear Codes

In this section, we shall study a class of linear codes with two weights. Following the
notations in Section 2, let D be a subset of F∗

q given by

D =
{
x ∈ F

∗
q : Trm1

(
xr−1

)
= 0

}
. (2)

According to (1), we naturally obtain a class of linear codes by using such D as the defining
set. The following are the main results of this paper.

Theorem 1 Let CD be the linear code with defining set D in (2). Then CD is a two-weight
linear code with parameters [n, m] and weight distribution in Table 1, where

n =
(
pk − 1

) (
pk + 1 + S

)

p
(3)

and

S =
�k/2�∑

t=0

(−1)k−t k

k − t

(
k − t

t

)
pt

∑

y∈F∗
p

(
K1

(
y2

))k−2t
. (4)

Proof Define

n =
∣∣∣
{
x ∈ F

∗
q : Trm1

(
xr−1

)
= 0

}∣∣∣ .

By definition, the length of the code CD is equal to n which can be expressed in terms of
character sums as

n = 1

p

∑

x∈F∗
q

∑

y∈Fp

ζ
yTrm1

(
xr−1

)

p = 1

p

∑

y∈Fp

∑

x∈F∗
q

χ
(
yxr−1

)
.

Using Fact 1 and the fact that ur−1 = 1 for each u ∈ F
∗
r , we have

n = 1

p

∑

y∈Fp

∑

u∈F∗
r

∑

v∈�

χ
(
yvr−1

)

= pk − 1

p

∑

y∈Fp

∑

x∈�

χ(yx)

= pk − 1

p

⎛

⎝pk + 1 +
∑

y∈F∗
p

∑

x∈�

χ(yx)

⎞

⎠ ,

where the last identity followed from the orthogonal property of the additive character χ .
Applying Lemmas 3 and 4, we immediately get the formula in (3) for the length n of CD .

Table 1 Weight distribution of
CD Weight w No. of codewords Aw

0 1

pk−2(p − 1)
(
pk + 1 + S

) − pk−1(p − 1)
(
pk−1

)(
pk+1+S

)

p

pk−2(p − 1)
(
pk + 1 + S

) (
pk−1

)((
pk+1

)
(p−1)−S

)

p
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We now calculate the Hamming weight of the codewords in CD . Note that the codewords
in CD are

ca = (
Trm1 (ad1),Tr

m
1 (ad2), · · · ,Trm1 (adn)

)
, a ∈ Fq .

By definition, the Hamming weight of a codeword ca is equal to n − Na , where

Na =
∣∣∣
{
x ∈ F

∗
q : Trm1

(
xr−1

)
= 0 and Trm1 (ax) = 0

}∣∣∣ .

Clearly, Na = n if a = 0, and otherwise Na can be expressed in terms of character sums as

Na = 1

p2

∑

x∈F∗
q

⎛

⎝
∑

y∈Fp

ζ
yTrm1

(
xr−1)

p

⎞

⎠

⎛

⎝
∑

z∈Fp

ζ
zTrm1 (ax)
p

⎞

⎠

= 1

p2

∑

y∈Fp

∑

z∈Fp

∑

x∈F∗
q

χ
(
yxr−1 + zax

)
.

By Fact 1 again, we have

Na = 1

p2

∑

y∈Fp

∑

z∈Fp

∑

v∈�

χ
(
yvr−1

) ∑

u∈F∗
r

χ(zauv)

= 1

p2

∑

y∈Fp

∑

z∈Fp

∑

v∈�

χ
(
yvr−1

)
⎛

⎝
∑

u∈Fr

χ(zauv) − 1

⎞

⎠ .

Note that for any z ∈ Fp, u ∈ F
∗
r , v ∈ � and a ∈ F

∗
q ,

χ(zauv) = χk

(
Trmk (zauv)

) = χk

(
zuTrmk (av)

)
.

We then arrive at Na = Na,1 − Na,2, where

Na,1 = 1

p2

∑

y∈Fp

∑

z∈Fp

∑

v∈�

χ
(
yvr−1

) ∑

u∈Fr

χk

(
zuTrmk (av)

)

and

Na,2 = 1

p2

∑

y∈Fp

∑

z∈Fp

∑

v∈�

χ
(
yvr−1

)

= 1

p

∑

y∈Fp

∑

v∈�

χ
(
yvr−1

)

= 1

p

∑

y∈Fp

∑

x∈�

χ(yx). (5)
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Using the orthogonal property of the nontrivial additive characters and Fact 1, we have

p2−kNa,1 = ∑

y∈Fp

∑

z∈Fp

∑

v∈�
zTrm

k
(av)=0

χ
(
yvr−1

)

= ∑

y∈Fp

∑

v∈�

χ
(
yvr−1

) + ∑

y∈Fp

∑

z∈F∗
p

∑

v∈�
zTrm

k
(av)=0

χ
(
yvr−1

)

= ∑

y∈Fp

∑

v∈�

χ
(
yvr−1

) + (p − 1)
∑

y∈Fp

∑

(
Trm

k

av)=0
v ∈ �χ

(
yvr−1

)

= ∑

y∈Fp

∑

x∈�

χ(yx) + (p − 1)
∑

y∈Fp

χ
(
yvr−1

a

)

= ∑

y∈Fp

∑

x∈�

χ(yx) + (p − 1
∑

y∈Fp

χ1
(
yTrm1

(
vr−1
a

))
,

(6)

where va is the only one element in � such that Trmk (ava) = 0 due to Lemma 1. It then
follows from (5) and (6) that

Na = pk−1 − 1

p

⎛

⎝pk + 1 +
∑

y∈F∗
p

∑

x∈�

χ(yx)

⎞

⎠ + pk−2(p − 1)
∑

y∈Fp

χ1

(
yTrm1

(
vr−1
a

))

=
(
pk−1 − 1

) (
pk + 1 + S

)

p
+ pk−2(p − 1)

∑

y∈Fp

χ1

(
yTrm1

(
vr−1
a

))
, (7)

where the second identity followed from Lemmas 3 and 4, and S is given by (4). Note that
the weight of the codeword ca is equal to n − Na . By (7), the weight of ca takes the value

w1 = pk−2(p − 1)
(
pk + 1 + S

)
− pk−1(p − 1)

if Trm1
(
vr−1
a

) = 0, and otherwise takes the value

w2 = pk−2(p − 1)
(
pk + 1 + S

)
.

Note that w2 > w1 and S is an integer due to (3). In order to prove that the dimension of
CD is equal to m, it is only necessary to prove that w1 > 0 which is equivalent to proving
that pk + 1 + S − p > 0. According to Lemma 3,

S =
∑

y∈F∗
p

∑

x∈�

χ(yx) = −
∑

y∈F∗
p

Kk

(
y2

)
.

It then follows from Lemma 2 that

|S| ≤
∑

y∈F∗
p

∣
∣∣Kk

(
y2

)∣∣∣ ≤ 2(p − 1)
√

pk.

This together with the fact that S is an integer means that

pk + 1 + S − p ≥ pk + 1 − p − 2(p − 1)
√

pk.
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When k = 3, it is easily verified that pk + 1 + S − p > 0. When k > 3, we have

pk + 1 + S − p ≥
(√

pk − p
)2 + 2

√
pk − p2 − p + 1 > 0.

Therefore, w1 > 0 for any k ≥ 3. The discussion above shows that the dimension of CD is
equal to m. It will be proved in Theorem 2 that the minimum weight of the dual code of CD

is at least 2. By the Pless Power Moments (see [13], p. 259), we have

{
Aw1 + Aw2 = pm − 1,

w1Aw1 + w2Aw2 = (p − 1)pm−1n,

where Aw1 and Aw2 denote the number of codewords with weight w1 and w2 in CD , respec-
tively. Solving this simple equation system gives the weight distribution of CD in Table 1.
This completes the proof.

Remark 1 In Theorem 1, we get closed-form expressions of the length and weight distribu-
tion of CD using Kloosterman sums. One point that should be mentioned is that the defining
set of CD has been used in [12]. In this sense, the linear code CD is not new. However, thanks
to some known results on Kloosterman sums, we can determine the weight distribution of
CD in the binary and ternary cases as shown below.

Remark 2 According to Theorem 1, in order to completely establish the weight distribution
of CD , it is sufficient to determine the value of the inner exponential sum in (4). It may be
very hard in general. However, this can be done when p is small. In particular, when p = 2
and p = 3, we can get a more elegant expression for S. Note that K1(1) = 1 when p = 2
and K1(1) = −1 when p = 3. By (4), we immediately have

S =
�k/2�∑

t=0

(−1)k−t k

k − t

(
k − t

t

)
2t

when p = 2, and

S = −2
�k/2�∑

t=0

(−1)t
k

k − t

(
k − t

t

)
3t

when p = 3. Plugging these values of S into Table 1, we then completely determine the
weight distribution of the code CD in the binary and ternary cases.

The numerical experiments by Magma in the following examples agree with the weight
distribution in Table 1.

Example 1 Let p = 2 and k = 4. Then the code CD has parameters [135, 8, 64] and weight
enumerator 1 + 135y64 + 120y72. It is almost optimal due to [9].

Example 2 Let p = 3 and k = 3. Then m = 6 and q = 36, the code CD has parameters
[104, 6, 54] and weight enumerator 1 + 104y54 + 624y72. According to [9], the minimum
distance of the best known linear codes with length 104 and dimension 6 is 56.
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Example 3 Let p = 3 and k = 4. Then the code CD has parameters [2560, 8, 1674] and
weight enumerator 1 + 2560y1674 + 4000y1728.

4 The Dual of CD

In this section, we shall discuss the dual code of the two-weight code in Theorem 1. The
following theorem is the main result of this section.

Theorem 2 Let C⊥
D be the dual of the code CD . Then C⊥

D is a linear code with parameters
[n, n − m, d⊥], where d⊥ = 3 if p = 2 and d⊥ = 2 if p is an odd prime.

Proof The dimension of the code C⊥
D follows from Theorem 1. By definition, D does not

contain the zero element of Fq , thus the minimum distance of C⊥
D cannot be one.

When p = 2, any two distinct elements di and dj in D satisfy di + dj 
= 0, where
1 ≤ i 
= j ≤ n. This means that the minimum distance of C⊥

D cannot be 2. Note that
Trm1 (1) = 0 as m is even. Therefore, Trm1 (xr−1) = Trm1 (1) = 0 for any x ∈ F

∗
r which

further implies that F∗
r ⊂ D. According to the basic properties of finite fields, there exist

two distinct elements x1, x2 ∈ F
∗
r such that x1 + x2 ∈ F

∗
r . Hence, {x1, x2, x1 + x2} ⊂ D

which means that the minimum distance of C⊥
D is 3.

When p is an odd prime, it is clear that −x ∈ D for any x ∈ D since r − 1 is even.
Choose some x1 ∈ D and set x2 = −x1, then x1 
= x2 and {x1, x2} ⊂ D. This implies that
the minimum distance of C⊥

D is 2.

We remark that the linear code C⊥
D is bad when p > 2 since its minimum distance is

only 2. However, it is at least almost optimal when p = 2 since any binary linear code with
length n in (3) and dimension m has minimum distance at most 4 due to the sphere packing
bound [13].

Example 4 Let p = 2 and k = 3. Then the binary code C⊥
D has parameters [49, 43, 3]. It is

optimal due to [9].

Example 5 Let p = 2 and k = 4. Then the binary code C⊥
D has parameters [135, 127, 3]. It

is optimal due to [9].

5 Concluding Remarks

In this paper, we studied a class of two-weight linear codes, and gave closed-form expres-
sions of their length and weight distributions thanks to some known results on Kloosterman
sums. The dual of the linear codes was proved to be optimal or almost optimal in the
binary case. Finally, we mentioned that our linear code can be employed to construct secrete
sharing schemes with nice access structures under the framework developed in [3].
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