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Abstract Threshold secret sharing allows a dealer to share a secret among n players so
that any coalition of t players learns nothing about the secret, but any t + 1 players can
reconstruct the secret in its entirety. Robust secret sharing (RSS) provides the additional
guarantee that even if t malicious players mangle their shares, they cannot cause the honest
players to reconstruct an incorrect secret. In this work, we construct a simple RSS protocol

for t =
(

1
2 − ε

)
n that achieves logarithmic overhead in terms of share size and simul-

taneously allows efficient reconstruction. Our shares size increases by an additive term of
O(κ + log n), and reconstruction succeeds except with probability at most 2−κ . Previous
efficient RSS protocols like that of Rabin and Ben-Or (STOC ’89) and Cevallos et al. (Euro-
crypt ’12) use MACs to allow each player to check the shares of each other player in the
protocol. These checks provide robustness, but require significant overhead in share size.
Our construction identifies the n players as nodes in an expander graph, each player only
checks its neighbors in the expander graph.
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1 Introduction

Robust secret sharing (RSS) is a protocol that allows a dealer to distribute a secret among
n players, so that any coalition of t malicious parties learns nothing about the secret, while
the honest parties can reconstruct the original secret even if the malicious parties tamper
with their shares. An RSS protocol is δ-robust if reconstruction succeeds with probability
at least 1 − δ. In this work, we design a δ-robust secret sharing protocol with overhead of

size O
(

log 1
δ

)
and efficient reconstruction.

Robust secret sharing can be viewed as a stand-alone protocol, providing a mechanism
for secure and tamper-resistant outsourced storage, or as a means of sending messages
across corrupted channels. In the setting of secure message transmission (SMT), a sender
and receiver are connected via n independent channels, some fraction of which may be
adversarially controlled [27]. Any RSS scheme can be made into an SMT protocol, by sim-
ply sending each share across a different channel [43]. Note that unlike Verifiable Secret
Sharing (VSS) [51], in RSS the dealer is always honest. Unlike the model of Tompa and
Woll [56], RSS assumes that the reconstruction algorithm receives shares from all players
(not just a subset).

Standard secret sharing [6, 53] is extremely well understood, and there exist a
wealth of protocols obtaining essentially optimal parameters in variety of different cir-
cumstances (see Section 4.2 for further discussion). Much less is known about robust
secret sharing protocols, and designing RSS schemes is currently an active research
area.

When the corruption threshold is low t < n
3 , then simple Shamir sharing is already robust

(because a Reed Solomon code of rate 1
3 has relative distance 2

3 and hence can recover
from a 1

3 fraction of errors). When t > n
2 it is not hard to see that RSS is impossible [38].

The interesting range of parameters is when n
3 < t < n

2 , in this regime, perfect RSS is
impossible, but RSS is feasible if a negligible failure probability is allowed. Throughout
this work, we will assume that κ is a security parameter, and reconstruction should succeed
with probability at least 1 − 2−κ .

Early constructions of RSS protocols for n
3 < t < n

2 fell into two categories, those with
compact share size and inefficient reconstruction procedure [9, 19, 20, 39] and those with
moderate share size and efficient reconstruction [14, 51].1

When the reconstruction procedure is allowed running time that is exponential in n, then
robust secret sharing schemes have essentially no overhead in share size. On the other hand,
when we require an efficient reconstruction procedure, the problem becomes much more
difficult. The original scheme of Rabin and Ben-Or, had overhead2 of O(κ · n). The best
existing scheme – that of Cevallos et al. – has overhead of Õ(κ + n) [14]. It is left as an
open question in [14] whether the overhead can be reduced to O(κ). We exhibit a scheme

1The work of Lewko and Pastro [44] can be seen as interpolating between these two models.
2If the message space is M, then any secret sharing scheme must have shares of size at least log |M| to
obtain privacy. When M is larger than n, then Shamir sharing achieves this bound. Since many RSS protocols
(including ours) use Shamir sharing plus additional check information, we us the term “overhead” to denote
the size of the check information. Thus the overhead of an RSS scheme is the share size (in bits) minus
log |M|.
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with overhead O(κ + log n) whenever t <
(

1
2 − ε

)
n. Our scheme is conceptually simple

and has efficient reconstruction procedure.
Our primary result is the following:

Theorem 1 For any message space M, and any ε, δ > 0, there exists an RSS protocol
tolerating an 1

2 − ε fraction of malicious parties, with the probability of reconstruction
failure bounded by δ, having shares size

log |M| + 4

ε3
log

3n log |M|
ε3δ

This result is proven as Corollary 1.
For a t-private, t+1-threshold secret sharing scheme, even without robustness, the shares

must be of size log |M|, and Carpentieri et al. [11] showed that to obtain a t-robust, t + 1-
threshold RSS with failure probability of 2−κ shares of size log |M| + κ is necessary. Our
scheme, which has shares of size log |M| + O(κ + log n + log log |M|), comes close to
achieving this overhead, although we work in a slightly weaker model where we consider a
( 1

2 − ε)n-robust, and ( 1
2 + ε)n-threshold RSS. In this model, the concurrent, independent

work of Cramer et al. [18] shows how to achieve shares of size log |M|/n using com-
pletely different techniques. Cheraghchi [17] also considers this model, and uses folded
Reed-Solomon codes to attain RSS protocols with overhead O(κ).

2 Previous work

In this section, we use m = log |M| to denote the length of the message, and n to denote
the number of players.

Rabin and Ben-Or [51] created a robust secret-sharing scheme, by taking a threshold
secret sharing scheme and adding MACs which allows players to authenticate each other’s
shares. The Rabin Ben-Or scheme first shares a secret s as (s1, . . . , sn), then generates n2

MAC keys kij and tags τij = MAC(kij , sj ). Player i is then given (si , {τji}j , {kij }j ). This
results in an RSS protocol, but the drawback is the shares are now of size m + 2nκ .

The [51] protocol was improved in [14], who showed that by using the same sharing
scheme, but an improved reconstruction procedure increased the probability of identifying
cheating players, and allowed them to use smaller MAC keys and tags. Thus reducing the
share sizes from O(κn log n) to O(κ + n log n).

The work of Cabello, Padró and Sáez [9, 10] takes any secret sharing scheme over a
finite field F, and makes it robust by taking the secret s, generating a random r ∈ F, and
sharing the triple (s, r, r · s) ∈ F

3. The probability an adversary can then generate shares
that correspond to a valid secret is 1/|F|. This triples the size of the shares, but recovery
time is exponential, because recovery requires iterating over all possible sets. Since there
are at most

(
n

t+1

) ≤ 2n subsets of size t + 1, the error probability of the protocol is δ ≤ 2n

|F| .
Thus the share size is 3 max

(
m, log 2n

δ

)
.

Cramer, Damgård and Fehr showed that the approach of [9, 10] results in essentially
optimal share size. Cramer et al. [20] showed that the “tag” (s, r, r ·s) in [9, 10, 19] could be
replaced by an Algebraic Manipulation Detection (AMD) code (see Appendix A for the full
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definition of AMD codes). This generalizes the previous construction, and more importantly
decouples the size of the secret from the error probability. Using the construction of [20]

the share size is (d + 2) max
(

1
d
m, log 2nd

δ

)
. Thus results in an improvement over [9, 10,

19] when the message space M is very large.
If the adversary’s powers are restricted, then the running time of the previous protocols

([9, 10, 19, 20]) can be improved. Suppose the adversary is allowed to corrupt t players,
but each corrupt player chooses his strategy based on the view of at most v other corrupted
players. This adversary is said to be v-local. Lewko and Pastro [44] can be seen as an
adaptation of the schemes of [9, 10, 19, 20]. The dealer shares the secret s, using a t private
scheme to obtain shares s1, . . . , sn. At a high-level the scheme works like this: the dealer
generates a single MAC key, k, but then the dealer generates n tags, τi = MAC(k, si). Each
player then receives three things, a t-private share of s, the tag τi and a v-private share of k.
The reconstruction algorithm will iterate over all subsets of size v + 1 to reconstruct k and
it will accept the first value of k that successfully verifies t + 1 of the (si , τi) pairs. To prove
security, they cannot use a standard one-time MAC, since each player receives several MAC
tags, and they develop special tools for this purpose.

The scheme of Jhanwar and Safavi-Naini [39] also requires exponential time for recon-
struction, but takes a completely different approach. In this scheme, first the secret is shared
using a t + 1 out of t + 1 threshold secret sharing scheme, then these shares are encoded
using a (t + 1, n) MDS code,3 and symbols from this codeword are given to each of the n

players. In a (t + 1, n) MDS code, any t + 1 symbols can be extended into a codeword, and
this extension is unique. Since the adversary has control of only t symbols, if we look at
any collection of t + 2 symbols, the probability that these t + 2 symbols are consistent with
a codeword is at most 1/|F| because the (t + 2)nd symbol is determined by the first t + 1.
Thus the reconstructor works by finding the codeword that agrees with the n given symbols
in at least t +2 locations. Taking a union bound over all subsets of size t +2, the probability
that the adversary can perturb true codeword to a vector that agrees with any other codeword
in at least t + 2 locations is bounded by

(
n

t+2

)|F|−1. By choosing |F| large enough, this can
be made arbitrarily small. Unfortunately, the reconstruction procedure requires finding the
nearest codeword which takes exponential time. This scheme also has the restriction that
n ≥ 2t + 2 (instead of n ≥ 2t + 1). If n = 2t + 1, then adversary can corrupt t locations at
random, leaving only t + 1 honest participants. Thus the honest codeword will only agree
with the received codeword in t + 1 locations, and hence will be rejected. Bishop et al. [5]
pointed out a flaw in this argument, and an attack that renders the scheme insecure.

Safavi-Naini and Wang [52] constructed codes for the adversarial wiretap channel based
on combining folded Reed-Solomon codes with AMD codes and subspace-evasive sets.
They showed that the adversarial wiretap channel is a generalization of the Secure Message
Transmission (SMT) problem, and thus their construction immediately yields an SMT pro-
tocol (and hence an RSS protocol) for n = 2t + 1. Unfortunately, the share size is much
larger than specific RSS protocols.

In concurrent, independent work, Cramer et al. [18] constructed efficient robust secret

sharing schemes in the model where t =
(

1
2 − ε

)
n. Their scheme requires three basic

building blocks: a length-reducing universal hash function h, an AMD code, and a list-
recoverable error-correcting code ECC. Then their RSS scheme shares a secret, s, by

3A Maximum Distance Separable (MDS) code is an error correcting code that meets the singleton bound,
i.e., it has minimum distance d = n − k − 1 where k is the dimension of the code, and n is the block-length.
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computing ECC(h−1(AMD(s))), and giving each player one symbol of the resulting code-
word. Using the list recovery property of ECC, they can recover a list of potential candidate
reconstructions, {yi}, and using the AMD code, they can identify the correct element from
the list. The length-reducing universal hash function h ensures that even if fewer than t

symbols of ECC provide partial information about the message, the secret s remains sta-
tistically hidden from any adversary holding at most t symbols of ECC(h−1(AMD(s))).
This scheme can share secrets of size O(n + κ) with shares of size O(1 + κ/n) which is
information-theoretically optimal, and asymptotically superior to our construction.

In concurrent, independent work, Cheraghchi [17] constructed efficient robust secret

sharing schemes in the model where t =
(

1
2 − ε

)
n. If Shamir sharing is viewed as the

analog of a Reed-Solomon code in the context of secret sharing, then Cheraghchi’s scheme
can be viewed as the secret sharing analog of a folded Reed-Solomon code. In Cheraghchi’s
scheme, first the dealer encodes the secret, s, with an AMD code [20] and then, the dealer
chooses a random polynomial, f , of degree �t whose constant term is AMD(s). Finally, the
dealer gives each player � evaluations of the polynomial f . Thus the secret-shares form a
codeword in the folded Reed-Solomon code with rate (t + 1)/n and folding parameter �.
Since a folded Reed-Solomon code of rate R is efficiently list-decodable up to a (1−R−ε)

fraction of errors, at reconstruction time, the players can list decode the returned shares to
obtain list of possible secrets. Cheraghchi then shows that if the corruptions are introduced
by an adversary that only views t shares (�t evaluations of f ) with high probability the
received list will only contain one AMD-encoded value, and thus the true value of the secret
can be efficiently identified in the list of possible codewords.

In concurrent, independent work, Bishop et al. [5] constructed efficient robust secret
sharing schemes in the regime where n = 2t + 1, with shares of size m + Õ(k). The work
of [5] is the first work to achieve robustness with share size that is independent of n in the
regime where n = 2t + 1 – closing the open question posed in [14]. Both our construction
and that of [5] build on the work of [51] by starting with an initial secret-sharing scheme
(e.g. Shamir) and then having players authenticate each other’s shares using a MAC. In the
[14] scheme, each player authenticates every other player, requiring each player to store n

MAC keys and tags. In the [5] scheme, each player only authenticates a small random subset
of other players. In this setting, each player needs to store only a small number of MAC keys
and tags. On the other hand, reconstruction becomes significantly more complex, because
the reconstructor does not know the authentication graph – and malicious players can lie
about the players they are supposed to authenticate. Nevertheless, [5] gives an efficient
reconstruction procedure based on an efficient algorithm for approximating the approximate
graph bisection problem (Table. 1).

When the reconstruction is required to be perfect, i.e., no failure probability is allowed it
is known that n ≥ 3t+1 is a necessary condition, and this bound is achieved by Shamir shar-
ing. Perfectly robust secret sharing has also been studied for more general access structures,
and the situation is well understood [42, 46].

A separate line of work considered t-threshold secret sharing schemes, where a group of
t cheating players tries to convince a single honest player to accept the wrong share. Thus at
reconstruction time, there are only t + 1 players, instead of all n. Since the honest player is
outnumbered, there is no way to guarantee correct reconstruction, so the goal of the scheme
is simply for the honest player to detect cheating on the part of the other players. This model
was introduced by Tompa and Woll [56] and further studied in [42, 43, 48, 49].

Our work considers the regime t =
(

1
2 − ε

)
n. In this regime, ε > 0 can be arbitrar-

ily small, but it is fixed, independent of n and the security parameter κ . In this regime,
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Table 1 Comparison of previous RSS schemes

Scheme Share size Reconstruction time Restrictions

[53] max(m, log(n)) polynomial n ≤ 3t + 1

[51] m + O(κn log n) polynomial

[14] m + O(κ + n) polynomial

[9, 10, 19] 3 max(m, n + log(1/δ)) exponential

[20] m + O(κ + n) exponential

[39] max(κ,m) exponential n ≥ 2t + 2

[44] m + O(κ) polynomial 1-local adversary

[18] O(m/n) polynomial t =
(

1
2 − O(1)

)
n,m > n + κ

[17] (1 + o(1))m + O(k) polynomial t =
(

1
2 − O(1)

)
n.,m > n + κ

[5] m + O(k) polynomial

This Work m + O(κ) polynomial t =
(

1
2 − O(1)

)
n

In this n denotes the number of players, t denotes the number of corrupted players, κ denotes the security
parameter, and m denotes the bit length of the secret being shared. See Appendix B for a more detailed
comparison of the share sizes of the various schemes

techniques like share packing [29] can be employed to amortize the cost of secure mul-
tiparty computation, and many extremely efficient multiparty computation protocols are
known [22–25]. Protocols for secure multiparty computation in the malicious model imme-
diately yield protocols for RSS, but these protocols are less efficient than the dedicated RSS
protocols discussed above.

3 Secure message transmission (SMT)

Robust secret sharing is very closely related to the notion of Secure Message Transmission
(SMT). In SMT, a sender and receiver are connected via n independent communication
channels. An adversary has control over t out of n of these channels (see Fig. 1). The
adversary can tamper with information sent over the channels it controls. The problem of secure
message transmission (SMT) was formalized by Dolev, Dwork, Waarts and Yung [27].

An r-round n-channel SMT protocol has two guarantees. Privacy: an adversary eaves-
dropping on at most t of the channels learns no information about the secret being
communicated. Robustness: an adversary tampering with at most t of the channels cannot

Fig. 1 An n channel SMT protocol. The sender breaks the message into n pieces. A computationally
unbounded adversary has complete control over t of the n channels
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cause the receiver to receive an incorrect message with probability more than ε. When
ε = 0, the scheme is called perfect.

In [27] it was shown that n ≥ 3t + 1 is necessary and sufficient for perfect one round
SMT protocols (using Reed Solomon codes) and n ≥ 2t + 1 is necessary and sufficient
for perfect two round SMT protocols. Since that time there has been extensive research on
SMT protocols [15, 28, 31, 32, 43, 46].

By equating the message sent over channel i to the share given to player i, we can see that
a one round SMT protocol is essentially equivalent to an RSS protocol. This equivalence
was formalized in [43].

Throughout this work, we use the language and terminology of secret sharing, but by the above
equivalence, our RSS protocol can also be viewed as an efficient one-round SMT protocol.

4 Preliminaries

4.1 Notation

A function ν(·) is called negligible if it vanishes faster than the inverse of any polynomial,
i.e., for all c > 0, ν(n) ∈ O(n−c). Throughout this work κ will denote a security parame-
ter. For a set X, we will use the notation x ← X to denote sampling an element uniformly
from X. We use the same notation y ← A(x) to denote the result of running the random-
ized algorithm A on input x and obtaining an output. For two distributions, X, Y , we use
�(X, Y ) to denote their statistical distance

�(X, Y ) = 1

2

∑
x

|Pr[X = x] − Pr[Y = x]| = sup
A

|[Pr[X ∈ A] − Pr[Y ∈ A]|

4.2 Secret sharing

Secret-sharing is a multi-party protocol that allows one player, a dealer, to distribute a
secret value among a group of participants such that “authorized” subsets of participants
can reconstruct the secret, while the shares held by an “unauthorized” reveal nothing about
the underlying secret. In this work, we mostly focus on threshold secret sharing schemes,
where there is some threshold t , and every subset of participants of size t + 1 is authorized,
while every subset of size t (or smaller) is unauthorized. Secret-sharing was introduced by
Shamir [53] and Blakley [6].

Definition 1 (Secret Sharing) A pair of randomized algorithms (SS,Rec) is called an
(t, n)-threshold secret sharing protocol over a message space M if the following properties
hold

– Privacy: For any s, s′ ∈ M, if (s1, . . . , sn) ← SS(s, 1κ ) and (s′
1, . . . , s

′
n) ←

SS(s′, 1κ ), then for all subsets A ⊂ [n] with |A| ≤ t , the distributions {si}i∈A and
{s′

i}i∈A are statistically close, i.e.,

�({si}i∈A, {s′
i}i∈A) < ν(κ)

for some negligible function ν. If ν = 0, then the scheme is said to have perfect privacy.
– Reconstructability: For all subsets A ⊂ [n] with |A| ≥ t + 1, if (s1, . . . , sn) ←

SS(s, 1κ ), then
Pr[s = Rec(A, {si}i∈A)] > 1 − ν(κ)
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where the probability is taken over the coins of SS and Rec. If ν = 0, then we say the
scheme has perfect reconstruction.

Definition 2 (Ramp Secret Sharing) A pair of randomized algorithms (SS,Rec) is called
an (t, g, n, ε)-threshold secret sharing protocol over a message space M if the following
properties hold

• Privacy: For any s, s′ ∈ M, if (s1, . . . , sn) ← SS(s, 1κ ) and (s′
1, . . . , s

′
n) ←

SS(s′, 1κ ), then for all subsets A ⊂ [n] with |A| ≤ t , the distributions {si}i∈A and
{s′

i}i∈A are statistically close, i.e.,

�({si}i∈A, {s′
i}i∈A) < ν(κ)

for some negligible function ν. If ν = 0, then the scheme is said to have perfect privacy.
• Gap Reconstructability: For all subsets A ⊂ [n] with |A| ≥ t + g, if (s1, . . . , sn) ←

SS(s, 1κ ), then

Pr[s = Rec(A, {si}i∈A)] > 1 − ν(κ)

where the probability is taken over the coins of SS and Rec. If ν = 0, then we say the
scheme has perfect reconstruction.

Note that in a ramp scheme, coalitions of between t and t + g players may be able to
learn some information about the secret. One of the most common secret sharing schemes
is Shamir Sharing [53].

Definition 3 (Ramp Shamir Sharing) Fix a finite field F with |F| ≥ n + g, and distinct
points {α1, . . . , αn} ∈ F \ {β1, . . . , βg}.
– Sharing: To share a message m ∈ F

g , choose a random polynomial, f , of degree
t + g − 1 in F[x] subject to the constraints that

f (βi) = mi for i = 1, . . . , g

The ith share of will be f (αi) ∈ F.
– Reconstruction: Any t + g players can reconstruct the polynomial f by interpolation,

and recover the secret m.

The t-privacy follows from the fact that if an adversary learns t + g evaluations of f ,
then the remaining evaluations remain uniformly distributed.

Many general constructions of secret-sharing schemes exist [3, 4, 8, 21, 57]. Secret shar-
ing schemes for general (non-threshold) access structures have been considered [33, 36].
Secret sharing schemes can be viewed as matroids [45] or monotone span programs [1, 30].
A survey of secret sharing schemes can be found in [2].

In this work, we focus on robust secret sharing (described in Section 4.3).

4.3 Robust secret sharing

Threshold secret sharing allows a dealer to distribute a secret among n players so that any t

players learn nothing about the secret, but any t + 1 players can reconstruct the secret.
A secret sharing protocol is called robust, if the recovery procedure succeeds (with high

probability) even if a coalition of t players maliciously tampers with their shares.
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Definition 4 (RSS) An n-player secret sharing scheme (SS,Rec) is (t, δ)-robust if
(s1, . . . , sn) ← SS(s, 1κ ) and the following properties hold

– Privacy: For any s, s′ ∈ M, if (s1, . . . , sn) ← SS(s, 1κ ) and (s′
1, . . . , s

′
n) ←

SS(s′, 1κ ), then for all subsets A ⊂ [n] with |A| ≤ t , the distributions {si}i∈A and
{s′

i}i∈A are statistically close, i.e.,

�({si}i∈A, {s′
i}i∈A) < ν(κ)

for some negligible function ν. If ν = 0, then the scheme is said to have perfect privacy.
– Reconstructability For all subsets A ⊂ [n] with |A| ≤ t , and any adversary A, if

{s′
i}i∈A ← A({si}i∈A, 1κ ), and si = s′

i for i ∈ [n] \ A, then

Pr
[
Rec(s′

1, . . . , s
′
n) �= s

]
< δ

Note that unlike Verifiable Secret Sharing (VSS) in RSS schemes the dealer is assumed
to be honest.

The primary concern will be the size of the shares and the efficiency of the reconstruction
procedure. We also introduce the notion of a nested RSS, which slightly strengthens the
notion of an RSS. In a nested RSS reconstruction can succeed even if only a subset of the
shares are available at reconstruction time. Thus in a nested RSS scheme, t + g shares are
needed to reconstruct if the shares are all correct, and any collection of t + g + (1 − ε)c

correct shares and εc incorrect shares, will also allow reconstruction with failure probability
at most δ.

Definition 5 (Nested RSS) An n-player secret sharing scheme (SS,Rec) is a nested
(t, g, δ, ε)-robust secret sharing scheme if it satisfies the following properties:

– It is a (t, g) Ramp Secret Sharing Scheme
– Reconstructability For all subsets A ⊂ [n] with |A| ≤ t , and any adversary A, if

{s′
i}i∈A ← A({si}i∈A, 1κ ), and si = s′

i for i ∈ [n] \ A, then for any B ⊂ [n] with
|B| = �, if |A ∩ B| < ε(|B| − t − g) then

Pr
[
Rec(B, {s′

i}i∈B) �= s
]

< δ.

The reconstruction procedure is described from the point of view of a single player. If
all players want to reconstruct the secret, they will need to send their shares to each other
player, and then separately run the reconstruction procedure. In RSS, because the dealer is
assumed to be honest, even if all players want to reconstruct their secret, there is no need for
a broadcast channel. If corrupt players send different, malformed shares to each party during
reconstruction, the robustness ensures that each honest party will separately reconstruct the
correct secret. Unlike the model of Tompa and Woll [56], in RSS shares are provided by all
players (but dishonest players can provide arbitrary shares to the reconstruction procedure).

Note that because Shamir shares (f (α1), . . . , f (αn)) correspond to a [t + 1, n] Reed
Solomon codeword, and the Reed Solomon code has minimum distance n − t , the original
codeword (and hence the shared secret) can be recovered even if n−t

2 shares are corrupted.
Thus Shamir sharing is robust as long as n−t

2 > t , which means n > 3t . In this situation,
robust reconstruction of Shamir shares can be done efficiently using the Berlekamp-Welch
algorithm for decoding Reed Solomon codes. This yields the following fact

Fact 1 (Robustness of Shamir Sharing) The Shamir sharing scheme is a
(⌊

n−1
3

⌋
, 0
)
RSS

scheme, with shares of size log |M|. The ramp Shamir sharing scheme with gap g is a
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(⌊ n−g
3

⌋
, 0
)
RSS with shares of size log |M|/g. In fact, the error correcting properties of

the Reed Solomon code mean that the ramp Shamir sharing scheme is a
(
t, g, 0, 1

2

)
nested

RSS. This is just the statement that given any t + g + � evaluations, where at most 1
2� are

erroneous, you can efficiently reconstruct the unique degree t +g polynomial going through
those points.

4.4 Message authentication codes (MACs)

Our construction relies on simple, unconditionally-secure, one-time Message Authentica-
tion Codes (MACs) [35, 54]. MACs take a message and key and output a “tag” that can
be used to authenticate the message. Many types of MACs exist, but we only need a one-
time MAC. In particular, we require that an adversary who sees a single valid message-tag
pair, cannot generate a new, valid message-tag pair. A standard method for constructing
information-theoretic one-time MACs is to use Universal hash functions [12]. Note that
these information-theoretic MACs are much simpler than MACs that satisfy the stronger
notion of unforgeability under chosen message attack (see Appendix A).

Definition 6 A deterministic function MAC : K × M → T is called a (K,M, δ)-MAC if
for all m1, m2 ∈ M, and for all τ1, τ2 ∈ T and m1,m2 ∈ M

Pr
k←K

[MAC(k,m2) = τ2|MAC(k,m1) = τ1] < δ

These MACs are easy to construct, and for concreteness, we recall a simple construction
of secure MACs based on polynomials.

Theorem 2 [14, 26, 40, 55] Let q be a prime power, and � > 0 an integer. Let M = F
�
q

and K = F
2
q and T = Fq then

MAC((k1, k2),m) =
�∑

i=1

mik
i
1 + k2

is an
(
F

2
q,F�

q , �
q

)
-MAC.

Proof For any fixed m ∈ F
�
q and τ ∈ Fq define the polynomial

f (x) = x� +
�∑

i=1

mix
i − k2 − τ

Then f is a polynomial of degree at most �, so f has at most � roots in Fq . Thus

Pr
k←K

[MAC(k,m) = τ ] = Pr
k←K

[f (k) = 0] ≤ �

q

Now, the adversary succeeds in creating a forgery exactly when k1 is a root of the
polynomial f . Since k1 is uniformly random conditioned on the adversary’s view of
a single message-tag pair, the adversary succeeds in forging a tag with probability at
most �

q
.
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4.5 Expander graphs

Our construction relies on expander graphs, and in this section we briefly review some basic
concepts. See [37] for an in-depth survey.

For every d regular graph on n nodes, we can create the n × n adjacency matrix A.
To normalize A, we divide each entry by d, to obtain the matrix A′. The regularity of the
graph ensures that each row and column of A′ has weight 1. It is straightforward to check
that the all ones vector is an eigenvector of A with eigenvalue 1, and all other eigenvectors
have eigenvalue bounded by 1 in absolute value. The algebraic expansion of the graph is
determined by the size of the second largest eigenvalue of A′ denoted λ.

A d regular graph, G with n nodes is called an algebraic expander with expansion λ if λ

is the absolute value of the second largest eigenvalue of the normalized adjacency matrix of
G. Thus 0 ≤ λ ≤ 1, and the closer λ is to zero, the better the expansion of G.

One of the important properties of expanders is that for any subsets of nodes, S and T , of
size O(n), the number of edges between S and T is essentially the expected value d|S||T |

n
.

This is formalized in the Expander Mixing Lemma.

Lemma 1 (Expander Mixing Lemma) Let G be a d-regular expander on n vertices with
normalized second eigenvalue λ. For any sets of vertices, S, T , in G∣∣∣∣E(S, T ) − d

n
|S||T |

∣∣∣∣ < λd
√|S||T |

Where E(S, T ) denotes the number of edges between S and T .

An expander graph is called a Ramanujan graph if λ < 2√
d

. See [47] for a survey of

Ramanujan graphs.
Our RSS protocol will identify each of the n players with nodes in an expander graph,

and each player will be relied upon to check the shares of his neighbors.

5 Construction

In this section, we explain in detail our new RSS protocol. Previous RSS protocols used
MACs to allow each participant to check the shares provided by other participants in the
reconstruction phase. These MACs provide robustness, but the overhead of sharing a collec-
tion of MACs causes a blowup in the size of the shares held by each player. In the protocol
of Rabin and Ben-Or, each party receives a MAC of each other player’s share. Since the
MAC has keys and tags of size O(κ), the share size blows up by O(nκ). Cevallos et al.,
showed that the MAC keys and tags could be reduced from size O(κ) to O(log n) by using
a more complex recovery procedure. This reduced the overhead to O(n + κ). In both pro-
tocols, each player maintains a MAC to check every other player’s share. When everyone
checks everyone else, a blowup of O(n) is inevitable.

In this work, we change the paradigm, and each player only checks a constant number
of other players. In particular, we consider a d-regular graph on n nodes, and we associate
each node of the graph with one of the n players. Then each player will only check its
d neighbors in the graph. Thus each player will only have to maintain d MAC keys and
tags. When tags are of size O(κ), this results in an overhead of O(dκ) (instead of O(nκ)).
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Because constant degree expanders exist, we can choose d to be a constant, independent of
n. An exact choice of parameters is deferred until later in this section.

Intuitively, there are many reasons for distributing MAC keys and tags according to the
edges of an expander graph. First, because the degree is low, each player (node) must store
only a small (constant) number of keys and tags. Second, if the graph is a vertex expander
then any (small) set of malicious players (nodes) will be connected to an even larger set of
honest players, who will attempt to validate the shares provided by the malicious nodes.

The idea of having computations performed by small “committees” dates back to Bracha
[7], and has been used in a variety cryptography constructions including MPC [36] and
SMT [28].4 The idea of distributing keys according to expander graphs has also been used
to reduce storage complexity in key predistribution schemes for wireless sensor networks
[13, 34, 41].

In concurrent, independent work, [5] also designed an RSS protocol where each player
only authenticates a small number of neighbors. The key difference between our schemes
is that we use a fixed (expander) graph, whereas they use a random graph that is gen-
erated when the shares are distributed. Using a random graph decreases the adversary’s
ability to create mangled shares since the adversary only knows the neighborhood structure
of the t corrupted parties. This allows them to handle the maximum number of corrup-

tions (n = 2t + 1), whereas our scheme only works when t =
(

1
2 − ε

)
n. On other hand,

since the graph is not fixed in [5], the adversary can potentially modify the neighborhood
structure of the corrupted players, and thus reconstruction becomes more difficult. In our
protocol, reconstruction requires simply taking a majority vote for each player, whereas in
[5] reconstruction requires (efficiently) solving the approximate graph bisection problem.

Since each player only checks a small number of other players, the recovery algorithm
has to be adapted to ensure that no coalition of t malicious parties can succeed in fooling
the honest players into accepted mangled shares.

Let G be a d-regular graph, and let �(i) denote the set of d players that are neighbors of
player i. Let MAC : K × M → T a (K,M, δ′)-MAC. Our proposed scheme is presented
in Fig. 2.

5.1 Expander construction

Let G be a d-regular expander on n vertices with normalized second eigenvalue λ. Let
MAC : K × M → T a (K,M, δ′)-MAC. Since each of the n players will authenticate d

others, we will set δ′ < δ
nd

so the probability that an adversary can forge any of these tags
is bounded by δ.

Theorem 3 If (SS0,Rec0) is a nested
((

1
2 − ε

)
n, g, δ, ε0

)
RSS with share size s0 and G

is a d-regular graph on n vertices with normalized second eigenvalue λ <

√
ε3ε0(

1
2 −ε
)
(1−ε0)

4In the work of Fitzi et al. the “committees” are not constructed according to nodes in an expander graph,
but instead every committee of size d is constructed, resulting nd committees of the n underlying players.
Fitzi et al. are primarily concerned with Perfectly Secure Message Transmission, and so their construction
requires two rounds of communication (a message from receiver to sender, and then a message from sender
to receiver). By contrast, when viewed as a message transmission scheme, our construction has only one
round, but has a negligible probability of failure.
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Fig. 2 Robust secret sharing from expander graphs

then the scheme described in Fig. 2 is a
(

1
2 − ε

)
n-robust secret sharing scheme with error

probability ndδ′ + δ and share size

s0 + d (log |T | + log |K|)
Proof Let B be the set of indices corrupted by the adversary, thus |B| = t .

Notice that if player i is corrupted, and player j is honest, the probability that the adver-
sary can generate a share s′

i and tag τ ′
ji = MAC(kji , s

′
i ) is at most δ′ by the security of the

MAC.
Thus with probability at least 1−ndδ′ the adversary fails to generate a single forged tag.

Throughout the rest of the argument, we will condition on the event that adversary fails to
generate a single forged tag.

Let G be the set of indices where at least d
2 +1 tags verify (described in the reconstruction

procedure in Fig. 2). Recall that B is the set of corrupted players.
Let

M1 = (G ∪ B)c and M2 = G ∩ B

Thus M1 is the set of honest players (incorrectly) rejected by the reconstruction procedure
and M2 is the set of dishonest players accepted by the reconstruction procedure.

The RSS scheme (SS0,Rec0) can recover from an ε0 fraction of errors, Thus the
reconstruction procedure will succeed if

|M2| < ε0 (|G| − t − g)

Now, we have

|G| = n − |B|︸ ︷︷ ︸
# honest players

− |M1|︸︷︷︸
# honest players rejected

+ |M2|︸︷︷︸
# dishonest players accepted

Thus the reconstruction succeeds if

|M2| < ε0 (n − t − g − |B| − |M1| + |M2|)
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Which is equivalent to

1 − ε0

ε0
|M2| + |M1| < n − |B| − t − g

Since ε0 < 1
2 , a sufficient condition for recovery is

1 − ε0

ε0
(|M1 ∪ M2|) < n − |B| − t − g

Let M = M1 ∪ M2 be the set of players incorrectly classified in the reconstruction phase.
For a player to be incorrectly classified, at least d/2 of its neighbors must have provided an
incorrect MAC, thus

M ⊂ {i : |�(i) ∩ B| > d/2}
Thus E(M,B) ≥ d

2 |M|. On the other hand, the Expander Mixing Lemma states that

|E(M,B)| ≤ d

n
|M||B| + λd

√|M||B|
Thus

|M|
2

≤ |M||B|
n

+ λ
√|M||B|

Rearranging, we have

|M| <
λ2|B|(

1
2 − |B|

n

)2

Thus reconstruction succeeds if

1 − ε0

ε0

⎛
⎜⎝ λ2|B|(

1
2 − |B|

n

)2

⎞
⎟⎠ < n − |B| − t − g

When t = |B| =
(

1
2 − ε

)
n, then this means the reconstruction succeeds if

1 − ε0

ε0

⎛
⎝λ2
(

1
2 − ε

)
n

ε2

⎞
⎠ < 2εn − g

If g < εn, then a sufficient condition is

λ2 <
ε3ε0(

1
2 − ε

)
(1 − ε0)

If G is a Ramanujan graph, then λ < 2√
d

, so it suffices to take d >
4
(

1
2 −ε
)
(1−ε0)

ε3ε0
Thus for this choice of d reconstruction will succeed unless the adversary successfully

forges a tag (which happens with probability at most ndδ′) or the inner recovery algorithm
Rec0 fails (which happens with probability at most δ).

Although many infinite families of explicit Ramanujan graphs are known, explicit
Ramanujan graphs are not known for all n, d pairs, which limits the applicability of the
above construction. In the next section, we show that the same construction holds (with high
probability) for a random graph.
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5.2 Random graphs

It is well-known that a random d-regular graph will be an expander. In particular, [50] shows
that a random d-regular graph has λ < 2

√
d − 1 + 1 asymptotically almost surely. This

does not allow us to apply the scheme in Fig. 2 directly, however, because that analysis does
not give an explicit bound on the probability the graph fails to be an expander (only that it
tends to zero as n → ∞).

It is straightforward to show, however, that if the underlying graph is chosen at random,
our construction still has only a negligible failure probability, where now the failure proba-
bility is taken over the internal randomness of the sharing algorithm, the internal randomness
of the adversary and the choice of graph.

Using a random graph has the drawback that reconstruction algorithm needs to be told the
graph structure in order to successfully reconstruct the secret. The concurrent, independent
work of [5] uses a similar technique, where each player authenticates a random set of other
players, but they do not require storing the entire graph, instead they rely on a more complex
reconstruction procedure that can infer the graph structure based on each player’s (possibly
corrupted) neighbor sets. This has the advantage that the adversary only sees a partial view
of the authentication graph, and thus cannot choose corruption patterns based on the entire
graph.

5.3 Instantiations

Throughout this section, we use a standard MAC (see Theorem 2), that has keys and tags of
length log q, messages of length � log q and security δ′ = �

q
.

Corollary 1 (Using Shamir Sharing) Instantiating our schemes with (SS0,Rec0) as Shamir

Sharing, which is a (t, 1, 0, 1
2 ) nested RSS, gives a

((
1
2 − ε

)
n, δ
)
-secure RSS scheme with

shares of size

log |M| + 4

ε3
log

3n log |M|
ε3δ

Proof Thus shares are of size

s0 + d(log |T | + log |K|)

For Theorem 3 we need d >
4
(

1
2 −ε
)
(1−ε0)

ε3ε0
Since ε0 = 1

2 , this becomes d >
4
(

1
2 −ε
)

ε3 .

Thus it suffices to choose d > 2
ε3 .

Since we need δ′ < δ
nd

< δε3

2n
, in our MAC, we need q > 2n�

ε3δ
. The MAC supports

messages of length � log q, and the shares being signed are of size s0, thus � < s0, and it
suffices to take q = 2ns0

ε3δ
. In the Shamir Sharing scheme s0 = log |M|, so this results in

shares of size

log |M| + 4

ε3
log

3n log |M|
ε3δ

Comparing this to [14], which has shares of size

log |M| + 12 log
1

δ
+ 3n (log(t + 1) + log log |M| + 3)
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Our new scheme has shares of size

log |M| + 4

ε3
log

1

δ
+ 4

ε3

(
log 3n + log log |M| + log

1

ε3

)

In particular, when ε = O(1), we have an overhead of O
(

log 1
δ

)
instead of

O
(

log 1
δ

+ n
)

as in [14].

Note that in the extreme case, n = 2t + 1, then ε = 1
2n

, and since d > 2
3ε3 , our scheme

would require O(n3) tags per share, which is worse than existing schemes [14, 51].
We can improve these bounds slightly by moving to Ramp Shamir Sharing

Corollary 2 (Using Ramp Shamir Sharing) For any g < εn, we reduce s0 to log |M|/g,
and so the size of the shares becomes

log |M|
g

+ 4

ε3
log

3n log |M|
gε3δ

Using secret sharing schemes based on Cramer and Chen’s ramp-based secret sharing

scheme based on algebraic-geometry codes [16], we can reduce the share size to O
(

log n

ε3

)
.

6 Conclusion

In this work, we give the first RSS protocol with efficient reconstruction and shares of size
Õ(κ). Our protocol works by treating each of the n players as a node in a d-regular expander
graph, and having each player check only its d neighbors. This diverges from previous
protocols [14, 51] where each player must check all other players in the protocol. Since
expander graphs exist with extremely low degree exist, our protocol makes significant gains
in share size and complexity of reconstruction. In fact, when the number of malicious parties

is t =
(

1
2 − ε

)
n, for an constant ε > 0, our protocol achieves essentially the optimal share

size. Unfortunately, when n = 2t + 1, then ε = O
(

1
n

)
and our scheme is outperformed by

existing schemes. In concurrent, independent work [5] shows how a similar technique can
be adapted to create RSS protocols with O(κ) overhead when n = 2t + 1.
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Appendix A: Authentication schemes

A.1 Message authentication codes (MACs)

In this section, we recall the notion unforgeability under chosen message attack for Message
Authentication Codes. This is the standard notion of security for MACs. For our purposes,
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we need a much weaker notion of security (see Theorem 2). We include the standard
definition for reference purposes only.

Definition 7 A Message Authentication Code (MAC) is a pair of deterministic algorithms
(MAC,Ver)

MAC : K × M → T
(k,m) �→ τ

and

Ver : K × T × M → {0, 1}

such that

Ver(k,MAC(k,m),m) = 1

for all m ∈ M.
Security is defined through the following experiment
Experiment expuf−cma

MAC (A)

– k ← K
– The adversary, A can make repeated queries to the oracles MAC(k, ·) and Ver(k, ·, ·).
– If A makes a query τ,m to MACver(k, ·, ·) such that

– MACver(k, τ, m) = 1
– The message, m, was never made as a query to the oracle MAC(k, ·).

then return 1, otherwise, return 0

The MAC is called secure (existentially unforgeable against a chosen message attack) if

Pr
[
expuf−cma

MAC = 1
]

< ν

for some negligible function ν(log |K|).

A.2 Algebraic manipulation detection (AMD) codes

An Algebraic manipulation detection (AMD) code is means of encoding information so that
tampering by an oblivious adversary is detectable. AMD have been widely used, but were
first formalized by Cramer et al. in [20].

Definition 8 (AMD Codes) A pair of functions (AMD,Ver) is called a (M,T , δ)-algebraic
manipulation detection (AMD) code if AMD is a probabilistic map AMD : M → T , and Ver
is a deterministic map Ver : T → M ∪ {⊥} such that for T is a group and for all m ∈ M
and � ∈ T

Pr [Ver(AMD(m) + �) �∈ {m,⊥}] < δ

We briefly recall a simple construction of AMD Codes given in [20].
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Theorem 4 (Theorem 2 in [20]) Let p be prime, d an integer such that p � d + 2 and q a
power of p. Then

AMD(m) =
(

m, x, xd+2 +
d∑

i=1

six
i

)

is an
(
F

d
q ,Fd

q × Fq × Fq, d+1
q

)
-AMD code.

Appendix B: Calculating share size in existing schemes

There are three parameters of interest when calculating the size of shares

δ The probability of reconstruction failure
n The number of participants
m The bit length of the message

We will be using these parameters to define the share size s.
Ignoring robustness, to ensure correctness we need s ≥ m. Using Shamir sharing also

introduces the requirement s ≥ log(n).

[51] In this scheme, the secret s ∈ F is shared using Shamir sharing resulting in shares
s1, . . . , sn. Then random, bij �= 0 and yij are created and cij = si +bij yij mod p

where p ≥ |F|. Then player i receives the shares (si , {yij }j , {bji, cji}j ). These
shares are of size log |F| + 3n log p. The probability that player i catches player j

cheating is 1 − p−1, thus the probability that all cheaters are caught by all honest
players is at least 1 − t (n − t)/p. Thus the cheating probability is bounded by

t (n − t)/p ≈ n2/p. So we need to choose p = n2

δ
, which results in share size

s = m + 3n log
n2

δ

[14] This scheme is very similar to [51], except the MAC used to authenticate shares is
weaker, and the reconstruction algorithm is more complex. In particular, the secret,
s is Shamir shared into {si}, and the shares are signed τij = MAC(kij , si). Player
i then receives (si , {kji}j , {τij }j ). If MAC has security δ′, then the security of the
overall scheme is e((t + 1)δ′)(t+1)/2. Standard MACs can achieve security 2−κm

with tags of length λ and keys of length 2λ, and messages of length m. Setting
κ = log(t + 1) + log m + 2

t+1 (log 1
δ
) + log e yields a scheme with security δ and

the resulting share size is

s = max

(
m + 12 log

1

δ
+ 3n(log(t + 1) + log m + 3), log n

)

[9, 10] A secret, s ∈ F is encoded as (s, r, r · s) ∈ F
3, and then shared using a t + 1 out-

of-n Shamir sharing scheme. Given a set of t + 1 shares, the probability that the
adversary can cause this to decode to (s′, r ′r ′ · s′) is 1/|F|. Taking a union bound
over all subsets of size t + 1 gives an error probability of {0, 1}omnt + 1|F|−1.
Thus we need |F| ≥ {0, 1}omnt + 1δ−1. This yields

s ≥ 3 max
(
m, log

(
{0, 1}omnt + 1δ−1, n

))

[20] A secret, s ∈ F is encoded as AMD(s), and then shared using a t + 1 out-of-n
Shamir sharing scheme. Using the AMD codes proposed in that paper, AMD(s) =
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x�+2 +∑�
i=1 six

i for (s ∈ F
d and x ∈ F) yields a code with detection probability

(� + 1)/|F|. Since reconstruction requires testing all subsets of t + 1 shares, we
have to union bound over {0, 1}omnt + 1 subsets, so the error probability is at
most {0, 1}omnt + 1(�+1)|F|−1. Thus we need |F| ≥ (�+1){0, 1}omnt + 1δ−1,
but this extra parameter, �, gives us flexibility. Since the message space is now F

�,
the resulting shares are of size

s ≥ max

(
(� + 2) log

(
{0, 1}omnt + 1(� + 1)δ−1

)
,
� + 2

�
m, log(n)

)

When m is very large, we can use the parameter � to balance the first and second
terms in the expression.

[39] A secret, s ∈ F is shared using a t + 1 out-of-t + 1 Shamir sharing scheme.
Then this vector in F

t+1 is encoded using a (t + 1, n) MDS code, and each player
receives one symbol of the resulting codeword, thus the shares are of size F. Like
the previous schemes, the probability of error is {0, 1}omnt + 1|F|−1.

s ≥ max
(
m, log

(
{0, 1}omnt + 1δ−1, n

))

(but this scheme works only when n ≥ 2t + 2 instead of n ≥ 2t + 1)

References

1. Beimel, A.: Secure schemes for secret sharing and key distribution. PhD thesis, Technion (1996)
2. Beimel, A.: Secret-sharing schemes: a survey. In: Chee, Y., Guo, Z., Ling, S., Shao, F., Tang, Y., Wang,

H., Xing, C. (eds.) Coding and cryptology, volume 6639 of lecture notes in computer science, pp. 11–46.
Springer, Berlin (2011)

3. Benaloh, J., Leichter, J.: Generalized secret sharing and monotone functions. In: Goldwasser, S. (ed.)
Advances in cryptology — CRYPTO’ 88, volume 403 of lecture notes in computer science, pp. 27–35.
Springer, New York (1988)

4. Bertilsson, M., Ingemarsson, I.: A construction of practical secret sharing schemes using linear block
codes. In: Seberry, J., Zheng, Y. (eds.) Advances in cryptology — AUSCRYPT ’92, volume 718 of
Lecture Notes in Computer Science, pp. 67–79. Springer, Berlin (1993)

5. Bishop, A., Pastro, V., Rajaraman, R., Wichs, D.: Essentially optimal robust secret sharing with maximal
corruptions. In: Eurocrypt, pp. 58–86 (2016)

6. Blakley, G.R.: Safeguarding cryptographic keys. In: International workshop on managing requirements
knowledge, volume 0, p. 313. IEEE Computer Society, Los Alamitos (1979)

7. Bracha, G.: An o(logn) expected rounds randomized byzantine generals protocol. J. ACM 34(4), 910–
920 (1987)

8. Brickell, E.F.: Some ideal secret sharing schemes. In: Quisquater, J.-J., Vandewalle, J. (eds.) Advances
in cryptology — EUROCRYPT ’89, volume 434 of Lecture Notes in Computer Science, chapter 45,
pp. 468–475. Springer, Berlin (1989)
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