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Abstract This paper is devoted to the characterization of hyper-bent functions. Several
classes of hyper-bent functions have been studied, such as Charpin and Gong’s family
∑

r∈R

Trn1(arx
r(2m−1)) and Mesnager’s family

∑

r∈R

Trn1(arx
r(2m−1)) + Tr2

1(bx
2n−1

3 ). In this

paper, we generalize these results by considering the following class of Boolean functions
over F2n :

∑

r∈R

2∑

i=0

T rn
1 (ar,ix

r(2m−1)+ 2n−1
3 i ) + T r2

1 (bx
2n−1

3 ),

where n = 2m, m is odd, b ∈ F4, and ar,i ∈ F2n . With the restriction of ar,i ∈ F2m , we
present a characterization of hyper-bentness of these functions in terms of crucial exponen-
tial sums. For some special cases, we provide explicit characterizations for some hyper-bent
functions in terms of Kloosterman sums and cubic sums. Finally, we explain how our results
on binomial, trinomial and quadrinomial hyper-bent functions can be generalized to the
general case where the coefficients ar,i belong to the whole field F2n .
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1 Introduction

Bent functions are maximally nonlinear Boolean functions with even numbers of variables
whose Hamming distance to the set of all affine functions equals 2n−1 ± 2

n
2 −1. These func-

tions introduced by Rothaus [29] as interesting combinatorial objects have been extensively
studied for their applications not only in cryptography, but also in coding theory [3, 25,
31] and combinatorial design. A bent function can be considered as a Boolean function
defined over Fn

2, F2m ×F2m(n = 2m) or F2n . Thanks to the different structures of the vector
space F

n
2 and the Galois field F2n , bent functions can be well studied. Hyper-bent functions

as a subclass of bent functions [15, 35] achieve the maximal minimum distance to all the
coordinate functions of all bijective monomials (i.e., functions of the form Trn1(axi) + ε,
gcd(i, 2n − 1) = 1). It is still elusive to completely characterize bent and hyper-bent func-
tions. Much research on bent and hyper-bent functions on F2n can be found in [1, 5, 7–10,
14, 17, 18, 22, 24–26, 36].

Charpin and Gong [5] studied the hyper-bent functions with multiple trace terms of the
form

f (x) =
∑

r∈R

Trn1(arx
r(2m−1)),

where n = 2m, R is a set of representations of the cyclotomic cosets modulo 2m+1 of maxi-
mal size n 1 and ar ∈ F2m . The characterization of these hyper-bent functions was presented
by the exponential sums on F2m . Lisoněk [20] presented another characterization of Charpin
and Gong’s hyper-bent functions in terms of the number of rational points on certain hyper-
elliptic curves. He provided an algorithm for determining such hyper-bent functions with
time complexity and space complexity O(ra

maxm
b), where rmax is the biggest element in R,

and a, b are some positive constants irrelevant to rmax and m. In particular, when R = {r}
and (r, 2m + 1) = 1, these hyper-bent functions are monomial functions via Dillon-like
exponent. Many authors have proved that the monomial function T rn

1 (axr(2m−1))(a ∈ F2m)

is hyper-bent if and only if Km(a) = 0 (a proof can be found for instance in [17]).
In [22–25], Mesnager studied and characterized the hyper-bentness of the functions of

the form (which are distinct from those of Charpin and Gong’s functions)

f (x) =
∑

r∈R

Trn1(arx
r(2m−1)) + T r2

1 (bx
2n−1

3 ).

She exhibited firstly binomial hyper-bent functions in [22, 23] and studied the case of
multiple trace terms in [24, 25].

Afterward, Mesnager and Flori [27] considered a general class of Boolean functions and
characterized the hyper-bentness of these Boolean functions of the form

f (x) =
∑

r∈R

Trn1(arx
r(2m−1)) + T rt

1(bxs(2m−1)),

where s|(2m + 1), t = o(s(2m − 1)) (i.e. t is the size of the cyclotomic coset of s modulo
2m + 1), ar ∈ F2m , and b ∈ F2t . The so-called Mesnager’s functions correspond then
to the case where t = 2 and s = 2m+1

3 . For the case: t = 4 and s = 2m+1
5 , explicit

characterizations were given in [32–34]. When rmax is small, Flori and Mesnager [11, 12]
used the number of rational points on hyper-elliptic curves to determine those classes of
hyper-bent functions.

1Later, Flori and Mesnager [11] have shown that the condition of maximality is not necessary.
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Next, Li et al. [19] characterized a class of Boolean functions of the form

f (x) =
q−1∑

i=0

T rn
1 (aix

i(q−1)) + T rl
1(εx

q2−1
e ),

where n = 2m, q = pm (p is a prime), e|(q + 1), ai ∈ Fq2 , ε ∈ Fpl , and l is the smallest
positive integer satisfying l|n and e|pl − 1.

The coefficients ar in these above Boolean function are restricted to the subfield F2m .
This paper considers a class of Boolean functions of the form

∑

r∈R

2∑

i=0

T rn
1 (ar,ix

r(2m−1)+ 2n−1
3 i ) + T r2

1 (bx
2n−1

3 ),

where n = 2m, m is odd, b ∈ F4, and ar,i ∈ F2n . We first characterize the hyper-bentness
of this class of Boolean functions in terms of exponential sums on F2m . Using these results,
we exhibit some hyper-bent functions via the so-called Dillon-like exponent in terms of the
well-known cubic sums and Kloosterman sums. Further, our characterizations can also be
applied in the general case for ar,i ∈ F2n .

The following paper is organized as follows: Section 2 introduces some notations and
background. Section 3 considers a class of Boolean functions and presents the characteriza-
tion of hyper-bentness of these functions with exponential sums on F2m . Section 4 gives an
explicit characterization of some special hyper-bent functions with multiple trace terms in
terms of Kloosterman sums and cubic sums. Section 5 provides a conclusion.

2 Preliminaries

2.1 Boolean functions

Let n be a positive integer, F2n be a finite field with 2n elements, F∗
2n be the multiplicative

group of F2n , and F2k be a subfield of F2n . The trace function from F2n to F2k is denoted by

Trnk (x) = ∑n/k−1
i=0 x2ik

. When k = 1, Trn1(·) is called the absolute trace function.
A Boolean function over F2n can be represented by

f (x) =
∑

j∈�n

Tro(j)

1 (aj x
j ) + ε(1 + x2n−1),

where

– �n is the set of integers obtained by choosing one element in each cyclotomic class of 2
module 2n − 1 (j is often chosen as the smallest element in its cyclotomic class, called
the coset leader of the class);

– o(j) is the size of the cyclotomic coset of 2 modulo 2n − 1 containing j ;
– aj ∈ F2o(j) ;
– ε = wt(f ) (mod 2), where wt(f ) := #{x ∈ F2n |f (x) = 1}.

The “sign” function of a Boolean function f is defined by χ(f ) := (−1)f . The Walsh-
Hadamard transform of f over F2n is defined by χ̂f (w) := ∑

x∈F2n
(−1)f (x)+Trn1(wx),

where w ∈ F2n . Then we can define the bent functions.
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Definition 1 A Boolean function f : F2n → F2 is called a bent function, if χ̂f (w) =
±2

n
2 (∀w ∈ F2n ).

If f is a bent function, n must be even. Further, deg(f ) ≤ n
2 [2]. Hyper-bent functions

are an important subclass of bent functions. The definition of hyper-bent functions is given
below.

Definition 2 A bent function f : F2n → F2 is called a hyper-bent function, if, for any i

satisfying (i, 2n − 1) = 1, f (xi) is also a bent function.

It has been proved in [3] and [35] that if f is a hyper-bent function, then deg(f ) = n
2 .

For Boolean functions over F
2

n
2

× F
2

n
2

, we have a class of hyper-bent functions PSap [3].

Definition 3 Let n = 2m, the PSap class is the set of all the Boolean functions of the form
f (x, y) = g( x

y
), where x, y ∈ F2m , g is a balanced Boolean functions (i.e., wt(f ) = 2m−1)

and g(0) = 0. When y = 0, let x
y

= xy2n−2 = 0.

Each Boolean function f in PSap satisfies f (βz) = f (z) and f (0) = 0, where β ∈ F
∗
2m

and z ∈ F2m × F2m . Youssef and Gong [35] studied these functions over F2n and gave the
following property.

Proposition 1 Let n = 2m, α be a primitive element in F2n , and f be a Boolean function
over F2n such that f (α2m+1x) = f (x)(∀x ∈ F2n) and f (0) = 0, then f is a hyper-bent
function if and only if the weight of (f (1), f (α), f (α2), · · · , f (α2m

)) is 2m−1.

Further, [3] proved the following result.

Proposition 2 Let f be a Boolean function defined in Proposition 1. If f (1) = 0, then f is
inPSap . If f (1) = 1, then there exists a Boolean function g inPSap and δ ∈ F

∗
2n satisfying

f (x) = g(δx).

Charpin and Gong [5] expressed Proposition 2 in a different version below.

Proposition 3 Let n = 2m, α be a primitive element of F2n and f be a Boolean function
over F2n satisfying f (α2m+1

x) = f (x)(∀x ∈ F2n) and f (0) = 0. Let ξ be a primitive
2m + 1-th root in F

∗
2n . Then f is a hyper-bent function if and only if the cardinality of the

set {i|f (ξ i) = 1, 0 ≤ i ≤ 2m} is 2m−1.

2.2 Dickson polynomials

For r > 0, Dickson polynomials are given by

Dr(x) =
� r

2 �∑

i=0

r

r − i

(
r − i

i

)

xr−2i , r = 2, 3, · · · .

Further, Dickson polynomials can be also defined by the following recurrence relation

Di+2(x) = xDi+1 + Di(x)

with initial values D0(x) = 0 and D1(x) = x.
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Some properties of Dickson polynomials are given below.

– deg(Dr(x)) = r .
– Drp(x) = Dr(Dp(x)).
– Dr(x + x−1) = xr + x−r .

More results on Dickson polynomials over F2 can be found in [28].

2.3 Kloosterman sums and cubic sums

In this subsection, we introduce some results on some special binary exponential sums.

Definition 4 The binary Kloosterman sums associated with a are

Km(a) =
∑

x∈F2m

χ(T rm
1 (

1

x
+ ax)), a ∈ F2m.

When x = 0, we set 1
x

= 0.

Some properties of binary Kloosterman sums are given in the following propositions
[16].

Proposition 4 Let a ∈ F2m , then Km(a) ∈ [−2(m+2)/2 + 1, 2(m+2)/2 + 1] and Km(a) ≡ 0
mod 4.

Another property of Kloosterman sums is stated in the following proposition [6].

Proposition 5 Let m ≥ 3 be an odd integer and a ∈ F2m . Then

Km(a) ≡ 1 mod 3 if and only if T rm
1 (a1/3) = 0.

Definition 5 The binary cubic sums on F2m are

Cm(a, b) =
∑

x∈F2m

χ(T rm
1 (ax3 + bx)), a ∈ F

∗
2m, b ∈ F2m.

Carlitz [4] computed the exact values of the cubic sums in the following proposition.

Proposition 6 Let m be a positive integer. Then

(1) Cm(1, 1) = (−1)(m
2−1)/82(m+1)/2.

(2) If T rm
1 (c) = 0, then Cm(1, c) = 0.

(3) If T rm
1 (c) = 1 and c �= 1, then Cm(1, c) = χ(T rm

1 (γ 3 + γ ))( 2
m

)2(m+1)/2, where

c = γ 4 + γ + 1, ( 2
m

) is the Jacobi symbol , and γ ∈ F2m .

From Proposition 5 and Proposition 6, we have the following corollary.

Corollary 1 Let m be odd and a ∈ F
∗
2m , the following results are equivalent:

(1) Km(a) ≡ 1 mod 3;
(2) Cm(a, a) = 0;
(3) T rm

1 (a
1
3 ) = 0.
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2.4 Exponential sums

Let m be an odd integer, U = {u : u2m+1 = 1, u ∈ F2n} and V = U3 = {u3 : u ∈ U}. Let

ξ be a generator of U and w = ξ
2m+1

3 . Let R be a set of representations of the cyclotomic
cosets modulo 2m + 1 and ar ∈ F2m . For simplicity, some notations on exponential sums
are defined below.

Si((ar )r∈R) =
∑

v∈V

χ(T rn
1 (

∑

r∈R

ar (ξ
iv)r(2

m−1))); Ti((ar )r∈R) =
∑

x∈F2m ,T rm
1 (x−1)=i

χ(T rm
1 (

∑

r∈R

arDr(x))).

T 3
i ((ar )r∈R) =

∑

x∈F2m ,T rm
1 (x−1)=i

χ(T rm
1 (

∑

r∈R

arDr(D3(x))));
((ar )r∈R) =
∑

x∈F2m

χ(T rm
1 (

∑

r∈R

arDr(x)));


((ar )r∈R) =
∑

x∈F2m

χ(T rm
1 (

1

x
+

∑

r∈R

arDr(x)));
3((ar )r∈R) =
∑

x∈F2m

χ(T rm
1 (

∑

r∈R

arDr(D3(x)))).



3
((ar )r∈R) =

∑

x∈F2m

χ(T rm
1 (

1

x
+

∑

r∈R

arDr(D3(x)))).

In all evidence, if i ≡ j mod 2m + 1, then Si((ar )r∈R) = Sj ((ar )r∈R). Some relationships
of these exponential sums are given in the following proposition [27].

Proposition 7

(1) S0((ar )r∈R) = 1
3 (1 + 2T 3

1 ((ar )r∈R)) = 1
3 [1 + 2
3((ar )r∈R) − 2T0((ar )r∈R)];

S1((ar )r∈R) = S2((ar )r∈R); S0((ar )r∈R) + S1((ar )r∈R) + S2((ar )r∈R) = 1 +
2T1((ar )r∈R).

(2) T 3
0 ((ar )r∈R) = T0((ar )r∈R); T 3

1 ((ar )r∈R) = 
3((ar )r∈R) − T0((ar )r∈R);
Ti((ar )r∈R) = 1

2 [
((ar)r∈R) + (−1)i
((ar )r∈R)]; T 3
i ((ar )r∈R) = 1

2 [
3((ar )r∈R) +
(−1)i


3
((ar )r∈R)].

When #R = 1, we write (a)R for (a)r∈R and a for (a){1}. From the definitions and
Proposition 7, we have the following lemma.

Lemma 1 Let a ∈ F2m and gcd(r, 2m+1
3 ) = 1, then

(1) S0((a){r}) = S0(a);
(2) If 3 � r , S1((a){r}) = S1(a); If 3 | r , S1((a){r}) = S0(a).

Actually, S0(a) and S1(a) can be expressed by cubic sums and Kloosterman sums [22].

Lemma 2 Let a ∈ F
∗
2m , then

(1) S0(a) = 1
3 [−Km(a) + 2Cm(a, a) + 1];

(2) S1(a) = 1
3 [−Km(a) − Cm(a, a) + 1].

Obviously, when a ∈ F2m , we have Si(a) = Si(a
2). From Lemma 2, Corollary 1,

Proposition 4, and Proposition 6, we have the following lemma.
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Lemma 3 Let m ≥ 5, m ≡ 1 mod 2, and a ∈ F
∗
2m . The following four conditions are

equivalent:

(1) Km(a) = 4;
(2) −S0(a) = 1;
(3) −2S0(a) + S1(a) = 1;
(4) S0(a) − 2S1(a) = 1.

3 A class of hyper-bent functions with multiple trace terms

In this section, we will consider a class of Boolean functions of the form

fa,b(x) =
∑

r∈R

2∑

i=0

T rn
1 (ar,ix

r(2m−1)+ 2n−1
3 i ) + T r2

1 (bx
2n−1

3 ), (1)

where n = 2m, m is odd, ar,i ∈ F2n and b ∈ F4. With notations given in the previous
section, we present the characterization of hyper-bent functions in (1).

Theorem 1 Let fa,b be a Boolean function defined in (1) and a′
r,i be defined by

⎛

⎝
a′
r,0

a′
r,1

a′
r,2

⎞

⎠ =
⎡

⎣
1 1 1
1 w w2

1 w2 w

⎤

⎦

⎛

⎝
ar,0
ar,1
ar,2

⎞

⎠ . (2)

where w is a primitive 3rd root of unity. Then fa,b is hyper-bent if and only if

�(fa,b) =
∑

u∈U

χ(fa,b(u)) = 1.

Further, we have that

�(fa,b) = χ(T r2
1 (b))S0((a

′
r,0)r∈R) + χ(T r2

1 (bw))S1((a
′
r,1)r∈R) + χ(T r2

1 (bw2))S2((a
′
r,2)r∈R).

If a′
r,2 ∈ F2m , then

�(fa,b) = χ(T r2
1 (b))S0((a

′
r,0)r∈R) + χ(T r2

1 (bw))S1((a
′
r,1)r∈R) + χ(T r2

1 (bw2))S1((a
′
r,2)r∈R).

Proof Let α be a primitive element in F2n . From the definition of fa,b, for x ∈ F2m we have
that

fa,b(α
2m+1x) = fa,b(x), f (0) = 0,

From Proposition 3, fa,b(x) is hyper-bent if and only if �(fa,b) = 1 [24, 25]. Since U =
V ∪ ξV ∪ ξ2V ,

�(fa,b) =
∑

u∈U

χ(fa,b(u)) =
∑

v∈V

χ(fa,b(v)) +
∑

v∈V

χ(fa,b(ξv)) +
∑

v∈V

χ(fa,b(ξ
2v)).
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For any v ∈ V , v
2n−1

3 = 1. Hence

�(fa,b) = χ(T r2
1 (b))

∑

v∈V

χ(
∑

r∈R

2∑

i=0

T rn
1 (ar,iv

r(2m−1)))

+ χ(T r2
1 (bξ

2n−1
3 ))

∑

v∈V

χ(
∑

r∈R

2∑

i=0

T rn
1 (ar,iξ

2n−1
3 i (ξv)r(2

m−1)))

+ χ(T r2
1 (bξ

2n−1
3 ·2))

∑

v∈V

χ(
∑

r∈R

2∑

i=0

T rn
1 (ar,iξ

2n−1
3 ·2i (ξ2v)r(2

m−1))).

Note that ξ
2n−1

3 = (ξ
2m+1

3 )2m−1 = w2m+1−2 = w. We have that

�(fa,b) = χ(T r2
1 (b))

∑

v∈V

χ(
∑

r∈R

T rn
1 ((

2∑

i=0

ar,i)v
r(2m−1)))

+ χ(T r2
1 (bw))

∑

v∈V

χ(
∑

r∈R

T rn
1 ((

2∑

i=0

ar,iw
i)(ξv)r(2

m−1)))

+ χ(T r2
1 (bw2))

∑

v∈V

χ(
∑

r∈R

T rn
1 ((

2∑

i=0

ar,iw
2i )(ξ2v)r(2

m−1))).

From the definitions of Si((.)r∈R) and a′
r,i ,

�(fa,b) = χ(T r2
1 (b))S0((a

′
r,0)r∈R) + χ(T r2

1 (bw))S1((a
′
r,1)r∈R)

+χ(T r2
1 (bw2))S2((a

′
r,2)r∈R).

Note that if a′
r,2 ∈ F2m , S2((a

′
r,2)r∈R) = S1((a

′
r,2)r∈R). Then we have

�(fa,b) = χ(T r2
1 (b))S0((a

′
r,0)r∈R) + χ(T r2

1 (bw))S1((a
′
r,1)r∈R)

+χ(T r2
1 (bw2))S1((a

′
r,2)r∈R).

The result follows.

The values of S0((a
′
r,0)r∈R) and S1((a

′
r,1)r∈R) can be computed by means of exponential

sums on F2m . From Proposition 7, the following result is obtained.

Lemma 4 Let ar ∈ F2m , then (1) S0((ar )r∈R) = 1
3 [2
3((ar )r∈R) − 
((ar)r∈R) −


((ar)r∈R) + 1]; (2) S1((ar )r∈R) = 1
3 [−
3((ar )r∈R) + 2
((ar)r∈R) − 
((ar)r∈R) + 1].

For the function fa,b with coefficients ar ∈ F2m , we can compute �(fa,b) with
exponential sums on F2m . Note that χ(T r2

1 (0)) = χ(T r2
1 (1)) = 1 and χ(T r2

1 (w)) =
χ(T r2

1 (w2)) = −1. From Theorem 1 and Lemma 4, the value of �(fa,b) can be
computed by exponential sums 
3((a′

r,0)r∈R), 
((a′
r,0)r∈R), 
((a′

r,0)r∈R), 
3((a′
r,1)r∈R),


((a′
r,1)r∈R), 
((a′

r,1)r∈R), 
3((a′
r,2)r∈R), 2
((a′

r,2)r∈R), and 
((a′
r,2)r∈R).
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4 Hyper-bent functions and Kloosterman sums

In this section, we charcterize the hyper-bentness of certain functions in some particular
cases by means of Kloosterman sums and cubic sums. Further, we try to generalize the
characterization of some special hyper-bent functions for general cases: ar,i ∈ F2n .

4.1 Explicit characterization of hyper-bent functions with coefficients in F2m

Theorem 2 Let gcd(ri,
2m+1

3 ) = 1, a, c, d ∈ F2m and w be a primitive 3rd root of unity.
Let f (x) be defined by

f (x) = T rn
1 (a(xr0(2m−1) + xr0(2m−1)+ 2n−1

3 + xr0(2m−1)+2 2n−1
3 ))

+ T rn
1 (c(xr1(2m−1) + w2xr1(2m−1)+ 2n−1

3 + wxr1(2m−1)+2 2n−1
3 ))

+ T rn
1 (d(xr2(2m−1) + wxr2(2m−1)+ 2n−1

3 + w2xr2(2m−1)+2 2n−1
3 ))

+ T r2
1 (bx

2n−1
3 ). (3)

Then

(1) If b = 0, f (x) is hyper-bent if and only if S0(a) + S1((c){r1}) + S1((d){r2}) = 1;
(2) If b = 1, f (x) is hyper-bent if and only if S0(a) − S1((c){r1}) − S1((d){r2}) = 1;
(3) If b = w, f (x) is hypre-bent if and only if −S0(a) − S1((c){r1}) + S1((d){r2}) = 1;
(4) If b = w2, f (x) is hyper-bent if and only if −S0(a) + S1((c){r1}) − S1((d){r2}) = 1.

Proof Let R = {r0, r1, r2}. Take ar0,0 = ar0,1 = ar0,2 = a, ar1,0 = c, ar1,1 = cw2,
ar1,2 = cw, ar2,0 = d, ar2,1 = dw, and ar2,2 = dw2. Then

a′
r0,0 = a, a′

r1,0 = 0, a′
r2,0 = 0, a′

r,0 = 0(r �∈ R),

a′
r0,1 = 0, a′

r1,1 = c, a′
r2,1 = 0, a′

r,1 = 0(r �∈ R),

a′
r0,2 = 0, a′

r1,2 = 0, a′
r2,2 = d, a′

r,2 = 0(r �∈ R),

From Lemma 1, we have

S0((a
′
r,0)r∈R) =S0((a){r0})=S0(a);S1((a

′
r,1)r∈R)=S1((c){r1}); S2((a

′
r,2)r∈R)=S2((a){r2}).

From T r2
1 (w) = T r2

1 (w2) = 1, T r2
1 (1) = 0, and Theorem 1, this theorem can be

immediately obtained.

Corollary 2 Let gcd(ri,
2m+1

3 ) = 1(i = 1, 2), a, c, d ∈ F2m , T rm
1 (a

1
3 ) = T rm

1 (c
1
3 ) =

T rm
1 (d

1
3 ) = 0, w be a primitive 3rd root of unity, and f (x) be defined by (3). Then

(1) If b = 0, f (x) is hyper-bent if and only if Km(a) + Km(c) + Km(d) = 0;
(2) If b = 1, f (x) is hyper-bent if and only if −Km(a) + Km(c) + Km(d) = 4;
(3) If b = w, f (x) is hyper-bent if and only if Km(a) + Km(c) − Km(d) = 4;
(4) If b = w2, f (x) is hyper-bent if and only if Km(a) − Km(c) + Km(d) = 4.

Proof From T rm
1 (a

1
3 ) = 0 and Corollary 1, we have Cm(a, a) = 0. From Lemma 2, we

obtain S0(a) = S1(a) = 1
3 (−Km(a) + 1). Similarly, S0(c) = S1(c) = 1

3 (−Km(c) +
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1) and S0(d) = S1(d) = 1
3 (−Km(d) + 1). The corollary follows from Lemma 1 and

Theorem 2.

Example 1 Let m = 23, F2m ∼= F2[x]/(x23 + x5 + 1). Consider positive integers ri such
that gcd(ri,

2m+1
3 ) = 1(i = 1, 2). Set

a = a3
0 = x23 + x16 + x15 + x13 + x9 + x8 + x7 + x6 + x5 + x3 + x2 + x + 1,

c = c3
0 = x23 + x21 + x20 + x17 + x14 + x12 + x11 + x10 + x7 + x5 + 1,

d = d3
0 = x23 + x21 + x19 + x17 + x12 + x11 + x10 + x8 + x6 + x4 + x2 + x + 1,

b = 0;

where a0 = x23 +x21 +x19 +x16 +x14 +x12 +x11 +x10 +x8 +x6 +x5 +x3 +x2 +x +1,
c0 = x23+x21+x18+x13+x12+x8+x7+x4+x3+x+1, d0 = x23+x21+x19+x18+x17+
x13 + x12 + x10 + x7 + x6 + x3 + x2 + 1. Then T rm

1 (a0) = 0, T rm
1 (c0) = 0, T rm

1 (d0) = 0,
and Km(a) = 1120,Km(c) = 2920, Km(d) = −4040, Km(a) + Km(c) + Km(d) = 0.
Hence, f (x) in (3) is a hyper-bent function with nine trace terms.

Many hyper-bent functions of the form (3) exist. From an exhaustive search, when m =
5, 7, the number of the hyper-bent functions in Result (1) in Corollary 2 are 1500 and 58653
respectively, and the number of the hyper-bent functions in Result (2) in Corollary 2 are
1500 and 57624 respectively.

For some special cases, from Lemma 1, Lemma 2, Lemma 3, Theorem 1, and Theorem
2, we can straightforwardly obtain the following theorem on the explicit characterization of
hyper-bent functions fa,b in (3).

Theorem 3 Let gcd(ri,
2m+1

3 ) = 1, a ∈ F2m , and w be a primitive 3rd root of unity. Let
f (x) be defined by (3) with a = c = d. Then

(1) If b = 0 and 3|ri(i = 1, 2), f (x) is not hyper-bent;
(2) If b = 0 and 3 � ri(i = 1, 2), f (x) is hyper-bent if and only if Km(a) = 0;
(3) If b = 0 and #{ri : ri ≡ 0 mod 3, i = 1, 2} = 1, f (x) is hyper-bent if and only if

Km(a) = Cm(a, a);
(4) For the following cases: i) b = 1, #{ri : ri ≡ 0 mod 3, i = 1, 2} = 1; ii) b = w,

3 � r1, 3 | r2; and iii) b = w2, 3 | r1, 3 � r2; f (x) is hyper-bent if and only if
Km(a) = −Cm(a, a) + 4;

(5) For the rest cases, f (x) is hyper-bent if and only if Km(a) = 4.

Remark 1 The value a such that Km(a) = 0, 4 or −Cm(a, a) + 4 can be used to con-
struct monomial hyper-bent functions [5, 8, 13, 17] or binomial hyper-bent functions by
Mesnager [22, 26]. From the above theorem, the value a such that Km(a) = Cm(a, a) can
be used to construct hyper-bent functions. From Corollary 1, if Km(a) = Cm(a, a), then
T rm

1 (a1/3) = 1. Obviously, if a satisfies Km(a) = Cm(a, a), any Frobenius conjugate a2i

of a also satisfies Km(a2i
) = Cm(a2i

, a2i
). Actually, If m = 5, 7, 9, just one conjugacy

class satisfies Km(a) = Cm(a, a), and if m = 11, 13, 15, there are 3,8,9 conjugacy classes.

Take R = {r0, r1}, ar0,0 = ar0,1 = ar0,2 = a, ar1,0 = 0, and ar1,1 = ar1,2 = c. From
Lemma 1 and Theorem 1, the theorem comes straightforwardly.
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Theorem 4 Let a, c ∈ F2m , b ∈ F4, and gcd(ri,
2m+1

3 ) = 1. Let f (x) be defined by

f (x) = T rn
1 (a(xr0(2m−1) + xr0(2m−1)+ 2n−1

3 + xr0(2m−1)+2 2n−1
3 ))

+ T rn
1 (c(xr1(2m−1)+ 2n−1

3 + xr1(2m−1)+2 2n−1
3 )) + T r2

1 (bx
2n−1

3 ), (4)

Then

(1) If b = 0, f (x) is hyper-bent if and only if S0(a) + 2S1((c){r1}) = 1;
(2) If b = 1, f (x) is hyper-bent if and only if S0(a) − 2S1((c){r1}) = 1;
(3) If b is a primitive 3rd root of unity, f (x) is hyper-bent if and only if S0(a) = −1.

From Corollary 1, Lemma 2, Lemma 1, and Theorem 4, the following corollary can be
obtained straightforwardly.

Corollary 3 Let a, c ∈ F2m , T rm
1 (a

1
3 ) = T rm

1 (c
1
3 ) = 0, b ∈ F4, gcd(ri,

2m+1
3 ) = 1, and

f (x) be defined by (4). Then

(1) If b = 0, f (x) is hyper-bent if and only if Km(a) + 2Km(c) = 0;
(2) If b = 1, f (x) is hyper-bent if and only if −Km(a) + 2Km(c) = 4;
(3) If b is a primitive 3rd root of unity, f (x) is hyper-bent if and only if Km(a) = 4.

Example 2 Let m = 23, F2m ∼= F2[x]/(x23 + x5 + 1). Take positive integers ri such that
gcd(ri,

2m+1
3 ) = 1(i = 0, 1). Take

a = a3
0 = x23 + x21 + x14 + x13 + x11 + x10 + x9 + x4 + x2 + x + 1,

c = c3
0 =x23+ x22+ x20+ x18+ x17+ x16+ x15+ x13+ x10+ x8+ x7+ x5+ x3+ x+ 1,

b = 0;
where a0 = x23 +x21 +x19 +x18 +x17 +x15 +x13 +x12 +x11 +x10 +x9 +x7 +x4 +x3 +
x2 +x +1, c0 = x23 +x20 +x19 +x17 +x15 +x12 +x9 +x7 +x6 +x5 +x4 +x3 +1. Then
T rm

1 (a0) = 0, T rm
1 (c0) = 0, and Km(a) = 1768,Km(c) = −884,Km(a) + 2Km(c) = 0.

Hence, f (x) in (4) is a hyper-bent function with 5 trace terms.

From an exhaustive search, when m = 5, 7, 9, the number of hyper-bent functions in
Result (1) in Corollary 3 are 50, 735 and 5346 respectively, and the number of hyper-bent
functions in Result (2) in Corollary 3 are 100, 588 and 5103 respectively.

Take R = {r0, r1}, ar0,0 = 0, ar0,1 = aw, ar0,2 = aw2, ar1,0 = c, ar1,1 = cw, ar1,2 =
cw2. From Lemma 1 and Theorem 1, we get straightforwardly the following result.

Theorem 5 Let a, c ∈ F2m , b ∈ F4, gcd(ri,
2m+1

3 ) = 1. Let f (x) be defined by

f (x) = T rn
1 (a(wxr0(2m−1)+ 2n−1

3 + w2xr0(2m−1)+2 2n−1
3 ))

+ T rn
1 (c(xr1(2m−1) + wxr1(2m−1)+ 2n−1

3 + w2xr1(2m−1)+2 2n−1
3 )) + T r2

1 (bx
2n−1

3 ), (5)

Then

(1) If b = 0, f (x) is hyper-bent if and only if S0(a) + S1((a){r0}) + S1((c){r1}) = 1;
(2) If b = 1, f (x) is hyper-bent if and only if S0(a) − S1((a){r0}) − S1((c){r1}) = 1;
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(3) If b = w, f (x) is hyper-bent if and only if −S0(a) − S1((a){r0}) + S1((c){r1}) = 1;
(4) If b = w2, f (x) is hyper-bent if and only if −S0(a) + S1((a){r0}) − S1((c){r1}) = 1.

From Corollary 1, Lemma 2, Lemma 1, and Theorem 5, this corollary can be obtained
straightforwardly.

Corollary 4 Let a, c ∈ F2m , T rm
1 (a

1
3 ) = T rm

1 (c
1
3 ) = 0, b ∈ F4, gcd(ri,

2m+1
3 ) = 1, and

f (x) be defined by (5). Then

(1) If b = 0, f (x) is hyper-bent if and only if Km(a) + 2Km(c) = 0;
(2) If b ∈ {1, w2}, f (x) is hyper-bent if and only if Km(c) = 4;
(3) If b = w, f (x) is hyper-bent if and only if 2Km(a) − Km(c) = 4.

Theorem 6 Let a, cr ∈ F2m , b ∈ F4 be a primitive 3rd root of unity, and gcd(r, 2m+1
3 ) = 1.

Let f (x) be defined by

f (x) = T rn
1 (axr0(2m−1)) +

∑

r∈R

T rn
1 (cr (x

r(2m−1)+ 2n−1
3 + xr(2m−1)+2 2n−1

3 )) + T r2
1 (bx

2n−1
3 ).

Then f (x) is hyper-bent if and only if Km(a) = 4.

Proof Let r0 ∈ R. From the definition of a′
r,i , we have that

a′
r0,0 = a, a′

r,0 = 0(r �= r0), a′
r,1 = 0, a′

r,2 = 0(r ∈ R).

From Lemma 1,

S0((a
′
r,0)r∈R) = S0((a){r0}) = S0(a),

S1((a
′
r,1)r∈R) = S1(0) = 2m + 1

3
,

S2((a
′
r,2)r∈R) = S2(0) = 2m + 1

3
.

Note that T r2
1 (w) = T r2

1 (w2) = 1, T r2
1 (1) = 0. The result follows from Theorem 1.

4.2 Explicit characterization of hyper-bent functions with coefficients in F2n

From the previous characterization of hyper-bent functions, we recover some well-known
results and generalize those results in the case where the coefficients ar,i belong to the whole
field F2n .

Some results on binomial, trinomial and quadrinomial hyper-bent functions for (p =
2, e = 3) are given by Li et al. [19]. Let R = {r}, ar,0 = a + c + d, ar,1 = a + cw2 + dw,
and ar,2 = a + cw + dw2. From Lemma 1 and Theorem 1, we obtain the following results
similar to Theorem 2 in [19].

Theorem 7 Let a, c, d ∈ F2m , b ∈ F4, and gcd(r, 2m+1
3 ) = 1. Let f (x) be defined by

f (x) = T rn
1 ((a + c + d)xr(2m−1)) + T rn

1 ((a + cw2 + dw)xr(2m−1)+ 2n−1
3 )

+ T rn
1 ((a + cw + dw2)xr(2m−1)+2 2n−1

3 ) + T r2
1 (bx

2n−1
3 ), (6)
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Then

(1) If b = 0, f (x) is hyper-bent if and only if S0(a) + S1((c){r}) + S1((d){r}) = 1;
(2) If b = 1, f (x) is hyper-bent if and only if S0(a) − S1((c){r}) − S1((d){r}) = 1;
(3) If b = w, f (x) is hyper-bent if and only if −S0(a) − S1((c){r}) + S1((d){r}) = 1;
(4) If b = w2, f (x) is hyper-bent if and only if −S0(a) + S1((c){r}) − S1((d){r}) = 1.

From Corollary 1, Lemma 2, Lemma 1, and Theorem 7, this corollary can be obtained
immediately.

Corollary 5 Let a, c, d ∈ F2m , T rm
1 (a

1
3 ) = T rm

1 (c
1
3 ) = T rm

1 (d
1
3 ) = 0, b ∈ F4,

gcd(r, 2m+1
3 ) = 1, and f (x) be defined by (6). Then

(1) If b = 0, f (x) is hyper-bent if and only if Km(a) + Km(c) + Km(d) = 0;
(2) If b = 1, f (x) is hyper-bent if and only if −Km(a) + Km(c) + Km(d) = 4;
(3) If b = w, f (x) is hyper-bent if and only if Km(a) + Km(c) − Km(d) = 4;
(4) If b = w2, f (x) is hyper-bent if and only if Km(a) − Km(c) + Km(d) = 4.

Parameters a, c, d considered in the above results are restricted in the subfield F2m . Actu-
ally, this restriction is not necessary. For convenience, we shall provide some explanations
for this fact by considering Theorem 7 as an example.

Some notations are given first. Let A ∈ F
∗
2n with unique polar decomposition A =

Ãξ I (A), where Ã ∈ F
∗
2m , 0 ≤ I (A) ≤ 2m, and ξ is a primitive 2m + 1-th root of unity.

Define I (0) = 0 and 0̃ = 0. If a ∈ F2m , I (a) = 0 and ã = a. Then we have a general result
of Lemma 1.

Lemma 5 Let A ∈ F2n and gcd(r, 2m+1
3 ) = 1. Then Si((A){r}) = Sri+I (A)(Ã) =

S(ri+I (A)) mod 3(Ã).

Proof We have

Si((A){r}) =
∑

v∈V

χ(T rn
1 (A(ξ iv)r(2

m−1))) =
∑

v∈V

χ(T rn
1 (A(ξrivr )2m−1)).

Since gcd(r, 2m+1
3 ) = 1, v �→ vr is a transform for V . Then

Si((A){r}) =
∑

v∈V

χ(T rn
1 (A(ξriv)2m−1)) =

∑

v∈V

χ(T rn
1 (Ãξ i(A)(ξ riv)2m−1)).

Let l be an integer satisfying (2m − 1)l ≡ 1 mod 2m + 1. Since 2m − 1 ≡ 1 mod 3, l ≡ 1
mod 3. Then

Si((A){r}) =
∑

v∈V

χ(T rn
1 (Ã(ξ ri+lI (A)v)2m−1)) =

∑

v∈V

χ(T rn
1 (Ã(ξ ri+I (A)v)2m−1)) = Sri+I (A) mod 3(Ã).

Hence, this lemma follows.

From Lemma 5 and Theorem 1, this theorem can be obtained immediately.

Theorem 8 [Theorem 2 in [19]] Let a, c, d ∈ F2n , b ∈ F4, gcd(r, 2m+1
3 ) = 1, and f (x) be

defined in (6). Then
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(1) If b = 0, f (x) is hyper-bent if and only if SI (a)(̃a) + Sr+I (c) mod 3(̃c) +
S2r+I (d) mod 3(d̃) = 1;

(2) If b = 1, f (x) is hyper-bent if and only if SI (a)(̃a) − Sr+I (c) mod 3(̃c) −
S2r+I (d) mod 3(d̃) = 1;

(3) If b = w, f (x) is hyper-bent if and only if −SI (a)(̃a) − Sr+I (c) mod 3(̃c) +
S2r+I (d) mod 3(d̃) = 1;

(4) If b = w2, f (x) is hyper-bent if and only if −SI (a)(̃a) + Sr+I (c) mod 3(̃c) −
S2r+I (d) mod 3(d̃) = 1.

The above theorem is equivalent to Theorem 2 in [19] for the case p = 2, e = 3.

Corollary 6 Let A,C ∈ F2m , b ∈ F4, gcd(r, 2m+1
3 ) = 1, T rm

1 ((A + C)1/3) = 0, and
T rm

1 ((A2 + AC + C2)1/3) = 0. Let f (x) be defined by

f (x) = T rn
1 (Axr(2m−1)) + T rn

1 (Cxr(2m−1)+ 2n−1
3 ) + T r2

1 (bx
2n−1

3 ). (7)

Then

(1) If b = 0, f (x) is hyper-bent if and only if Km(A + C) + 2Km(A2 + AC + C2) = 0;
(2) If b = 1, f (x) is hyper-bent if and only if −Km(A + C) + 2Km(A2 + AC + C2) = 4;
(3) If b is a primitive 3rd root of unity, f (x) is hyper-bent if and only if Km(A + C) = 4.

Proof Take a, c, d as A + C, A + Cw, A + Cw2 respectively. Note that

c̃2 = c2m+1 = A2 + AC + C2, d̃2 = d2m+1 = A2 + AC + C2.

Then SI (a)(̃a) = SI (a)(A+C), Sr+I (c) mod 3(̃c) = Sr+I (c) mod 3(̃c
2) = Sr+i(c)(A

2 +AC+
C2), and S2r+I (d) mod 3(d̃) = S2r+I (d) mod 3(d̃

2) = S2r+I (d) mod 3(A
2 + AC + C2). Note

that T rm
1 ((A + C)1/3) = 0, T rm

1 ((A2 + AC + C2)1/3) = 0. From Corollary 1 and Lemma
2, we have

SI (a)(A + C) = −Km(A + C) + 1

3
,

Sr+I (c) mod 3(A
2 + AC + C2) = −Km(A2 + AC + C2) + 1

3
,

S2r+I (d) mod 3(A
2 + AC + C2) = −Km(A2 + AC + C2) + 1

3
.

Then

SI (a)(̃a) = −Km(A + C) + 1

3
,

Sr+I (c) mod 3 (̃c) = −Km(A2 + AC + C2) + 1

3
,

S2r+I (d) mod 3(d̃) = −Km(A2 + AC + C2) + 1

3
,

The result follows from Theorem 8.

Example 3 Let m = 23 and F2m ∼= F2[x]/(x23 + x5 + 1). Take a positive integer r such
that gcd(r, 2m+1

3 ) = 1. Take

A = x23 + x20 + x17 + x16 + x15 + x14 + x12 + x11 + x10 + x9 + x6 + x4 + x2 + x + 1,

C = x23 + x14 + x13 + x7 + x6 + x5 + x3 + x2 + 1, b = 0;
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Then A + C = x23 + x21 + x20 + x14 + x12 + x11 + x10 + x8 + x7 + x5 + x4 + x + 1,
A2 + AC + C2 = x23 + x22 + x20 + x19 + x18 + x16 + x15 + x8 + x6 + x3 + x2 + x + 1
and T rm

1 ((A + C)1/3) = 0, T rm
1 ((A2 + AC + C2)1/3) = 0, Km(A + C) = −4280,

Km(A2 + AC + C2) = 2140, Km(A + C) + 2Km(A2 + AC + C2) = 0. From Result (1)
in Corollary 6, f (x) in (7) is a binomial hyper-bent function.

From an exhaustive search, when m = 5, 7, 9, the number of hyper-bent functions in
Result (1) in Corollary 6 are 40, 728 and 5346 respectively. And the number of hyper-bent
functions in Result (2) in Corollary 6 are 100, 546 and 5112 respectively.

From Theorem 8 and Lemma 2, we can completely characterize all the quadrinomial
hyper-bent functions in Theorem 8 by Kloosterman sums and cubic sums. The following
lemma explains that exponents of x in the trace functions would be very big.

Lemma 6 Let rm,1 be the smallest integer in the cyclotomic coset of 2 modulo 2m + 1
containing 1+ 2m+1

3 , and let rm,2 be the smallest integer in the cyclotomic coset of 2 modulo

2m + 1 containing 1 + 2 2m+1
3 , i.e., rm,1 = min0≤i≤2m−1(1 + 2m+1

3 ) · 2i mod 2m + 1,

rm,2 = min0≤i≤ 2m−1(1+2 2m+1
3 )·2i mod 2m+1. Then rm,1 = 2m−2+1

3 and rm,2 = 2m−1−1
3 .

Proof We first prove rm,1 = 2m−2+1
3 .

(i) If j = 0, 2, · · · ,m − 1, 3|(2j − 1). We have

(1 + 2m + 1

3
) · 2j = 2j − 1

3
(2m + 1) + 2m + 1

3
+ 2j ,

where 0 < 2m+1
3 + 2j < 2m + 1. Then

(1 + 2m + 1

3
) · 2j mod (2m + 1) = 2m + 1

3
+ 2j ≥ 2m + 1

3
+ 1.

When j = 0, the equality on rm,1 holds.
(ii) If j = 1, 3, · · · ,m − 2, 3|(2j − 2). We have

(1 + 2m + 1

3
) · 2j = 2j − 2

3
(2m + 1) + 2(2m + 1)

3
+ 2j ,

where 0 <
2(2m+1)

3 + 2j < 2m + 1. Then

(1 + 2m + 1

3
) · 2j mod (2m + 1) = 2(2m + 1)

3
+ 2j ≥ 2(2m + 1)

3
+ 2

When j = 1, the equality on rm,1 holds.
(iii) If j = m + 1,m + 3, · · · , 2m − 2, 3|(2j − 1). We have

(1 + 2m + 1

3
) · 2j = (

2j − 1

3
+ 2j−m)(2m + 1) + 2m + 1

3
− 2j−m,

where 0 < 2m+1
3 − 2j−m < 2m + 1. Then

(1+ 2m + 1

3
)·2j mod (2m+1) = 2m + 1

3
−2j−m ≥ 2m + 1

3
−2m−2 = 2m−2 + 1

3
.
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When j = 2m − 2, the equality on rm,1 holds.
(iv) If j = m, m + 2, · · · , 2m − 1, 3|(2j − 2). We have

(1 + 2m + 1

3
) · 2j = (

2j − 2

3
+ 2j−m)(2m + 1) + 2(2m + 1)

3
− 2j−m,

where 0 <
2(2m+1)

3 − 2j−m < 2m + 1. Then

(1 + 2m + 1

3
) · 2j mod (2m + 1) = 2(2m + 1)

3
− 2j−m ≥ 2(2m + 1)

3
− 2m−1 = 2m−1 + 2

3
.

When j = 2m − 1, the equality on rm,1 holds.

Hence, rm,1 = 2m−2+2
3 . From the similar discussion, rm,2 = 2m−1−1

3 .

Further, we analyze a subclass of functions in Theorem 8 of the form

f (x) = T rn
1 (a0x

2m−1) + T rn
1 (a1x

(2m−1)+ 2n−1
3 ) + T rn

1 (a2x
(2m−1)+2 2n−1

3 ) + T r2
1 (bx

2n−1
3 ),

where ai ∈ F2m (i = 0, 1, 2) and b ∈ F4. From Lemma 6, f (x) can be transformed into
another function

f ′(x) = T rn
1 (a0x

2m−1) + T rn
1 (a′

1x
rm,1(2m−1)) + T rn

1 (a′
2x

rm,2(2m−1)) + T r2
1 (bx

2n−1
3 ), (8)

where rm,1 = 2m−2+1
3 and rm,2 = 2m−1−1

3 . If b = 0, f (x) in (8) belongs to cases stud-
ied by Charpin and Gong [5]. If b �= 0, f (x) is studied by Mesnager [25]. From results
in [5] and [25], some exponential sums on F2m should be computed to determine the
hyper-bent functions in (8). From Lisoněk [20] and Flori, Mesnager [11, 12], to determine
the hyper-bentness of f (x) in (8) is equivalent to counting the number of rational points
on hyper-elliptic curves of genus g ∈ { 3rm,2+1

2 , 3rm,2−1
2 , rm,2+1

2 ,
rm,2−1

2 } over F2m , where

rm,2 = 2m−1−1
3 . The genus grows exponentially with m, hence algorithms for counting ratio-

nal points cannot be applied to determine hyper-bentness of f (x) for big m. From Theorem
8, to determine hyper-bentness of f (x), we just need to compute SI (a)(a), S1+I (c) mod 3(̃c)

and S1+I (d) mod 3(d̃), where a = a0 +a1 +a2, c = a0 +a1w+a2w
2, d = a0 +a1w

2 +a2w.
Values of Cm(a, a), Cm(̃c, c̃) and Cm(d̃, d̃) can be computed by Proposition 6. From
Lemma 2, we have just to compute Kloosterman sums Km(a), Km(̃c) and Km(d̃) on F2m .
They can be computed by counting algorithms on elliptic curves or hyper-elliptic curves
[21], such as Schoof algorithm [30]. Hence, it explains that our techniques can efficiently
characterize the hyper-bentness property of some special functions studied by Charpin,
Gong [5] and Mesnager [25].

5 Conclusion

This paper generalizes classes of hyper-bent functions proposed by Charpin, Gong [5] and
Mesnager [25], and presents a characterization of a more general class of hyper-bent func-
tions. These hyper-bent functions with coefficients in F2m are characterized by exponential
sums. For many special cases, we give an explicit characterization of the obtained hyper-
bent functions by means of Kloosterman sums and cubic sums. For some special cases, we
present some attempts to generalize our characterization in the case where the coefficients
belong to the whole ambient space F2n .
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