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Abstract In this paper, we devise ideal and probabilistic secret sharing schemes for
two kinds of compartmented access structures. The first one is a compartmented access
structures with hierarchical compartments. The second one is the compartmented access
structures with strictly lower bounds. We propose ideal and probabilistic schemes for these
two compartmented access structures by using the idea of bivariate interpolation.
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Bivariate interpolation
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1 Introduction

Secret sharing schemes (SSSs) were introduced independently by Shamir [13] and Blakley
[1]. A secret sharing scheme (SSS) is a method that a dealer distributes shares of a secret
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to participants such that only authorized subsets of participants can recover the secret from
their shares. Shamir’s scheme is called (t, n) threshold SSS. In the scheme, the authorized
set is the set that contains t or more participants. The threshold scheme was generalized to
ones with access structure (AS). Although there exists a linear SSS for every AS [4, 11], but
the known general constructions are impractical because the size of the shares is exponen-
tial. Since the seminal work of Shamir, many applications of SSS to several different kinds
of cryptographic protocols have appeared. For instance, SSS can be used in multiparty com-
putation and secure key management schemes. The relation between SSS and linear code
has also been studied for a long time(set [5–8] for example). SSS plays an important role
in cryptography. So, it is interesting to devise efficient and practical schemes for different
kinds of access structures. For further introductions to secret sharing, the interested readers
can refer to [3, 15] and the references therein. The definitions of the ASs appeared in this
section will be given in Section 2.

We focused on compartmented AS in this work. Let us suppose the ASs are mono-
tone throughout this paper, some results of the general non-monotone AS can be found
in [12]. Compartmented AS was introduced by Simmons [14]. After that, Brickell [2]
gave a more general family, that is the so-called compartmented access structure with
lower bounds (LCAS) in [16]. There is an efficient and probabilistic SSS for the AS
[20]. Recently, Farràs et al. [9, 10] characterized some new ideal compartmented ASs,
such as the compartmented access structure with upper and lower bounds and the com-
partmented access structures with hierarchical compartments (CASHC). Some SSS for
certain compartmented AS can be found in [19]. Following the work of Farràs et al.
[9], Wang et al. [18] presented the compartmented access structures with strictly lower
bounds (SLCAS). The new AS can provide better fairness among the groups in recov-
ering the secret. However, both Farràs [9] and Wang [18] didn’t give efficient, ideal
and perfect SSSs for these ASs, as by far there is not an efficient algorithm to obtain
a representation of a multipartite matroid from a representation of its associated integer
polymatroid.

In this paper, we give a perfect (with probability) and ideal SSS for one of the CASHC
which were introduced in [9]. Then, we construct a SSS for the SLCAS which was given
in [18]. As far as we know, there does not exist any efficient, ideal and perfect schemes for
these ASs. Although our schemes are probabilistic, they are simple and easy understanding
for the purpose of practical applications.

2 Preliminaries

2.1 Secret sharing

In a secret sharing scheme, let P = {p1, · · · , pn} be the set of participants. An access

structure (AS) is a monotone collection � ⊆ 2P : we have C ∈ � if B ∈ � and B ⊆ C.
The notation 2P is the power set of P . Sets in � are called authorized or qualified, and
sets not in � are called unauthorized or unqualified. B is called a minimal qualified set,
if B ∈ � and for any C � B imply that C /∈ �. � can be determined by all the minimal
qualified sets [15]. We let � = 2P \�, � is called an adversary structure which is the set of
all unauthorized sets. B ⊆ P is called a maximal unqualified set, if B is an unqualified set
and any superset of B is a qualified set. � can be determined by all the maximal unqualified
sets [15].
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A SSS requires that the participants of qualified set can recover the secret, and the
participants from unqualified set cannot get the secret. Furthermore, if participants from
unauthorized set cannot get any information of the secret in the information theoretic sense,
then such SSS is called perfect. A SSS is called ideal if |Si | = |S| for every 1 ≤ i ≤ n,
where S is the domain of the secret s, and Si is the share domain of participant i. An AS is
called ideal if there exists an ideal SSS realizing it. A SSS is called linear if the secret s is a
linear combination of participants’ shares that from qualified set. We define the probabilis-
tic secret sharing scheme as in [20]. That is, although V ∈ �, sometimes the participants in
V cannot recover the secret either, but that is only a small probability event.

2.2 Compartmented access structure

Every participant in threshold access structure has the same effect when recovering the
secret. We can generalize threshold AS like this: we divide P into several disjoint groups,
and every group has its own threshold value. The participants in the same group have the
same power just like that in threshold AS. AS like this are called compartmented AS.

Farràs et al. [9] found some new ideal compartmented ASs, one of them is the compart-
mented access structure with hierarchical compartments (CASHC). The definition of the
CASHC is given as follows. Through this paper, we use [m] denotes the set {1, 2, · · · , m}.
For a set S , b ∈R S denotes that the element b was selected randomly from the set S .

Definition 1 Let P =
m⋃

i=1
Ui , where Ui ∩Uj = ∅, for i �= j . Furthermore, let Ui =

n⋃

j=1
Uij ,

where Uik ∩ Uil = ∅, for k �= l. Let t and bi,n ≥ bi,n−1 ≥ · · · ≥ bi,1 (1 ≤ i ≤ m) be

integers such that
m∑

i=1
bi,n ≥ t + m − 1. Then the CASHC is

�1 =
⎧
⎨

⎩
V ⊆ P : |V | ≥ t, or ∃ i ∈ [m], ∃ k ∈ [n] s.t.

∣
∣
∣
∣
∣
∣
V ∩

k⋃

j=1

Uij

∣
∣
∣
∣
∣
∣
≥ bi,k

⎫
⎬

⎭
.

In the CASHC, we require the qualified set V at least has cardinality of t , or the qualified
set must contain bik participants that come from the first k subgroups in group Ui , for
some i ∈ [m] and k ∈ [n]. The notation ∃ in �1 means that once 1 of m groups and 1
of n subgroups satisfy the condition, then they can recover the secret. For every group Ui ,
i ∈ [m], there is a hierarchy among the subgroups Uij , 1 ≤ j ≤ n. When recovering
the secret, participants from the subgroup Uil can replace the participants from Uik , for
1 ≤ l < k ≤ n. The hierarchical structure among every group is analogous to the disjunctive
hierarchical AS in [17]. We will construct a SSS for the CASHC in Section 3.

Wang et al. [18] presented a new ideal compartmented AS, which is called com-
partmented access structure with strictly lower bounds (SLCAS). We give its definition
here.

Definition 2 Let P =
m⋃

i=1
Ui , where Ui ∩ Uj = ∅, for i �= j . Let t, ti , (1 ≤ i ≤ m), k be

integers satisfy t ≥
m∑

i=1
ti and 1 ≤ k ≤ min{m, t −

m∑

i=1
ti}. Then the SLCAS is

�2 = {V ⊆ P : |V | ≥ t, |V ∩ Ui | ≥ ti , f or ∀ i ∈ [m], and |{i : |V ∩ Ui | > ti}| ≥ k} .
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If we delete the condition |{i : |V ∩ Ui | > ti}| ≥ k in �2, then the AS becomes the
compartmented access structure with lower bounds (LCAS) in [9, 16]. AS stated in [18],
although LCAS can be used to protect the rights of some ’weak’ groups, one or few groups
can still dominate the reconstruction. For instance, if t � ∑m

i=1 ti (the notation A � B

means that A much larger than B) and |Um| is large enough, then t −∑m−1
i=1 ti participants in

|Um| can partaking the recover phase. In this case, |Um| performs a more powerful role than
the other groups and dominate the reconstructing procedure. But, the SLCAS can provide
better fairness among groups, as it requires that at least k groups of participants are strictly
greater than the lower bounds ti . We will propose a SSS for the SLCAS in Section 4.

We introduce a lemma, which provides an upper bound for the number of zeros of a
multivariate polynomial over a finite field. The lemma is necessary for our proofs in the
following sections.

Lemma 1 (Schwartz-Zippel Lemma) [16] Let G(z1, z2, · · · , zk) be a nonzero polynomial
of k variables over a finite field F of size q. Assume that the highest degree of each of the
variables zj in G is not larger than d. Then the number of zeros of G in Fk is bounded from
above by kdqk−1.

3 Secret sharing scheme for CASHC

In this section, we design a simple, ideal and perfect (with probability) scheme for �1. Our
method is the bivariate interpolation which was introduced in [16]. Our SSS implementing
�1 is the Secret Sharing Scheme 1.

Let Fq be a finite field and s ∈ Fq be the secret to be shared. Set pi,1(x) = s + ai,1x +
· · · + ai,bi,1−1x

bi,1−1, and pi,j (x) = pi,j−1(x) + ai,bi,j−1x
bi,j−1 + · · · + ai,bi,j −1x

bi,j −1 for
2 ≤ j ≤ n, 1 ≤ i ≤ m, where ai,k ∈R Fq , 1 ≤ k ≤ bi,n − 1.

Let yi ∈R Fq, 1 ≤ i ≤ m, be m distinct elements. Put Li(y) = ∏

1≤j≤m,j �=i

y−yj

yi−yj
,

1 ≤ i ≤ m. We set p(x, y) =
m∑

i=1
pi,n(x)Li(y). Let b0 = ∑m

i=1 bi,n−m+1 and γ = b0 − t .

Then our SSS for CASHC is as follows.

Secret Sharing Scheme 1

(1) For the participant uijk from Uij , his identity is xijk ∈R Fq , xijk �= xrst for (i, j, k) �=
(r, s, t). The dealer sends pi,j (xijk) to uijk secretly as his share.

(2) The dealer publishes the values of p(x, y) at γ distinct points (zi, y
′
i ) ∈R F2

q , where
y′
i ∈ {y1, y2, · · · , ym}, 1 ≤ i ≤ γ .

We explain the idea of the scheme here. The qualified set V must satisfy |V ∩⋃k
j=1 Uij | ≥ bi,k for some i ∈ [m], k ∈ [n], the threshold in this case just like that in

Shamir scheme. So we use a polynomial of degree bi,j − 1 to distribute the share for partic-
ipants in Uij , the constant term of the polynomial is the secret. Moreover, the AS requires
that participants from Uij can replace the participants from Uik , (j < k), so we set pi,j (x)

as a part of pi,k(x). To ensure that the participant set V with |V | ≥ t , can recover the secret,
we publish b0 − t values of the p(x, y). The total unknown coefficients in p(x, y) is b0, so
V can get the secret by solving a linear equation system. We will analyze the security of the
scheme in Theorem 1.
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Now, we give an example of this scheme in our real life. Suppose the n participants
belong to an organization. The organization have m groups. In every group, some people
has more power than others, and there is n levels of power. When a signature requested, t of
n participants can make a signature. Moreover, every group that contains certain number of
members can represent the organization to make the signature, and members from superior
level of power can replace the members from inferior level to make the signature. Our
proposed scheme can be used in this example.

We consider the adversary structure �1 which is the adversary structure of �1. We have

�1 =
⎧
⎨

⎩
V ⊆ P : |V | < t, and

∣
∣
∣
∣
∣
∣
V ∩

k⋃

j=1

Uij

∣
∣
∣
∣
∣
∣
< bik f or ∀ i ∈ [m], k ∈ [n]

⎫
⎬

⎭
.

Theorem 1 If V ∈ �1, the participants in V can recover the secret s with probability
1 − C1/q, where the constant C1 depends on bi,j , t and m. If V /∈ �, V cannot get any
information about the secret with probability 1 − C2/q, where the constant C2 depends on
bi,j , t and m.

Proof We prove the first part of the theorem firstly. We just need to consider the minimal
qualified set, this is |V | = t or |V ∩ ⋃k

j=1 Uij | = bik for some i ∈ [m] and k ∈ [n].
Case 1: |V | = t .

In this case, let |V ∩Ui | = si , 1 ≤ i ≤ m, obviously,
∑m

i=1 si = t . The participants in V

can get the linear equation system
MX = F, (1)

where X = (s, a1,1, a1,2, · · · , a1,b1,n−1 · · · , am,1, · · · , am,bm,n−1), F is the vector composed
of their corresponding shares, and

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1s1 M1
1s2 M2
...

...

1sm Mm

Lγ H1 H2 · · · Hm

⎞

⎟
⎟
⎟
⎟
⎟
⎠

b0×b0

.

The matrices 1si , Mi and Hi are as follows.

1si =

⎛

⎜
⎜
⎜
⎝

1
1
...

1

⎞

⎟
⎟
⎟
⎠

si×1

, Mi =

⎛

⎜
⎜
⎝

xi1 x2
i1 · · · x

bi,n−1
i1

...
...

...

xisi x2
isi

· · · x
bi,n−1
i,si

⎞

⎟
⎟
⎠

si×(bi,n−1)

, 1 ≤ i ≤ m.

Lγ =

⎛

⎜
⎜
⎜
⎝

∑m
i=1 Li(y

′
i )∑m

i=1 Li(y
′
i )

...∑m
i=1 Li(y

′
i )

⎞

⎟
⎟
⎟
⎠

γ×1

, Hi =

⎛

⎜
⎜
⎝

Li(y
′
i )z1 Li(y

′
i )z

2
1 · · · Li(y

′
i )z

b1,n−1
1

...
...

...

Li(y
′
i )zγ Li(y

′
i )z

2
γ · · · Li(y

′
i )z

b1,n−1
γ

⎞

⎟
⎟
⎠

γ×(bi,n−1)

,

for 1 ≤ i ≤ m. The equation system has t + γ = b0 equations and b0 variables. We
only need to prove the event that |M| = 0 happens with a negligible probability, where the
notation |M| denotes the determine of M. We view the determine of M as a γ -variate poly-
nomial g(z1, z2, · · · , zγ ). There are two cases as follows: the case where g(z1, z2, · · · , zγ )
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is identically zero and the case that is not. We consider the case g(z1, z2, · · · , zγ ) is not
identically zero firstly. According to the lemma 1, the number of zero of g(z1, z2, · · · , zγ )

in F
γ
q is bounded by γ (b − 1)qγ−1, where b = max

1≤i≤m
bi,n. Since zi were randomly selected

from Fq , the probability of (z1, z2, · · · , zγ ) being one of the zero of g(z1, z2, · · · , zγ )

is bounded from above by γ (b − 1)/q. We consider the case g(z1, z2, · · · , zγ ) ≡ 0.
g(z1, z2, · · · , zγ ) ≡ 0 if and only if all of its coefficients are zero, where each of the coef-
ficients is a polynomial in b0 variables whose degree with respect to each of its variables
is bounded by d = max{b − 1, m − 1}. So, the probability of one of the coefficient to be
zero is b0d/q. Then the probability of g(z1, z2, · · · , zγ ) ≡ 0 is C/q, where the constant C

depends on bi,n,m and t .

Case 2: ∃i ∈ [m], k ∈ [n] s.t.
∣
∣
∣V ∩ ⋃k

j=1 Uij

∣
∣
∣ = bi,k .

Let |V ∩ Uij | = αij ,
∑k

j=1 αij = bi,k . In this case, V can construct the following
equation:

MX = F,

where X = (s, ai,1, ai,2, · · · , ai,bi,k−1), F is the share vector, and

M =

⎛

⎜
⎜
⎜
⎝

1αi1 M1
1αi2 M2
...

...

1αik
Mk

⎞

⎟
⎟
⎟
⎠

bi,k×bi,k

.

Here the matrices 1αil
and Ml are as follows:

1αil
=

⎛

⎜
⎜
⎜
⎝

1
1
...

1

⎞

⎟
⎟
⎟
⎠

αil×1

, Ml =

⎛

⎜
⎜
⎝

x
bi,j−1
ij1 x

bi,j−1+1
ij1 · · · x

bi,j −1
ij1

...
...

...

x
bi,j−1
ijαij

x
bi,j−1+1
ijαij

· · · x
bi,j −1
ijαij

⎞

⎟
⎟
⎠

αij ×(bi,j −bi,j−1)

,

where bi,0 = 1 and 1 ≤ l ≤ k. Just like the analysis in Case 1, we can get the result that the
probability of |M| = 0 is bi,k(bi,k − 1)/q. Up to now, we have proved that the qualified set
V can reconstruct the secret with probability 1 − C1/q, where the constant C1 depends on
bi,j , t and m.

Next, we prove the second part of this theorem. Let V be the maximal unqualified set,
that is, |V | = t − 1 and |V ∩ ⋃k

j=1 Uij | = bi,k − 1 for every i ∈ [m] and k ∈ [n]. For
any i ∈ [m] and k ∈ [n], the participants in V only can construct the linear equation system
MiX = F, where X = (s, ai,1, ai,2, · · · , ai,bi,k−1), F is the vector of shares, and

Mi =

⎛

⎜
⎜
⎝

1 xi1 x2
i1 · · · x

bi,k−1
i1

...

1 xibi,k−1 x2
ibi,k−1 · · · x

bi,k−1
ibi,k−1

⎞

⎟
⎟
⎠

(bi,k−1)×bi,k

.

We need to show that the vector e1 = (1, 0, · · · , 0) is most probably not spanned by the
rows of Mi . In other words, we need to prove that the vector e1 = (1, 0, · · · , 0) cannot be
spanned by the rows of Mi with probability close to 1, where the probability is calculated
over all the possible Mi in the finite field. Let M′

i = ( e1
Mi

)
, we claim that the probability
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of |M′
i | = 0 is (bi,k − 1)2/q. The proof is similar to that in the first part of the theorem.

Moreover, if the participants in V use the public γ points of p(x, y), they can construct
b0 − 1 linear equations with respect to b0 variables. By the same method, we can conclude
that V cannot get any information about the secret with probability 1 − C2/q, where the
constant C2 depends on bi,j , t and m.

4 Secret sharing schemes for SLCAS

In this section, we consider the SSS for �2. Our SSS for this AS is the Secret Sharing
Scheme 2. The SSS can be seen as the generalization of the scheme for LCAS in [20].

Secret Sharing Scheme 2

(1) Let s ∈ Fq be the secret, xi ∈ Fq , 1 ≤ i ≤ m, are distinct nonzero element. Let
f (x) = ∑k−1

i=0 aix
i , pi(y) = ∑ti

j=0 bi,j y
j and R(z) = ∑l

i=1 ciz
i , where ai ∈R

Fq, bi,j ∈R Fq and ci ∈R Fq such that s = a0 + c1 + ∑m
i=1 bi,1. Moreover, bi,0 =

f (xi), 1 ≤ i ≤ m, and l = t − ∑m
i=1 ti − k. Put Qi(y, z) = pi(y) + R(z).

(2) Participant uij from Uij , uniquely identified by (xi, yij , zij ), yij , zij ∈ Fq . The dealer
sends Qi(yij , zij ) to uij as his share.

The adversary structure �2 of �2 is as follows.

�2 = {V ⊆ P : |V | ≤ t − 1, or ∃i ∈ [m], s.t. |V ∩ Ui | ≤ ti − 1,

or |{i : |V ∩ Ui | > ti}| ≤ k − 1}.
We discuss the security of the scheme for �2 in the following Theorem 2.

Theorem 2 If V ∈ �2, the participants in V can recover the secret with probability
1 − C3/q, where the constant C3 depends on k, t and ti . If V /∈ �2, V cannot get any infor-
mation about the secret with probability 1 − C4/q, where the constant C4 depends on t, ti
and k.

Proof Suppose that V is a minimal qualified set, i.e. that is |V | = t and |V ∩
Ui | = si ≥ ti for any i ∈ [m], ∑m

i=1 si = t , and |{i : |V ∩ Ui | > ti}| = k.
The participants in V can construct the linear equation system: MX = F, where
X = (a0, a1, · · · , ak−1, b1,1, · · · , b1,t1 , · · · , bm,1, · · · , bm,tm, c1, · · · , cl), F is the vector
of shares, and

M =

⎛

⎜
⎜
⎜
⎝

W1 M1 N1
W2 M2 N2

...

Wm Mm Nm

⎞

⎟
⎟
⎟
⎠

t×t

,

with

Wi =

⎛

⎜
⎜
⎜
⎝

1 xi · · · xk−1
i

1 xi · · · xk−1
i

...

1 xi · · · xk−1
i

⎞

⎟
⎟
⎟
⎠

si×k

,Mi =

⎛

⎜
⎜
⎜
⎝

yi1 y2
i1 · · · y

ti
i1

yi2 y2
i2 · · · y

ti
i2

...

yisi y2
isi

· · · y
ti
isi

⎞

⎟
⎟
⎟
⎠

,Ni =

⎛

⎜
⎜
⎜
⎝

zi1 z2
i1 · · · zl

i1
zi2 z2

i2 · · · zl
i2

...

zisi z2
isi

· · · zl
isi

⎞

⎟
⎟
⎟
⎠

,
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for each 1 ≤ i ≤ m. By the same method used in Theorem 1, we can prove that the
probability of |M| = 0 is C3/q, where C3 depends on k, t and ti . So V can get the secret
with probability 1 − C3/q.

Now, we prove the second part of the theorem. Assuming that V is a maximal unqualified
set, let A � {i : |V ∩ Ui | > ti}, then there are three cases:

Case 1: |V | = t − 1, |V ∩ Ui | ≥ ti , ∀i ∈ [m] and |A| ≥ k.

The participants in V can construct t − 1 equations with respect to t variables. We can
conclude that V cannot get any information about the secret with probability 1 − C4/q,
where the constant C4 depends on t, ti , k. The proof goes along the sam line of arguments
as in the proof of Theorem 1.

Case 2: ∃i ∈ [m], s.t. |V ∩ Ui | = ti − 1 and |V ∩ Uj | = |Uj |, for j �= i.

In this case, the participants in V cannot recover bi,1, as they only can construct the
linear equation system MiX = F that involving bi,1, where X = (bi,1, bi,2, · · · , bi,ti ),
F = (Qi(yi,1, zi,1) − R(zi,1) − f (xi), · · · , Qi(yi,ti−1, zi,ti−1) − R(zi,ti−1) − f (xi)) and

Mi =

⎛

⎜
⎜
⎜
⎜
⎝

yi,1 y2
i,1 · · · y

ti
i,1

yi,2 y2
i,2 · · · y

ti
i,2

...

yi,ti−1 y2
i,ti−1 · · · y

ti
i,ti−1

⎞

⎟
⎟
⎟
⎟
⎠

ti−1×ti

.

Participants from V ∩ Uj with j �= i, have no contributions to the recovery of the bi,1. So
V cannot get any information about the secret from the security of Shamir scheme.

Case 3: |A| = k − 1, |V ∩ Uj | = tj for j /∈ A, and |V ∩ Uj | = |Uj | for j ∈ A.

The participants of V can reconstruct bi,0 only when |V ∩ Ui | > ti . Since bi,0 = f (xi)

and deg(f ) = k − 1, the participants can recover a0 only when they have k distinct val-
ues f (xi). That is to say, they can recover a0 only when |A| ≥ k. So V cannot get any
information about the secret in this case.

Next, we give an example of �2 and use our Secret Sharing Scheme 2 to realize it.

Example 1 Let P = ⋃3
i=1 Ui , Ui ∩ Uj = ∅ for i �= j . Suppose that m = 3, t1 = 2, t2 =

3, t3 = 3, t = 12,and k = 2. We have the access structure � = {V ⊆ P : |V | ≥
12, |V ∩ Ui | ≥ ti , f or ∀i ∈ [3], |{i : |V ∩ Ui | > ti}| ≥ 2}. Let s ∈ Fq be the secret, we
design SSS for the � as follows:

Let f (x) = a0 + a1x, p1(y) = b1,0 + b1,1y + b1,2y
2, p2(y) = b2,0 + b2,1y + b2,2y

2 +
b2,3y

3, p3(y) = b3,0 + b3,1y + b3,2y
2 + b3,3y

3, R(z) = c1z + c2z
2. The coefficients

a0, a1, c1, c2, bi,j , 1 ≤ i ≤ 3, 1 ≤ j ≤ ti , were selected randomly from Fq such that
s = c1 + a0 + b1,1 + b2,1 + b3,1. Moreover, bi,0 = f (xi), 1 ≤ i ≤ 3, where xi ∈R Fq . Put
Qi(y, z) = pi(y) + R(z), 1 ≤ i ≤ 3.

The participant ui,j in Ui is uniquely identified by (xi, yi,j , zi,j ), where yi,j , zi,j ∈R Fq .
The dealer send Qi(yi,j , zi,j ) to ui,j as his share. We discuss the security of the above
scheme in the following cases.

Let V ⊆ P , V = 12, |V ∩ U1| = 2, |V ∩ U2| = 5 and |V ∩ U3| =
5. V is a minimal qualified set. The participants in V can construct the equation
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MX = F, where X = (a0, a1, b1,1, b1,2, b2,1, b2,2, b2,3, b3,1, b3,2, b3,3, c1, c2), F =
(Q1(y1,1, z1,1),Q1(y1,2, z1,2),Q2(y2,1, z2,1), · · · , Q2(y2,5, z2,5),Q3(y3,1, z3,1),

· · · , Q3(y3,5, z3,5)), and

M =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 x1 y1,1 y2
1,1 z1,1 z2

1,1
1 x1 y1,2 y2

1,2 z1,2 z2
1,2

1 x2 y2,1 y2
2,1 y3

2,1 z2,1 z2
2,1

1 x2 y2,2 y2
2,2 y3

2,2 z2,2 z2
2,2

...
...

...
...

1 x2 y2,5 y2
2,5 y3

2,5 z2,5 z2
2,5

1 x3 y3,1 y2
3,1 y3

3,1 z3,1 z2
3,1

1 x3 y3,2 y2
3,2 y3

3,2 z3,2 z2
3,2

...
...

...
...

1 x3 y3,5 y2
3,5 y3

3,5 z3,5 z2
3,5

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

12×12

So the probability of M = 0 is about 81/q, the participants in V can get the secret s with
probability 1 − 81/q. When q > 8.1 × 103, the probability of V can recover s is larger than
0.99.

Let V ⊆ P , |V | = 11, |V ∩ U1| = 2, |V ∩ U2| = 5 and |V ∩ U3| = 4. V is a maximal
unqualified set. In this case, V can construct M′X = F′, where X is the vector as above,
F′ is composed of the first 11 elements of the vector F and M′ is composed of the first
11 rows of M. Let e1 = (1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0), we need to prove that e1, most
probability, cannot be span by the rows of M′. After analysis, we get that the probability of∣
∣
∣
∣
e1
M′

∣
∣
∣
∣ = 0 is about 75/q. So V cannot get any information about the secret with probability

1 − 75/q approximately. Put V ⊆ P : |V | = n − |U1| + 1, |V ∩ U1| = 1, |V ∩ U2| = U2
and |V ∩ U3| = U3. V is a maximal unqualified set. In this case, there are only one linear
equation that related to the variable b1,1:

(
y1,1, y

2
1,1

)(
b1,1

b1,2

)

= Q(y1,1, z1,1) − R(z1,1) − f (x1).

But the equation has two variables b1,1, b1,2. So the participants cannot get any information
about b1,1. Then V cannot recover the secret.

Let V ⊆ P : |V ∩ U1| = U1 + 6, |V ∩ U2| = 3 and |V ∩ U3| = 3. V is a max-
imal unqualified set. In this case, participants from V ∩ U1 can recover b1,0 = f (x1),
while participants of V ∩ U2 have M2X = F, where X = (a0, a1, b2,1, b2,2, b2,3),
F = (

Q2(y2,1, z2,1) − R(z2,1),Q2(y2,2, z2,2) − R(z2,2),Q2(y2,3, z2,3) − R(z2,3)
)

and

M2 =
⎛

⎜
⎝

1 x2 y2,1 y2
2,1, y

3
2,1

1 x2 y2,2 y2
2,2, y

3
2,2

1 x2 y2,3 y2
2,3, y

3
2,3

⎞

⎟
⎠ .

The linear equation system has only three equations with four variables. So they cannot
recover b2,0 = f (x2) = a0+a1x2. Similarly, participants of V ∩U3 cannot get b3,0 = f (x3).
Up to now, V only get the value of f (x1). Hence V cannot recover a0, and V can not
reconstruct the secret further.
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5 Conclusions

We devised ideal secret sharing scheme for CASHC and SLCAS respectively. Our ideas
come from the bivariate interpolation [16]. Since these ASs are generations of some known
ASs, our proposed schemes may be suitable for much real-world scenarios. Although our
schemes have a probability of failure, but as we know the probability is negligible when the
cardinality of the finite field is big enough. Obviously, the complexity of the computation
of the SSS increase with the increase of the cardinality of the field. In the process of distri-
bution, we only need the operations of addition and multiplication. The share distribution
process is analogous to that of Shamir scheme. In the process of recovery, we need to solve
a system of linear equations. By using the Gauss elimination which needs O(n3) opera-
tions over the field, we can finish the reconstruction of the secret. In order to implement
the proposed scheme more easier, we can construct the tables of addition and multiplica-
tion operation over the finite field. The processes of distribution and reconstruction can be
speeded up by finding these tables.

We should note that the open problem in [9, 18] that finding ideal, perfect and efficient
SSS for these ASs are not solved here. So far there are not any ideal, efficient and perfect
(without the probability) schemes for these ASs. The skill in [17] may have some inspiration
for us. If we can allocate the identity of participant reasonably, we may get the deterministic
scheme for these ASs without the probability.
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