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Abstract In this paper, we give the complete weight enumerators of two classes of linear
codes over the finite field Fp , where p is a prime. These linear codes are the torsion codes of
MacDonald codes over the finite non-chain ring Fp + vFp , where v2 = v. We also employ
these linear codes to construct systematic authentication codes with new parameters.
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1 Introduction

Let Fq be a finite field with q elements. An [n, k, d] linear code C over Fq is a k-dimensional
subspace of Fn

q with minimal (Hamming) distance d. Let c = (c1, c2, · · · , cn) be a code-
word of C. The support of c is defined as supp(c) = {i : ci �= 0}. Then the (Hamming)
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weight w(c) of c is w(c) = |supp(c)|. Let Ai denote the number of codewords with
Hamming weight i in C. The weight enumerator of C is defined by

A0 + A1z + A2z
2 + · · · + Anz

n.

The definition of the complete weight enumerator of linear codes is given in [18, 19]. We
recall the definition as that in [15]. Let the elements of Fq be ω0 = 0, ω1, ω2, · · · , ωq−1.
The composition of a vector v = (v0, v1, · · · , vn−1) ∈ F

n
q is defined to be comp(v) =

(t0, t1, · · · , tq−1), where each ti = ti (v) is the number of components vj (0 ≤ j ≤ n − 1)

of v that are equal to ωi . Clearly,
q−1∑

i=0
ti = n. Let A(t0, t1, · · · , tq−1) be the number of

codewords c ∈ C with comp( c) = (t0, t1, · · · , tq−1). Then the complete weight enumerator
of C is the polynomial

WC(z0, z1, · · · , zq−1) =
∑

c∈C
z
t0(c)
0 z

t1(c)
1 · · · ztq−1(c)

q−1

=
∑

(t0,t1,··· ,tq−1)∈Bn

A(t0, t1, · · · , tq−1)z
t0
0 z

t1
1 · · · ztq−1

q−1,

where Bn =
{

(t0, t1, · · · , tq−1) : 0 ≤ ti ≤ n,
q−1∑

i=0
ti = n

}

. If we let z0 = 1, z1 = z2 =
· · · zq−1 = z, then the complete weight enumerator of C is the weight enumerator of C.
For binary linear codes, the complete weight enumerators are just the Hamming weight
enumerators.

The complete weight enumerators are applied to study the monomial and quadratic bent
functions [11]. It was pointed out that the complete weight enumerators can be used to cal-
culate the deception probabilities of certain authentication codes in [8, 9]. Blake and Kith
[3, 12] researched the complete weight enumerators of Reed-Solomon codes. The complete
weight enumerators of the generalized Kerdock code and related linear codes over Galois
rings are given by Kuzmin and Nechaev [13, 14]. Recently, the complete weight enumera-
tors of linear codes or cyclic codes over finite fields were studied in [2, 10, 15–17, 24–28].
The weight enumerators of the torsion codes of MacDonald codes over the finite non-chain
ring Fp + vFp , where p is a prime, have been given in [23], it was used to study the access
structure of secret sharing. To the best of our knowledge, the complete weight enumerators
of these torsion codes have not been studied.

In this paper, we will investigate the complete weight enumerators of the torsion codes of
MacDonald codes over the finite non-chain ring Fp + vFp . We will recall the definitions of
MacDonald codes and its torsion codes in Section 2. In Section 3, we will give the complete
weight enumerators of these torsion codes. Some applications of these complete weight
enumerators in authentication codes will be considered in Section 4.

2 MacDonald codes over Fp + vFp

Let R be the ring Fp + vFp, where p is a prime and v2 = v. Clearly, R is isomorphic to
the quotient ring Fp[v]/〈v2 − v〉. R is a commutative ring with identity and characteristic
p. For any element r ∈ R, there are unique a, b ∈ Fp such that r = a + bv. Further, R is
principal and has two maximal ideals 〈v〉 and 〈1 − v〉. It means that R is not a local ring,
which implies that R is a finite non-chain ring.
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In this section, we will recall the definitions of MacDonald codes overR and their torsion
codes. The MacDonald code is a punctured code of the simplex code. The MacDonald code
over F2 was first introduced by MacDonald [20]. The formal definition of the MacDonald
code and its torsion code will be given below. MacDonald codes from simplex codes of type
α over the ring F2 + vF2 with v2 = v could be found in [7]. In [5], MacDonald codes from
simplex codes of type α over the ring F3 + vF3 with v2 = 1 were given. Simplex codes
of type β over the ring F3 + vF3 with v2 = 1 were studied in [6]. Recently, the weight
enumerators of the torsion codes of MacDonald codes from simplex codes of type α and
type β over the ring R were given in [23].

In the following, we give the definition of the torsion code first. A linear code C over
R of length n is an R-submodule of Rn. For any linear code C over R , we have C =
(1 − v)H+ ⊕ vH−, where H+ = {s : ∃t ∈ F

n
p such that (1 − v)s + vt ∈ C} and

H− = {t : ∃s ∈ F
n
p such that (1 − v)s + vt ∈ C}. Clearly, H+ and H− are both linear

codes of length n over Fp. We define H+ and H− as the torsion codes of C.

2.1 MacDonald codes of type α

A type α simplex code Sα
k is a linear code over R. Its generator matrix Gα

k is constructed
inductively. Let Gα

k be a k × p2k matrix over R, where

and

Gα
1 = [0 1 · · · p − 1 v · · · v(p − 1) · · · (p − 1) + v · · · (p − 1) + v(p − 1)].

Lemma 1 [23] The torsion codes H+ and H− of Sα
k are permutation equivalent to each

other.

The MacDonald code of type α over the ring R can be constructed from the generator
matrix Gα

k of the simplex code Sα
k . For 1 ≤ u ≤ k − 1, let Gα

k,u be the matrix obtained from
Gα

k by deleting columns corresponding to the columns of Gα
u , i.e.

Gα
k,u =

[

Gα
k \ 0

Gα
u

]

(1)

where [A \ B] denotes the matrix obtained from the matrix A by deleting the matrix B, and
the size of 0 is (k − u) × p2u.

Definition 1 The code Cα
k,u generated by Gα

k,u is called a type α MacDonald code.

We can see that the code Cα
k,u is a linear code over the ring R of length p2k − p2u. Let

Cα
k,u,T be the torsion code of Cα

k,u. That is the generator matrix of Cα
k,u,T is obtained by

replacing (1− v) by 1 in the matrix (1− v)Gα
k,u. Similarly, we can get another torsion code

of Cα
k,u by replacing v by 1 in vGα

k,u. But, by Lemma 1, we know that the two torsion codes
are equivalent to each other. Therefore we only need to consider the former case, i.e. we
only study Cα

k,u,T , which is a [p2k − p2u, k] code [23].
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2.2 MacDonald codes of type β

The length of simplex codes of type α is large and increases fast. We can omit some columns
from Sα

k . A type β simplex code S
β
k is a linear code over R constructed by omitting some

columns from Gα
k .

Let λk be a matrix of size k × p2k−pk

p−1 over the ring R. Let λ1 = [1 2 · · · p − 1 v] and

Then λk is constructed inductively as follows

Let δk be a matrix of size k×p2k−pk

p−1 over the ring R. Let δ1 = [1 2 · · · p−1 p−1+v] and

Then δk is constructed inductively as follows

Let Gβ
k be the generator matrix of S

β
k . The size of G

β
k is k ×

(
pk−1
p−1

)2
. Let Gβ

1 = [1] and

Then Gβ
k is constructed inductively as follows

Therefore we have the following result similar to Lemma 1.

Lemma 2 [23] The torsion codes H+, H− of Sβ
k are permutation equivalent to each other.

We can construct type β MacDonald codes similar to the construction of type α Mac-
Donald codes in Definition 1. For 2 ≤ u ≤ k − 1, let Gβ

k,u be the matrix obtained from Gβ
k

by deleting columns corresponding to the columns of Gβ
u , i.e.

Gβ
k,u =

[

Gβ
k \ 0

Gβ
u

]

(2)

where [A \ B] denotes the matrix obtained from the matrix A by deleting the matrix B, and

the size of 0 is (k − u) ×
(

pu−1
p−1

)2
.
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Definition 2 The code Cβ
k,u generated by G

β
k,u is called a type β MacDonald code.

Let Cβ
k,u,T be the torsion code of Cβ

k,u. That is the generator matrix of Cβ
k,u,T is obtained

by replacing v by 1 in the matrix vGβ
k,u. Similarly, we can get another torsion code of Cβ

k,u

by replacing 1 − v by 1 in (1 − v)Gβ
k,u. But, from Lemma 2, we know that the two torsion

codes are equivalent to each other. So we only consider the former case, i.e., Cβ
k,u,T , whose

dimension is k [23].

3 The complete weight enumerators of torsion codes of MacDonald codes

For the convenience, we introduce some notations which will be used throughout the paper.
For a matrix G, let NG be the number of columns of G. Specially, NGα

0
= 1, NGβ

0
=

Nλ0 = Nδ0 = 0. Let (G)j denote the j th row of the matrix G, the composition of

(G)j be denoted by comp((G)j ). Let ηj and γj (j ≥ 1)be the integers pj−1−1
p−1 and

p2j−2−pj−1

p−1 respectively, where p is a prime. For any ωi ∈ F
∗
p, define the permutation

map τi : Fp → Fp, with τi(a) = ωi · a (mod p). Similarly, for any ωi ∈ Fp ,
define the permutation map τ ′

i : Fp → Fp, with τ ′
i (a) = ωi + a (mod p). For

a vector v = (v1, v2, · · · , vn) ∈ F
n
p , comp(v) = (t0, t1, · · · , tp−1), define τ ′

i (v) =
(τ ′

i (v1), τ
′
i (v2), · · · , τ ′

i (vn)), τi(v) = (τi(v1), τi(v2), · · · , τi(vn). It is clear that comp(v) =
comp(τ ′

i (v)) (resp. comp(v) = comp(τi(v))) if t0 = t1 = · · · = tp−1 (resp. t1 = t2 =
· · · = tp−1).

3.1 The complete weight enumerator of Cα
k,u,T

Let Gα
k,T be the matrix that is obtained by replacing (1 − v) by 1 in the matrix (1 − v)Gα

k .
Similarly, letGα

k,u,T be the generator matrix of Cα
k,u,T , that is,G

α
k,u,T is obtained by replacing

(1 − v) by 1 in the matrix (1 − v)Gα
k,u. Let g

α
i (1 ≤ i ≤ k) be the ith row of Gα

k,u,T . We
give the composition of each row of Gα

k,T , (G
α
k,T )i , and gα

i in the following results.

Proposition 1 comp((Gα
k,T )j ) = z

p2k−1

0 z
p2k−1

1 · · · zp2k−1

p−1 , 1 ≤ j ≤ k.

Proof The composition of the first row of Gα
k,T is z

pNGα
k−1

0 z
pNGα

k−1
1 · · · z

pNGα
k−1

p−1 . The com-

position of the j th row of Gα
k,T equals to (comp((Gα

k−j+1,T )1))
p2j−2

. Then, we have

comp((Gα
k,T )j ) = z

p2j−1NGα
k−j

0 z
p2j−1NGα

k−j

1 · · · z
p2j−1NGα

k−j

p−1 , 1 ≤ j ≤ k. The result is

obtained as NGα
k−j

= p2k−2j .

Proposition 2 For 1 ≤ u ≤ k − 1,

comp(gα
j ) =

⎧
⎨

⎩

z
p2k−1−p2u

0 z
p2k−1

1 · · · zp2k−1

p−1 if 1 ≤ j ≤ k − u,

z
p2k−1−p2u−1

0 z
p2k−1−p2u−1

1 · · · zp2k−1−p2u−1

p−1 if k − u + 1 ≤ j ≤ k.
(3)
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Proof For 1 ≤ j ≤ k − u, comp(gα
j ) = comp((Gα

k,T )j ) · z
−NGα

u

0 = comp((Gα
k,T )j ) · z

−p2u

0 .

For k − u + 1 ≤ j ≤ k, comp(gα
j ) = comp((Gα

k,T )j ) · [comp((Gα
u,T )j−k+u)]−1. Then, the

Eq. (3) holds immediately from Proposition 1.

Now, we consider the composition of the vector which is a linear combination of any two
rows of Gα

k,u,T .

Lemma 3 For any ω1, ω2 ∈ F
∗
p, and 1 ≤ i < j ≤ k, we have comp(ω1 · gα

i ) = comp(gα
i )

and comp(ω1 · gα
i + ω2 · gα

j ) = comp(gα
j ).

Proof By Proposition 2, we know that every element of F∗
p appears the same time in gα

j ,
where 1 ≤ j ≤ k. Moreover, τ1 is a permutation, so the frequency of every nonzero element
in τ1(gα

i ) is the same as that in gα
i , and hence comp(ω1 · gα

i ) = comp(gα
i ). The i-th row of

Gα
k,T is

(Gα
k,T )i = [(Gα

k−i+1,T )1, (Gα
k−i+1,T )1, · · · , (Gα

k−i+1,T )1
︸ ︷︷ ︸

p2i−2

].

For 0 ≤ l ≤ p − 1, let

the number of the block (Gα
k−j+1,T )1 in Ml is p2j−2i−2. Let

M=
⎡

⎢
⎣M0 M1 · · · Mp−1 M0 M0 · · · M0︸ ︷︷ ︸

p−1

M1 M1 · · · M1︸ ︷︷ ︸
p−1

· · · Mp−1 Mp−1 · · · Mp−1
︸ ︷︷ ︸

p−1

⎤

⎥
⎦

2×p2k−2i+2

.

We need to consider the following three cases.

Case 1: 1 ≤ i ≤ k − u and 2 ≤ j ≤ k − u. Let

the size of the M̂0 is 2× (p2k−2i −p2u) and the number of the block (Gα
k−j+1,T )1

in M̂0 is p2j−2i−2 − 1. Let

M̂=
⎡

⎢
⎣M̂0 M1 · · · Mp−1 M0 M0 · · · M0︸ ︷︷ ︸

p−1

M1 M1 · · · M1︸ ︷︷ ︸
p−1

· · · Mp−1 Mp−1 · · · Mp−1
︸ ︷︷ ︸

p−1

⎤

⎥
⎦ .
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the size of M̂ is 2 × (p2k−2i+2 − p2u). Then, we have

[
gα
i

gα
j

]

=
⎡

⎢
⎣M̂ M M · · · M︸ ︷︷ ︸

p2i−2−1

⎤

⎥
⎦

2×(p2k−p2u)

.

Case 2: 1 ≤ i ≤ k −u and k −u+1 ≤ j ≤ k. We need to change the structure of M̂0. Let

the number of the block (Gα
k−j+1,T )1 in M̂0 is p2j−2i−2 −p2u−2k+2j−2. Then the

structures of M̂ and

[
gα
i

gα
j

]

are the same as that in Case 1.

Case 3: k − u + 1 ≤ i < j ≤ k. In this case, we have
[
gα
i

gα
j

]

= [M M M · · · M]2×(p2k−p2u) ,

the number of the block M appears p2i−2 − p2u−2k+2i−2 times.

Every element in Fp appears the same number of times in (Gα
k−j+1,T )1, and τ , τ ′ are

permutation maps. So, for any ω1, ω2 ∈ F
∗
p , we have

comp(τ ′
τω1 (l)(τω2((G

α
k−j+1,T )1))) = comp(τ ′

ω(τω2((G
α
k−j+1,T )1)))

= comp(τω2((G
α
k−j+1,T )1))

= comp((Gα
k−j+1,T )1),

where ω = ω1 · l(mod p), 0 ≤ l ≤ p − 1. Hence, comp(ω1 · (Ml )1 + ω2 · (Ml )2) =
comp((Ml )2), for any 0 ≤ l ≤ p −1. Moreover, for the M̂0 in the above Case 1 and Case 2,
we have comp(ω1 · (M̂0)1 + ω2 · (M̂0)2) = comp(ω2 · (M̂0)2) = comp((M̂0)2). Until now,
we have proved that comp(ω1 · (M)1 + ω2 · (M)2) = comp((M)2) and comp(ω1 · (M̂)1 +
ω2 · (M̂)2) = comp((M̂)2). Then, from the structure of

[
gα
i

gα
j

]

in the aforementioned three

cases, we have comp(ω1 · gα
i + ω2 · gα

j ) = comp(gα
j ).

We give the complete weight enumerator of Cα
k,u,T , 1 ≤ u ≤ k − 1, in the following

result.

Theorem 1 Let 1 ≤ u ≤ k − 1. The complete weight enumerator of the torsion code Cα
k,u,T

is given by

WCα
k,u,T

(z0, z1, · · · , zp−1) = z
p2k−p2u

0 + (pk−u − 1)zp2k−1−p2u

0 z
p2k−1

1 z
p2k−1

2 · · · zp2k−1

p−1

+(pk − pk−u)z
p2k−1−p2u−1

0 z
p2k−1−p2u−1

1 z
p2k−1−p2u−1

2

· · · zp2k−1−p2u−1

p−1 .

Proof For any u = (u1, u2, · · · , uk) ∈ F
k
p, let iu = max{i : ui �= 0, 1 ≤ i ≤ k}. From

Lemma 3, we have comp(u · Gα
k,u,T ) = comp(gα

iu
). So, the number of codewords whose
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composition equals to comp(gα
i ) is pi−1(p − 1). Then, according to Proposition 2, we get

the complete weight enumerator of Gα
k,u,T as follows

WCα
k,u,T

(z0, z1, · · · , zp−1) = z
p2k−p2u

0 +
k−u∑

i=1

pi−1(p − 1)comp(gα
1 )

+
k∑

i=k−u+1

pi−1(p − 1)comp(gα
k−u+1)

= z
p2k−p2u

0 + (pk−u − 1)zp2k−1−p2u

0 z
p2k−1

1 z
p2k−1

2 · · · zp2k−1

p−1

+(pk − pk−u)z
t0
0 z

t0
1 z

t0
2 · · · zt0

p−1,

where t0 = p2k−1 − p2u−1.

Let z0 = 1, z1 = z2 = · · · zp−1 = z. Then we get the Hamming weight distribution of
Cα

k,u,T , which is consistent with that in [23].

Example 1 Let p = 3, k = 3, u = 1. Then from Theorem 1, we have the complete weight
enumerator of Cα

3,1,T as follows

WCα
3,1,T

= z7200 + 8z2340 z2431 z2432 + 18z2400 z2401 z2402 .

For u = 2, the complete weight enumerator of Cα
3,2,T is

WCα
3,2,T

= z6480 + 2z1620 z2431 z2432 + 24z2160 z2161 z2162 .

Both of the two results are consistent with numerical computation by the Magma Computa-
tional Algebra System [4].

3.2 The complete weight enumerators of Cβ

k,u,T

Let Ĝ
α

k,T be the matrix that is obtained by replacing v by 1 in the matrix vGα
k . Similarly,

let Gβ
k,u,T be the generator matrix of Cβ

k,u,T , that is, G
β
k,u,T is obtained by replacing v by

1 in the matrix vGβ
k,u. Let G

β
k,T (resp. λk,T , δk,T ) denote the matrix which is obtained by

replacing v by 1 in the matrix vGβ
k (vλk, vδk). Let g

β
i (1 ≤ i ≤ k) be the ith row of Gβ

k,u,T .
For these matrices, we give the composition of their rows first.

Proposition 3 For k ≥ 1, we have

comp((Ĝ
α

k,T )1) = z
p2k−1

0 z
p2k−1

1 · · · zp2k−1

p−1 ,

comp((λk,T )1) = z

p2k−1−pk

p−1
0 z

2p2k−2

1 z
p2k−2

2 · · · zp2k−2

p−1 ,

comp((δk,T )1) = z

p2k−1−pk−1

p−1
0 · · · z

p2k−1−pk−1

p−1
p−1 ,

comp((Gβ
k,T )1) = z

N
Gβ

k−1
+Nλk−1

0 z

p2k−1−pk−1

p−1
1 .
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For 1 ≤ j ≤ k, we have

comp((Ĝ
α

k,T )j ) = (comp(Ĝ
α

k−j+1,T )1)
p2j−2

,

comp((Gβ
k,T )j ) = comp((Gα

k−j+1,T )1)
N
Gβ

j−1 · comp((δk−j+1,T )1)
ηj

·comp((λk−j+1,T )1)
ηj · comp((Gβ

k−j+1,T )1),

comp((λk,T )j ) = (comp(λk−j+1,T )1)
pj−1 · (comp(Ĝ

α

k−j+1,T )1)
Nλj−1 ,

comp((δk,T )j ) = (comp(δk−j+1,T )1)
pj−1 · (comp(Ĝ

α

k−j+1,T )1)
Nδj−1 .

Proof Here, we only give the calculation of the composition of (Gβ
k,T )j , as the others are

easy to verify. Here, we only give the calculation of the composition of (Gβ
k,T )j , as the

others are easy to verify.

comp((Gβ
k,T )j ) = comp((Ĝ

α

k−1,T )j−1) · comp((δk−1,T )j−1) · comp((λk−1,T )j−1) · comp((Gβ

k−1,T )j−1)

= comp((Ĝ
α

k−1,T )j−1) · comp((δk−1,T )j−1) · comp((λk−1,T )j−1)

·comp((Ĝ
α

k−2,T )j−2) · comp((δk−2,T )j−2) · comp((λk−2,T )j−2) · comp((Gβ

k−2,T )j−2)

.

.

.

=
j−1∏

i=1

comp((Ĝ
α

k−j+i,T )i ) ·
j−1∏

i=1

comp((δk−j+i,T )i ) ·
j−1∏

i=1

comp((λk−j+i,T )i ) · comp((Gβ

k−j+1,T )1)

= comp((Ĝ
α

k−j+1,T )1)

j−2∑

t=0
p2t

· comp((δk−j+1,T )1)

j−2∑

t=0
pt

· comp((Ĝ
α

k−j+1,T )1)

j−1∑

l=2

2l−3∑

t=l−1
pt

·comp((λk−j+1,T )1)

j−2∑

t=0
pt

· comp((Ĝ
α

k−j+1,T )1)

j−1∑

l=2

2l−3∑

t=l−1
pt

· comp((Gβ

k−j+1,T )1).

= comp((Ĝ
α

k−j+1,T )1)

j−2∑

t=0
p2t +2

j−1∑

l=2

2l−3∑

t=l−1
pt

· comp((δk−j+1,T )1)
ηj

·comp((λk−j+1,T )1)
ηj · comp((Gβ

k−j+1,T )1).

= comp((Ĝ
α

k−j+1,T )1)
N
Gβ

j−1 · comp((δk−j+1,T )1)
ηj · comp((λk−j+1,T )1)

ηj · comp((Gβ

k−j+1,T )1).

In the last equality we use the equation
j−2∑

t=0
p2t + 2

j−1∑

l=2

2l−3∑

t=l−1
pt = NGβ

j−1
.

We give the composition of gβ
j , 1 ≤ j ≤ k, in the following result.

Proposition 4 For k ≥ 1, 1 ≤ u ≤ k − 1,

comp(gβ

1 ) = z

N
G

β
k−1

−N
G

β
u
+Nλk−1

0 z
NGα

k−1
+Nδk−1

1 .

If 2 ≤ j ≤ k − u,

comp(gβ
j ) = z

ηk+1ηk−N
Gβ

u

0 z
pk−j (ηk+j−1+ηj ηk+pk−j (ηj +1))
1

z
ηk(ηk−ηk−j+1)+p2k−2j η2j−1
2 · · · zηk(ηk−ηk−j+1)+p2k−2j η2j−1

p−1 ,
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and if k − u + 1 ≤ j ≤ k,

comp(gβ
j ) = z

ηk+1ηk−ηu+1ηu

0 z
pk−j (ηk+j−1+ηj ηk−η2u+j−k−1−ηj−k+uηu+pk−j (ηj −ηj−k+u))

1

z
ηk(ηk−ηk−j+1)−ηu(ηu−ηk−j+1)+p2k−2j (η2j−1−η2j−2k+2u−1)

2 · · ·
z
ηk(ηk−ηk−j+1)−ηu(ηu−ηk−j+1)+p2k−2j (η2j−1−η2j−2k+2u−1)

p−1 .

Proof The composition of gβ

1 can be calculated directly from the structure of Gβ
k,u,T . For

2 ≤ j ≤ k − u,

comp(gβ
j ) = comp((Gβ

k,T )j ) · z
−N

Gβ
u

0

= comp((Ĝ
α

k−j+1,T )1)
N
Gβ

j−1 · comp((δk−j+1,T )1)
ηj · comp((λk−j+1,T )1)

ηj · comp((Gβ

k−j+1,T )1) · z
−N

Gβ
u

0

=
(

z
pNGα

k−j,T

0 z
pNGα

k−j,T

1 · · · z
pNGα

k−j,T

p−1

)N
Gβ

j−1 ·
(

z
Nδk−j

+NGα
k−j

0 z
Nδk−j

+NGα
k−j

1 · · · z
Nδk−j

+NGα
k−j

p−1

)ηj

·
(

z
pNλk−j

0 z
2NGα

k−j

1 z
NGα

k−j

2 · · · z
NGα

k−j

p−1

)ηj

·
(

z

N
Gβ

k−j

+Nλk−j

0 z
NGα

k−j
+Nδk−j

1

)

· z
−N

Gβ
u

0

= z
ηk+1ηk−N

Gβ
u

0 z
pk−j (ηk+j−1+ηj ηk+pk−j (ηj +1))
1 z

ηk(ηk−ηk−j+1)+p2k−2j η2j−1
2

· · · zηk(ηk−ηk−j+1)+p2k−2j η2j−1
p−1 .

If k −u+1 ≤ j ≤ k, we can calculate the composition of gβ
j in the same way, and we have

comp(gβ
j ) = comp((Gβ

k,T )j ) ·
(
comp((Gβ

u,T )j−k+u)
)−1

= comp((Ĝ
α

k−j+1,T )1)
N
Gβ

j−1 · comp((δk−j+1,T )1)
ηj · comp((λk−j+1,T )1)

ηj

·comp((Gβ

k−j+1,T )1) ·
(
comp((Gβ

u,T )j−k+u)
)−1

...

= z
ηk+1ηk−ηu+1ηu

0 z
pk−j (ηk+j−1+ηj ηk−η2u+j−k−1−ηj−k+uηu+pk−j (ηj −ηj−k+u))

1

z
ηk(ηk−ηk−j+1)−ηu(ηu−ηk−j+1)+p2k−2j (η2j−1−η2j−2k+2u−1)

2 · · ·
z
ηk(ηk−ηk−j+1)−ηu(ηu−ηk−j+1)+p2k−2j (η2j−1−η2j−2k+2u−1)

p−1 .

For 0 ≤ i, j ≤ p − 1 and v ∈ F
n
p , suppose that the composition of v

is z
t0
0 z

t1
1 · · · ztp−1

p−1. We define the map f(i↔j) by f(i↔j)(comp(v)) = z
t0
0 z

t1
1 · · · zti−1

i−1

z
tj
i z

ti+1
i+1 · · · ztj−1

j−1z
ti
j z

tj+1
j+1 · · · ztp−1

p−1. The map f(i↔j) exchanges the power of zi and the power

of zj in the composition of v. Before we give the complete enumerator of Gβ
k,u,T , we need

the following results.
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We first study the composition of ω1 · v, where ω1 ∈ F
∗
p , v is a row vector of

Ĝ
α

k,T (resp. λk,T , δk,T ,Gβ
k,T ).

Lemma 4 For any 1 ≤ i ≤ k and ω1 ∈ F
∗
p , we have

comp(ω1(Ĝ
α

k,T )i) = comp((Ĝ
α

k,T )i),

comp(ω1(δk,T )i)) = comp((δk,T )i),

comp(ω1(λk,T )i)) = f(1↔ω1)(comp((λk,T )i)),

comp(ω1(G
β
k,T )i) = f(1↔ω1)(comp((G

β
k,T )i)).

Proof It is easy to verify that every element of Fp appears the same number of times in

(Ĝ
α

k,T )i and (δk−1,T )i . Since τ1 is a permutation on F
∗
p , then we have comp(ω1(Ĝ

α

k,T )i) =
comp((Ĝ

α

k,T )i) and comp(ω1(δk−1,T )i)) = comp((δk−1,T )i).
We prove the other two equalities by induction. Clearly, for k = 1 and i = 1,

comp(ω1(λ1,T )1) = f(1↔ω1)(comp((λ1,T )1)) holds. Suppose that comp(ω1(λk−1,T )i) =
f(1↔ω1)(comp((λk−1,T )i)) for 1 ≤ i ≤ k − 1. Then, for 1 ≤ i ≤ k, we have

comp(ω1(λk,T )i) = (
comp(ω1(λk−1,T )i−1)

)p ·
(
comp(ω1(Ĝ

α

k−1,T )i−1)
)p

= (
f(1↔ω1)(comp((λk−1,T )i−1))

)p ·
(
comp((Ĝ

α

k−1,T )i−1)
)p

= f(1↔ω1)

(
(comp((λk−1,T )i−1))

p · comp((Ĝ
α

k−1,T )i−1)
p
)

= f(1↔ω1)((comp((λk,T )i))).

Similarly, we can also prove the last equality by induction. For k = i = 1, the result is
obvious. Suppose that comp(ω1(G

β

k−1,T )i) = f(1↔ω1)(comp((Gβ

k−1,T )i)) for 1 ≤ i ≤ k−1.
Then, for 1 ≤ i ≤ k, we have

comp(ω1(G
β
k,T )i ) =

(
comp(ω1(Ĝ

α

k−1,T )i−1)
)

·
(
comp(ω1(G

β

k−1,T )i−1)
)

· (
comp(ω1(δk−1,T )i−1)

)

· (comp(ω1(λk−1,T )i−1)
)

=
(
comp((Ĝ

α

k−1,T )i−1)
)

·
(
f(1↔ω1)(comp((Gβ

k−1,T )i−1))
)

· (
comp((δk−1,T )i−1)

)

· (f(1↔ω1)(comp((λk−1,T )i−1))
)

= f(1↔ω1)

(
comp((Ĝ

α

k−1,T )i−1) · comp((Gβ

k−1,T )i−1) · comp((δk−1,T )i−1) · comp((λk−1,T )i−1))
)

.

= f(1↔ω1)

(
comp((Gβ

k,T )i )
)

.

Now, we investigate the composition of the vector which is a linear combination of any
two rows in Ĝ

α

k,T (resp. λk,T , δk,T ,Gβ
k,T ).

Lemma 5 For any 1 ≤ i < j ≤ k, and ω1, ω2 ∈ F
∗
p , we have

comp(ω1(Ĝ
α

k,T )i + ω2(Ĝ
α

k,T )j ) = comp((Ĝ
α

k,T )j ), (4)

comp(ω1(δk,T )i + ω2(δk,T )j ) = comp((δk,T )j ), (5)
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comp(ω1(λk,T )i + ω2(λk,T )j ) = f(1↔ω2)(comp((λk,T )j )), (6)

comp(ω1(G
β
k,T )i + ω2(G

β
k,T )j ) = f(1↔ω2)(comp((G

β
k,T )j )). (7)

Proof The Eq. (4) can be proved by the method used in Lemma 3, since Ĝ
α

k,T has the similar
structure as Gα

k,T . Actually, by Lemma 1, they are equivalent to each other. Hence, the
Eq. (4) immediately follows from Lemma 3. Next, we will prove the rest three equations by
induction. For k = 2, i = 1, j = 2, it is easy to see that the Eq. (5), (6) and (7) are correct.
Assuming that the Eq. (5) is suitable for 1 ≤ i < j ≤ k − 1. Then, if 1 ≤ i < j ≤ k, the
composition of ω1(δk,T )i + ω2(δk,T )j is

comp(ω1(δk,T )i + ω2(δk,T )j ) = (comp(ω1(δk−1,T )i−1 + ω2(δk−1,T )j−1))
p

·(comp(ω1(Ĝ
α

k−1,T )i−1 + ω2(Ĝ
α

k−1,T )j−1))
p

= (comp(δk−1,T )j−1)
p · (comp(Gk−1,T α )j−1)

p

= comp((δk,T )j ).

Up to now, we have proved the Eq. (5). Similarly, assuming that the Eq. (6) is correct for
1 ≤ i < j ≤ k − 1. Then, for 1 ≤ i < j ≤ k, we have

comp(ω1(λk,T )i + ω2(λk,T )j ) = (comp(ω1(λk−1,T )i−1 + ω2(λk−1,T )j−1))
p

·(comp(ω1(Ĝ
α

k−1,T )i−1 + ω2(Ĝ
α

k−1,T )j−1))
p

= (f(1↔ω2)(comp(λk−1,T )j−1))
p · (comp(Gk−1,T α )j−1)

p

= f(1↔ω2)

(
(comp(λk−1,T )j−1)

p · (comp(Gk−1,T α )j−1)
p
)

= f(1↔ω2)(comp((λk,T )j )).

So, the Eq. (6) is correct. Lastly, for Eq. (7), assuming that it is correct when 1 ≤ i < j ≤
k − 1, then, if 1 ≤ i < j ≤ k, we have

comp(ω1(G
β
k,T )i + ω2(G

β
k,T )j ) = comp(ω1(Ĝ

α

k−1,T )i−1 + ω2(Ĝ
α

k−1,T )j−1) · comp(ω1(G
β

k−1,T )i−1

+ ω2(G
β

k−1,T )j−1) · comp(ω1(δk−1,T )i−1 + ω2(δk−1,T )j−1) · comp(ω1(λk−1,T )i−1 + ω2(λk−1,T )j−1)

= comp((Ĝ
α

k−1,T )j−1) ·
(
f(1↔ω2)(comp((Gβ

k−1,T )j−1))
)

· comp((δk−1,T )j−1)

· (f(1↔ω2)(comp((λk−1,T )j−1))
)

= f(1↔ω2)(comp((Ĝ
α

k−1,T )j−1) · comp((Gβ

k−1,T )j−1) · comp((δk−1,T )j−1) · comp((λk−1,T )j−1))

= f(1↔ω2)(comp((Gβ
k,T )j )).

Based on the above results, we can give the composition of the linear combination of gβ
i

and gβ
j .

Lemma 6 For any 1 ≤ i < j ≤ k and ω1, ω2 ∈ F
∗
p , we have comp(ω1 · gβ

i ) =
f(1↔ω1)(comp(g

β
i )) and comp(ω1g

β
i + ω2g

β
j ) = f(1↔ω2)(comp(g

β
j )).
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Proof When i = 1, it is straightforward to show that comp(ω1 ·gβ

1 ) = f(1↔ω1) (comp(gβ

1 )).
If 2 ≤ i ≤ k − u, by Lemma 4, then we have

comp(ω1 · gβ
i ) = comp(ω1(Ĝ

α

k−1,T )i−1) · comp(ω1(G
β

k−1,u,T )i−1)

·comp(ω1(δk−1,T )j−1) · comp(ω1(λk−1,T )j−1)

= comp((Ĝ
α

k−1,T )i−1 · f(1↔ω1)(comp((Gβ

k−1,T )i−1)) · z
−N

Gβ
u

0

·comp((δk−1,T )j−1) · f(1↔ω1)(comp((λk−1,T )j−1))

= f(1↔ω1)(comp((Gβ
k,T )i) · z

−N
Gβ

u

0 )

= f(1↔ω1)(comp(gβ
i )).

Similarly, if k − u + 1 ≤ i ≤ k, then we have

comp(ω1 · gβ
i ) = comp(ω1(Ĝ

α

k−1,T )i−1) · comp(ω1(G
β

k−1,u,T )i−1)

·comp(ω1(δk−1,T )j−1) · comp(ω1(λk−1,T )j−1)

= comp((Ĝ
α

k−1,T )i−1 · f(1↔ω1)

(

comp((Gβ

k−1,T )i−1) ·
(
comp((Gβ

u,T )i−k+u)
)−1

)

·comp((δk−1,T )j−1) · f(1↔ω1)(comp((λk−1,T )j−1))

= f(1↔ω1)

(

comp((Gβ
k,T )i) ·

(
comp((Gβ

u,T )i−k+u)
)−1

)

= f(1↔ω1)(comp(gβ
i )).

Until now, we have proved the first part of the Lemma. For the second part, there are three
cases to be considered.

Case 1: 1 ≤ i ≤ k − u, 2 ≤ j ≤ k − u. In this case, we have

comp(ω1g
β
i + ω2g

β
j ) = comp(ω1(G

β
k,T )i + ω2(G

β
k,T )j ) · z

−N
Gβ

u

0

= f(1↔ω2)

(
(Gβ

k,T )j

)
· z

−N
Gβ

u

0

= f(1↔ω2)

(

(Gβ
k,T )j · z

−N
Gβ

u

0

)

= f(1↔ω2)

(
(Gβ

k,u,T )j

)
= f(1↔ω2)(comp(gβ

j )).

Case 2: 1 ≤ i ≤ k − u, k − u + 1 ≤ j ≤ k. In this case,

comp(ω1g
β
i + ω2g

β
j ) = comp(ω1(G

β
k,T )i + ω2(G

β
k,T )j ) ·

(
comp(ω2(G

β
u,T )j−k+u)

)−1

= f(1↔ω2)

(
(Gβ

k,T )j

)
·
(
f(1↔ω2)

(
comp(Gβ

u,T )j−k+u

))−1

= f(1↔ω2)

(

(Gβ
k,T )j ·

(
comp(Gβ

u,T )j−k+u

)−1
)

= f(1↔ω2)

(
(Gβ

k,u,T )j

)
= f(1↔ω2)(comp(gβ

j )).
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Case 3: k − u + 1 ≤ i < j ≤ k. In this case,

comp(ω1g
β
i + ω2g

β
j ) = comp(ω1(G

β
k,T )i + ω2(G

β
k,T )j )

·
(
comp

(
ω1(G

β
u,T )i−k+u + ω2(G

β
u,T )j−k+u

))−1

= f(1↔ω2)

(
(Gβ

k,T )j

)
·
(
f(1↔ω2)

(
comp(Gβ

u,T )j−k+u

))−1

= f(1↔ω2)

(

(Gβ
k,T )j ·

(
comp(Gβ

u,T )j−k+u

)−1
)

= f(1↔ω2)

(
(Gβ

k,u,T )j

)
= f(1↔ω2)(comp(gβ

j )).

The proof is completed.

Now, we can give the complete weight enumerator of Cβ
k,u,T .

Theorem 2 Let 1 ≤ u ≤ k − 1. The complete weight enumerator of the torsion code Cβ
k,u,T

is given by

WCβ
k,u,T

(z0, z1, · · · , zp−1) = z

N
Gβ

k,u

0 +
k∑

j=1

pj−1
j , (8)

where 
j =
p−1∑

i=1
f(1↔i)(comp(g

β
j )) and comp(gβ

j ) is the composition in Proposition 4.

Proof For any u = (u1, u2, · · · , uk) ∈ F
k
p , let iu = max{i : ui �= 0, 1 ≤ i ≤ k}. By

Lemma 6, we have comp(u · Gβ
k,u,T ) = f(1↔uiu )comp(gβ

iu
). So, the number of codewords

whose composition equals to f(1↔ωi)(comp(gβ
i )) is pi−1, where 1 ≤ ωi ≤ p−1, 1 ≤ i ≤ k.

Hence, the complete weight enumerator of Cβ
k,u,T is

WCβ
k,u,T

(z0, z1, · · · , zp−1) = z

N
Gβ

k,u

0 + comp(gβ

1 ) + f(1↔2)(comp(gβ

1 )) + · · ·
+f(1↔p−1)(comp(gβ

1 ))

+p
(
comp(gβ

2 ) + f(1↔2)(comp(gβ

2 ))

+ · · · + f(1↔p−1)(comp(gβ

2 ))
)

+ · · · + pk−1
(
comp(gβ

k ) + f(1↔2)(comp(gβ
k ))

+ · · · + f(1↔p−1)(comp(gβ
k ))

)

= z

N
Gβ

k,u

0 +
k∑

j=1

pj−1
j
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where 
j =
p−1∑

i=1
f(1↔i)(comp(gβ

j )). There are together pk compositions of all the pk code-

words. We can only give the complete weight enumerator of the code like Eq. (8), since the
exact expansion of the WCβ

k,u,T

(z0, z1, · · · , zp−1) is complex.

Let z0 = 1, z1 = · · · = zp−1 = z in Eq. (8). Then we have WCβ
k,u,T

(z0, z1, · · · , zp−1)

= WCβ
k,u,T

(z) = 1+(pk−u−1)z
N
Gβ

k

−ηk+1ηk +(pk−pk−u)z
(N

Gβ
k

−ηk+1ηk)−(N
Gβ

u
−ηu+1ηu)

, which

is the Hamming weight distribution of Cβ
k,u,T . The result is consistent with that in [23].

Example 2 Let p = 3, k = 3, u = 1. By Theorem 2, we get the complete weight
enumerator of Cβ

3,1,T as follows

WCβ
3,1,T

(z0, z1, z2) = z1680 + z510 z1171 + z510 z1172 + 3z510 z691 z482 + 3z510 z481 z692

+9z520 z601 z562 + 9z520 z561 z602 .

For u = 2, by Theorem 2, we have the complete weight enumerator of Cβ

3,2,T as follows

WCβ
3,2,T

(z0, z1, z2) = z1530 + z360 z1171 + z360 z1172 + 3z480 z571 z482 + 3z480 z481 z572

+9z480 z541 z512 + 9z480 z511 z542 .

These results are consistent with numerical computation by the Magma Computational
Algebra System [4].

4 Authentication codes from Cα
k,u,T

and Cβ

k,u,T

A systematic authentication code is a four-tuple (S,T ,K, {Ek : k ∈ K}), where S is the
source state space, T is the tag space, K is the key space and Ek : S → T is called
an encoding rule. We assume that the key space and source state space have a uniform
probability distribution. We use PI and PS to denote the maximum success probabilities
with respect to the impersonation and substitution attacks. The reader is referred to [8, 9,
21, 22] for more introductions to the authentication code. For the systematic authentication
code, there are two lower bounds on PI and PS [21]: PI ≥ 1

|T | , and PS ≥ 1
|T | . In general,

it is required that PI and PS are as small as possible. The systematic authentication code
with PI = PS = 1

|T | is called optimal. It is also desired that |K| must be as small as
possible when the values PI and PS are fixed. In [9], a generic coding-theory construction
of systematic authentication codes is presented as described below.

Let C be an [n, k, d] linear code over Fp. We use ci = (ci,1, ci,2, · · · , ci,n) to denote a
codeword of C, 1 ≤ i ≤ pk . Define a systematic authentication code as follows

(S,T ,K, {Ek : k ∈ K}) = (Zpk ,Fp,Zn × Fp, {Ek : k ∈ K}), (9)

where for any k = (k1, k2) ∈ K and s ∈ S , Ek(s) = cs,k1 + k2.

Lemma 7 [9] For the systematic authentication code of (9), we have

PI = 1

p
and PS = max

0�=c∈C
max
u∈Fp

N(c, u)

n
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where N(c, u) denotes the number of times u occurs in the codeword c. Futhermore, we
have |S| = pk , |T | = p and |K| = np.

We use Cβ

k,u,T to denote the code with generator matix [gβ

2 , gβ

3 , · · · , gβ
k ]T . Clearly, Cβ

k,u,T

is a subcode of Cβ
k,u,T . Now, we consider the parameters of the authentication code con-

structed by the code Cα
k,u,T and Cβ

k,u,T respectively. By Theorems 1 and 2 and Lemma 7, we
have the following results immediately.

Theorem 3 Let C be the code Cα
k,u,T , where k ≥ 2, 1 ≤ u ≤ k − 1. Then for the

authentication code of (9), we have

PI = 1

p
and PS = 1

p
+ 1

p2k−2u+1 − p
.

Furthermore, |S| = pk , |T | = p and |K| = p(p2k − p2u).

Theorem 4 Let C be the code Cβ

k,u,T , where k ≥ 2, 1 ≤ u ≤ k − 1. Then for the
authentication code of (9), we have

PI = 1

p
and

PS =
⎧
⎨

⎩

p2k−1+3p2k−2−3pk−1−6p2k−3+3pk−2+2p2k−4

p2k−2pk−p2u+2pu if 1 ≤ u ≤ k − 2,
1
p

+ pk−1−2pk−2+1
pk+1+pk−2p

if u = k − 1.

Furthermore, |S| = pk−1, |T | = p and |K| = p(pk−1)2−p(pu−1)2

(p−1)2
.

A systematic authentication code has five parameters. In many cases, it is impossible to
compare two classes of authentication codes. It is difficult to say which is better when two
authentication codes are not comparable. We will compare our codes in Theorems 3 and 4
with the code of Theorem 3 in [9]. Let p be an odd prime, k = 2 and u = 1. Then the code
of Theorem 3 becomes

|S| = p2, |T | = p, |K| = p5 − p3, PI = 1

p
, PS = 1

p
+ 1

p3 − p
.

If we take m = 4, then the code of Theorem 3 in [9] with the following parameters

|S| = p4, |T | = p, |K| = p(p5 − 1)

2
, PI = 1

p
, PS = 1

p
+ p − 1

p(p2 + 1)
.

Similarly, let k = 2, u = 1. Then the code of Theorem 4 becomes

|S| = p, |T | = p, |K| = p3 + 2p2, PI = 1

p
, PS = 1

p
+ 1

p2 + 2p
.

If we take m = 3, then the code of Theorem 3 in [9] with the following parameters

|S| = p3, |T | = p, |K| = p(p3 − 1)

2
, PI = 1

p
, PS = 1

p
+ 1

p3/2 − 1
.

In these cases, we can see that both the key space and the PS of our codes are smaller than
that in [9]. Unfortunately, our source state space are also smaller than theirs’. However, for
the device with very limited storage and power, for example, the wireless sensor network
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and RFID tag, the source state space may be small. In this case, our authentication codes
may be better than that in [9].

Note that the parameters of the authentication codes in Theorems 3 and 4 are new, and
both of them are asymptotically optimal if pk is large enough.

5 Conclusions

In this paper, we investigate the complete weight enumerators of the torsion codes of Mac-
Donald codes over the finite non-chain ring Fp + vFp . These torsion codes are linear codes
over the finite field Fp . We calculate the composition of the rows in the generator matrix
first. Then, we analysis the composition of the linear combination of these rows. We give
the complete weight enumerators without using exponential sums, since these torsion codes
have good structures. We believe our method can be used to study other linear codes which
have the similar good structures as the torsion codes in this paper. As an application, we
employed these linear codes to construct authentication codes with new parameters.
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