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Abstract Recently, linear codes constructed from defining sets have been investigated
extensively and they have many applications. In this paper, for an odd prime p, we propose
a class of p-ary linear codes by choosing a proper defining set. Their weight enumerators
and complete weight enumerators are presented explicitly. Our results show that they are
linear codes with three weights and suitable for the constructions of authentication codes
and secret sharing schemes.
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1 Introduction

Throughout this paper, let p be an odd prime and r = pm for an integer m � 2. Denote
by Fr a finite field with r elements. An [n, κ, δ] linear code C over Fp is a κ-dimensional
subspace of Fn

p with minimum distance δ (see [8, 27]).
Let Ai denote the number of codewords with Hamming weight i in a linear code C of

length n. The weight enumerator of C is defined by A0 + A1z + A2z
2 + · · · + Anz

n, where
A0 = 1. The sequence (1, A1, A2, · · · , An) is called the weight distribution of the code C.

The complete weight enumerator of a code C over Fp enumerates the codewords
according to the number of symbols of each kind contained in each codeword. Denote
elements of the field by Fp = {w0, w1, · · · , wp−1}, where w0 = 0. For a vector v =
(v0, v1, · · · , vn−1) ∈ F

n
p, the composition of v, denoted by comp(v), is defined as

comp(v) = (k0, k1, · · · , kp−1),

where kj is the number of components vi(0 � i � n − 1) of v that equal to wj . It is easy

to see that
∑p−1

j=0 kj = n. Let A(k0, k1, · · · , kp−1) be the number of codewords c ∈ C with
comp(c) = (k0, k1, · · · , kp−1). Then the complete weight enumerator of the code C is the
polynomial

CWE(C) =
∑

c∈C

w
k0
0 w

k1
1 · · ·wkp−1

p−1

=
∑

(k0,k1,··· ,kp−1)∈Bn

A(k0, k1, · · · , kp−1)w
k0
0 w

k1
1 · · ·wkp−1

p−1 ,

where Bn =
{
(k0, k1, · · · , kp−1) : 0 � kj � n,

∑p−1
j=0 kj = n

}
.

The weight distributions of linear codes have been well studied in the literature (see [12,
16, 17, 26, 29, 31, 32, 35–38] and references therein). The information of the complete
weight enumerators of linear codes is of vital use because they not only give the weight
enumerators but also show the frequency of each symbol appearing in each codeword.
Therefore, they have many applications. Blake and Kith investigated the complete weight
enumerator of Reed-Solomon codes and showed that they could be helpful in soft deci-
sion decoding [4, 20]. In [18], the study of the monomial and quadratic bent functions was
related to the complete weight enumerators of linear codes. It was illustrated by Ding et al.
[10, 11] that complete weight enumerators can be applied to the calculation of the deception
probabilities of certain authentication codes. In [6, 7, 13], the authors studied the complete
weight enumerators of some constant composition codes and presented some families of
optimal constant composition codes.

However, it is extremely difficult to evaluate the complete weight enumerators of linear
codes in general and there is little information on this topic in the literature besides the
above mentioned [4, 6, 7, 13, 20]. Kuzmin and Nechaev investigated the generalized Ker-
dock code and related linear codes over Galois rings and determined their complete weight
enumerators in [21] and [22]. Further recent progress on the complete weight enumerators
of linear codes can be found in [1, 2, 19, 23, 24, 33]. The results of [1] and [2] can be viewed
as generalizations of [34] and [15], respectively. In [19, 23, 24, 33], the authors treated
the complete weight enumerators of some linear or cyclic codes using exponential sums
and Galois theory. Recently Tang et al. constructed linear codes with two or three weights
from weakly regular bent functions in [30]. We shall extend this construction to non-bent
functions.
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The authors of [9, 14, 15] gave the generic construction of linear codes. Set D̄ =
{d1, d2, · · · , dn} ⊆ Fr . Denote by Tr the absolute trace function. A linear code associated
with D̄ is defined by

CD̄ = {(Tr(ad1),Tr(ad2), · · · ,Tr(adn)) : a ∈ Fr }.
Then D̄ is called the defining set of this code CD̄ .

Motivated by the above construction and the idea of [30], we define linear codes CD and
CD1 by

CD = {(Tr(ax2))x∈D : a ∈ Fr }, (1)

CD1 = {(Tr(ax2))x∈D1 : a ∈ Fr },
where

D = {x ∈ F
∗
r : Tr(x) ∈ Sq},

D1 = {x ∈ F
∗
r : Tr(x) ∈ Nsq},

which are called defining sets. Here Sq and Nsq denote the set of all squares and non-
squares in F∗

p , respectively. By definition, these codes have length n = (p − 1)pm−1/2 and
dimension at most m. Further, we will demonstrate that CD is equal to CD1 . Actually, for a
fixed b ∈ Nsq, there exists a mapping φb such that

φb : D → D1

x �→ bx

which implies that Tr(a(φb(x))2) = Tr(ab2x2) for all x ∈ D and a ∈ Fr . As a runs through
Fr , so does ab2. This means they have the same codewords. Hence, we only describe all the
information of CD . In this paper, the complete weight enumerator of CD is investigated by
employing exponential sums and Gauss periods. This gives its weight enumerator immedi-
ately. As it turns out, this code is a three-weight linear code which will be of special interest
in authentication codes [11] and secret sharing schemes [5].

The remainder of this paper is organized as follows. In Section 2, we describe the main
results of this paper and give some examples. Section 3 briefly recalls some definitions and
results on Gauss periods and Gauss sums, then proves the main results. Finally, Section 4 is
devoted to conclusions.

2 Main results

In this section, we only introduce the complete weight enumerator and weight enumerator
of CD described in (1). The main results of this paper are presented below, whose proofs
will be given in Section 3.

First of all, we establish the complete weight enumerator of CD in the following three
theorems, then we give some examples to illustrate these results.

Theorem 1 Let p ≡ 3 mod 4 and ρ, z be elements in Fp. Then the code CD defined by

(1) is a
[

p−1
2 pm−1,m

]
three-weight linear code and we have the following assertions.
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(i) If m is even, then the complete weight enumerator of CD is given by

w
p−1
2 pm−1

0 + (pm−1 − 1)
∏

ρ∈Fp

w
p−1
2 pm−2

ρ

+p − 1

4

(
pm−1+p

m−2
2

)
w

p−1
2

(

pm−2−p
m−2
2

)

0

∑

i∈{1,−1}

∏

(
ρ
p

)
=i

w
p−1
2 pm−2

ρ

∏

(
z
p

)
=−i

wA1
z

+p − 1

4

(
pm−1−p

m−2
2

)
w

p−1
2 (pm−2+p

m−2
2 )

0

∑

i∈{1,−1}

∏

(
ρ
p

)
=i

w
p−1
2 pm−2

ρ

∏

(
z
p

)
=−i

w
A−1
z ,

where, for ε ∈ {1,−1},

Aε = p − 1

2
pm−2 + εp

m−2
2 .

(ii) If m is odd, then the complete weight enumerator of CD is given by

w
p−1
2 pm−1

0 + (pm−1 − 1)
∏

ρ∈Fp

w
p−1
2 pm−2

ρ

+p − 1

4

(
pm−1+p

m−1
2

)
w

p−1
2

(

pm−2−p
m−3
2

)

0

∑

i∈{1,−1}

∏

(
ρ
p

)
=i

wA1
ρ

∏

(
z
p

)
=−i

wB1
z

+p − 1

4

(
pm−1−p

m−1
2

)
w

p−1
2

(

pm−2+p
m−3
2

)

0

∑

i∈{1,−1}

∏

(
ρ
p

)
=i

w
A−1
ρ

∏

(
z
p

)
=−i

w
B−1
z ,

where, for ε ∈ {1,−1},

Aε = p − 1

2

(
pm−2 − εp

m−3
2

)
,

Bε = p − 1

2
pm−2 + ε

p + 1

2
p

m−3
2 .

Example 1 (i) Let (p,m) = (3, 5). Then by Theorem 1, the code CD has parameters
[81, 5, 51] and complete weight enumerator

w81
0 + 36w30

0 w30
1 w21

2 + 36w30
0 w21

1 w30
2 + 80w27

0 w27
1 w27

2

+ 45w24
0 w33

1 w24
2 + 45w24

0 w24
1 w33

2 ,

which is confirmed by Magma. This is a three-weight linear code.
(ii) Let (p,m) = (7, 2). Then by Theorem 1, the code CD is a [21, 2, 15] three-weight

linear code with complete weight enumerator

w21
0 + 6(w0w1w2w3w4w5w6)

3 + 9w6
0(w1w2w4)

3(w3w5w6)
2

+ 9w6
0(w1w2w4)

2(w3w5w6)
3 + 12(w1w2w4)

4(w3w5w6)
3

+ 12(w1w2w4)
3(w3w5w6)

4,

which is confirmed by Magma.
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Let p ≡ 1 mod 4. For i = 0, 1, 2, 3, we denote the cyclotomic classes of order 4 in Fp

by C
(4,p)
i , which is simplified as Ci in the sequel and defined in Section 3.1.

Theorem 2 Let p ≡ 1 mod 4 and m be odd. Then the code CD of (1) is a
[

p−1
2 pm−1,m

]

three-weight linear code with complete weight enumerator

w
p−1
2 pm−1

0 + (pm−1 − 1)
∏

ρ∈Fp

w
p−1
2 pm−2

ρ

+p − 1

8

(
pm−1 + p

m−1
2

) 3∑

i=0

w

p−1
2

(

pm−2−p
m−3
2

)

0

∏

ρ∈Ci

wA1
ρ

∏

z∈F∗
p\Ci

wB1
z

+p − 1

8

(
pm−1 − p

m−1
2

) 3∑

i=0

w

p−1
2

(

pm−2+p
m−3
2

)

0

∏

ρ∈Ci

w
A−1
ρ

∏

z∈F∗
p\Ci

w
B−1
z ,

where, for ε ∈ {1, −1},

Aε = p − 1

2
pm−2 + ε

2

(
3p

m−1
2 + p

m−3
2

)
,

Bε = p − 1

2
pm−2 − ε

2

(
p

m−1
2 − p

m−3
2

)
.

Example 2 Let (p,m) = (5, 3). Then by Theorem 2, the code CD is a three-weight linear
code with parameters [50, 3, 38] and complete weight enumerator

w50
0 + 10(w0w1w2w3)

12w2
4 + 10(w0w1w2w4)

12w2
3 + 10(w0w1w3w4)

12w2
2

+ 10(w0w2w3w4)
12w2

1 + 24(w0w1w2w3w4)
10 + 15(w0w1w2w3)

8w18
4

+ 15(w0w1w2w4)
8w18

3 + 15(w0w1w3w4)
8w18

2 + 15(w0w2w3w4)
8w18

1 .

These results coincide with numerical computation by Magma.

Theorem 3 Let p ≡ 1 mod 4 and m be even. Let s and t be defined by p = s2 + t2,

s ≡ 1 mod 4. Then the code CD of (1) is a
[

p−1
2 pm−1,m

]
three-weight linear code with

complete weight enumerator

w
p−1
2 pm−1

0 + (pm−1 − 1)
∏

ρ∈Fp

w
p−1
2 pm−2

ρ

+p − 1

8

(
pm−1 + p

m−2
2

) 3∑

i=0

w
K1
0

∏

ρ0∈Ci

wL1
ρ0

∏

ρ1∈Ci+1

wR1
ρ1

∏

ρ2∈Ci+2

wS1
ρ2

∏

ρ3∈Ci+3

wT1
ρ3

+p−1

8

(
pm−1−p

m−2
2

) 3∑

i=0

w
K−1
0

∏

ρ0∈Ci

w
L−1
ρ0

∏

ρ1∈Ci+1

w
R−1
ρ1

∏

ρ2∈Ci+2

w
S−1
ρ2

∏

ρ3∈Ci+3

w
T−1
ρ3 ,
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Table 1 The weight distribution
of CD when m is even Weight i Frequency Ai

(p−1)2

2 pm−2 pm−1 − 1
p−1
2

(
(p − 1)pm−2 + p

m−2
2

)
p−1
2 (pm−1 + p

m−2
2 )

p−1
2

(
(p − 1)pm−2 − p

m−2
2

)
p−1
2 (pm−1 − p

m−2
2 )

0 1

where, for ε ∈ {1, −1},
Kε = p − 1

2
(pm−2 − εp

m−2
2 ),

Lε = p − 1

2
pm−2 + εp

m−2
2 (1 + s),

Rε = p − 1

2
pm−2 − εp

m−2
2 t,

Sε = p − 1

2
pm−2 + εp

m−2
2 (1 − s),

Tε = p − 1

2
pm−2 + εp

m−2
2 t.

Example 3 Let (p,m) = (5, 4). Then by Theorem 3, the code CD has parameters
[250, 4, 190] and complete weight enumerator

w250
0 + 60w60

0 w60
1 w40

2 w50
3 w40

4 + 60w60
0 w50

1 w60
2 w40

3 w40
4 + 60w60

0 w40
1 w50

2 w40
3 w60

4

+ 60w60
0 w40

1 w40
2 w60

3 w50
4 + 124(w0w1w2w3w4)

50 + 65w40
0 w60

1 w60
2 w40

3 w50
4

+ 65w40
0 w60

1 w50
2 w60

3 w40
4 + 65w40

0 w50
1 w40

2 w60
3 w60

4 + 65w40
0 w40

1 w60
2 w50

3 w60
4 ,

which is verified by Magma. This is a three-weight linear code.

The following corollary gives the weight enumerator of CD , which follows immediately
from its complete weight enumerator.

Corollary 1 The code CD of (1) has the weight distribution given in Table 1 if m is even
and Table 2 if m is odd.

From Tables 1 and 2, we observe that the weights of CD have a common divisor (p −
1)/2. This implies that it can be punctured into a shorter code as follows.

Let a ∈ Sq. Note that Tr(ax) = aTr(x) for any x ∈ Fr . This indicates that Tr(ax) is
a square (nonsquare) in F

∗
p if and only if Tr(x) is a square (nonsquare) in F

∗
p . Then we

Table 2 The weight distribution
of CD when m is odd Weight i Frequency Ai

(p−1)2

2 pm−2 pm−1 − 1
p−1
2

(
(p − 1)pm−2 + p

m−3
2

)
p−1
2 (pm−1 + p

m−1
2 )

p−1
2

(
(p − 1)pm−2 − p

m−3
2

)
p−1
2 (pm−1 − p

m−1
2 )

0 1



Cryptogr. Commun. (2017) 9:133–149 139

Table 3 The weight distribution
of C

D̃
when m is even Weight i Frequency Ai

(p − 1)pm−2 pm−1 − 1

(p − 1)pm−2 + p
m−2
2

p−1
2 (pm−1 + p

m−2
2 )

(p − 1)pm−2 − p
m−2
2

p−1
2 (pm−1 − p

m−2
2 )

0 1

can select a subset D̃ of the set D such that ∪a∈SqaD̃ is just a partition of D. Hence, the
corresponding linear codeC

D̃
is the punctured version ofCD . The following corollary states

the parameters and weight distribution of C
D̃
, which directly follows from Corollary 1.

Corollary 2 The code C
D̃

is a [pm−1,m] three-weight linear code with the weight
distribution given in Table 3 if m is even and Table 4 if m is odd.

In the following, we give the punctured version C
D̃
of CD from the previous examples.

Example 4 (i) Let (p,m) = (5, 3). Then the code C
D̃

in Corollary 2 has parameters
[25, 3, 19] and weight enumerator

1 + 40z19 + 24z20 + 60z21.

This code is almost optimal in the sense that the best known code over F5 of length
25 and dimension 3 has minimum distance 20 according to Markus Grassl’s table (see
http://www.codetables.de/).

(ii) Let (p,m) = (7, 2). From Corollary 2, we know that C
D̃
has parameters [7, 2, 5] and

weight enumerator

1 + 18z5 + 6z6 + 24z7.

This code is almost optimal since the best known code over F7 of length 7 and
dimension 2 has minimum distance 6 according to Markus Grassl’s table.

3 The proofs of the main results

3.1 Auxiliary results

In order to prove Theorems 1, 2 and 3 proposed in Section 2, we will use several results
which are depicted and proved in the sequel. We start with cyclotomic classes and group
characters.

Table 4 The weight distribution
of C

D̃
when m is odd Weight i Frequency Ai

(p − 1)pm−2 pm−1 − 1

(p − 1)pm−2 + p
m−3
2

p−1
2 (pm−1 + p

m−1
2 )

(p − 1)pm−2 − p
m−3
2

p−1
2 (pm−1 − p

m−1
2 )

0 1

http://www.codetables.de/


140 Cryptogr. Commun. (2017) 9:133–149

Recall that r = pm. Let α be a fixed primitive element of Fr and r −1 = sN , where s, N
are two integers with s > 1 and N > 1. Define C

(N,r)
i = αi〈αN 〉 for i = 0, 1, · · · , N − 1,

where 〈αN 〉 denotes the subgroup of F∗
r generated by αN . The cosets C

(N,r)
i are called the

cyclotomic classes of order N in Fr .
For each b ∈ Fr , let χb be an additive character of Fr , which is defined by

χb(x) = ζTr(bx)
p for all x ∈ Fr ,

where ζp = exp
(
2π

√−1
p

)
and Tr is the absolute trace function. Especially when b = 1,

χ1 is called the canonical additive character of Fr . The orthogonal property of additive
characters χ , which can be easily checked, is given by

∑

x∈Fr

χ(ax) =
{

r if a = 0,
0 if a ∈ F

∗
r .

(2)

The Gauss periods of order N are defined by

η
(N,r)
i =

∑

x∈C
(N,r)
i

χ1(x), i = 0, 1, · · · , N − 1.

Let λ be a multiplicative and χ an additive character of Fr . Then the Gauss sum G(λ, χ)

is defined by

G(λ, χ) =
∑

x∈F∗
r

λ(x)χ(x).

Let η denote the quadratic character of Fr . The associated Gauss sum G(η, χ1) over Fr

is denoted by G(η). And the Gauss sum G(η̂, χ̂1) over Fp is denoted by G(η̂), where η̂ and
χ̂1 are the quadratic character and canonical additive character of Fp, respectively.

For each y ∈ F
∗
p, we have η(y) = 1 if m � 2 is even, and otherwise η(y) = η̂(y).

Moreover, it is well known that G(η) = (−1)m−1√p∗m and G(η̂) = √
p∗, where p∗ =(−1

p

)
p = (−1)

p−1
2 p. See [15, 25] for more information.

The following lemmas will be required in the sequel.

Lemma 1 (See Theorem 5.30 of [25]) Let χ be a nontrivial additive character of Fr , k ∈ N,
and λ a multiplicative character of Fr of order d = gcd(k, r − 1). Then

∑

x∈Fr

χ(axk + b) = χ(b)

d−1∑

j=1

λ̄j (a)G(λj , χ)

for any a, b ∈ Fr with a �= 0, where λ̄ denotes the conjugate character of λ.

For ρ ∈ F
∗
p and a ∈ Fr , in order to study the complete weight enumerator, we define

N0(ρ) = #{x ∈ Fr : Tr(x) = 0,Tr(ax2) = ρ},
N(ρ) = #{x ∈ Fr : Tr(x) ∈ Sq,Tr(ax2) = ρ},
N1(ρ) = #{x ∈ Fr : Tr(x) ∈ Nsq,Tr(ax2) = ρ}.

The values of N(ρ), N0(ρ) and N1(ρ), which depend mainly on the choice of a, are given
in the following two lemmas.
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Lemma 2 ([34]) Let a ∈ F
∗
r and ρ ∈ F

∗
p . Then

N0(ρ) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

pm−2 + (−1)
p−1
2

m−1
2 η(a)η̂(ρ)p

m−1
2 if m odd,Tr(a−1) = 0,

pm−2 − (−1)
p−1
2

m−1
2 η(a)η̂(Tr(a−1))p

m−3
2 if m odd,Tr(a−1) �= 0,

pm−2 + (−1)
p−1
2

m
2 η(a)p

m−2
2 if m even,Tr(a−1) = 0,

pm−2 − (−1)
p−1
2

m−2
2 η(a)η̂(ρTr(a−1))p

m−2
2 if m even,Tr(a−1) �= 0.

Lemma 3 Let a ∈ F
∗
r and ρ ∈ F

∗
p. Then we have the following assertion.

N(ρ) + N1(ρ)

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pm−1 − pm−2 if m even, Tr(a−1) = 0,
pm−1 − pm−2 if m odd, Tr(a−1) = 0,

pm−1 − pm−2 + η(a)(−1)
p−1
2

m
2 p

m−2
2

(
1 + η̂(−ρ Tr(a−1))

)
if m even, Tr(a−1) �= 0,

pm−1 − pm−2 + η(a)(−1)
p−1
2

m−1
2 p

m−3
2

(
η̂(ρ)p + η̂ (Tr(a−1))

)
if m odd, Tr(a−1) �= 0.

Proof Note that

N0(ρ) + N(ρ) + N1(ρ) = #{x ∈ Fr : Tr(ax2) = ρ},
where ρ ∈ F

∗
p . This leads to

N0(ρ) + N(ρ) + N1(ρ) = pm−1 + p−1
∑

z∈F∗
p

ζ−zρ
p

∑

x∈Fr

ζ z Tr(ax2)
p .

Applying Theorem 5.33 of [25], we can deduce that

∑

z∈F∗
p

∑

x∈Fr

ζ z Tr(ax2)−zρ
p =

{
η(a)(−1)

p−1
2

m
2 p

m
2 if m even,

η(a)η̂(ρ)(−1)
p−1
2

m−1
2 p

m+1
2 if m odd.

The desired conclusion then follows from Lemma 2.

The following two lemmas will help us to determine the frequency of each composition
in CD .

Lemma 4 ([34]) For any a ∈ F
∗
r , let

ni,j = #{a ∈ F
∗
r : η(a) = i, η̂(Tr(a−1)) = j}, i, j ∈ {1,−1}. (3)

(i) If m is even, then we have

n1,1 = n1,−1 = p − 1

4

(
pm−1 + (−1)

p−1
2

m
2 p

m−2
2

)
.

(ii) If m is odd, then we have
⎧
⎨

⎩

n1,1 = p−1
4

(
pm−1 + (−1)

p−1
2

m−1
2 p

m−1
2

)
,

n1,−1 = p−1
4

(
pm−1 − (−1)

p−1
2

m−1
2 p

m−1
2

)
.

Lemma 5 For any a ∈ F
∗
r , let ni,j be defined by (3).
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(i) If m is even, then we have

n−1,1 = n−1,−1 = p − 1

4

(
pm−1 − (−1)

p−1
2

m
2 p

m−2
2

)
.

(ii) If m is odd, then we have
⎧
⎨

⎩

n−1,1 = p−1
4

(
pm−1 − (−1)

p−1
2

m−1
2 p

m−1
2

)
,

n−1,−1 = p−1
4

(
pm−1 + (−1)

p−1
2

m−1
2 p

m−1
2

)
.

Proof We point out that

n1,j + n−1,j = #{a ∈ F
∗
r : η̂(Tr(a−1)) = j} = p − 1

2
pm−1,

with j ∈ {1, −1}.
The desired conclusion then follows from Lemma 4.

Consider p ≡ 1 mod 4. Recall that η
(4,p)
i = ∑

x∈C
(4,p)
i

ζ x
p , where C

(4,p)
i = βi〈β4〉 for

i = 0, 1, 2, 3, and β is a primitive element of Fp . In the sequel, we write η
(4,p)
i and C

(4,p)
i

as ηi and Ci , respectively. The following lemma plays an important role in determining the
complete weight enumerator, in which the value of η0 coincides with the result of Theorem
4.2.4 of [3].

Lemma 6 Let p ≡ 1 mod 4. Let s and t be defined by p = s2 + t2, s ≡ 1 mod 4. The
Gauss periods of order 4 over Fp are given as follows.

(i) If p ≡ 5 mod 8, then

{η0, η2} =
{√

p − 1

4
±

√
2

4

√
−√

ps − p

}

,

{η1, η3} =
{

−
√

p + 1

4
±

√
2

4

√√
ps − p

}

.

(ii) If p ≡ 1 mod 8, then

{η0, η2} =
{√

p − 1

4
±

√
2

4

√
p − √

ps

}

,

{η1, η3} =
{

−
√

p + 1

4
±

√
2

4

√
p + √

ps

}

.

Proof Let β be a primitive element of Fp . According to [28], the Gauss sums Gi are given
by

Gi =
∑

x∈Fp

ζ βix4

p , i = 0, 1, 2, 3,

and they are roots of a polynomial F4(X), i.e.,

F4(X) =
3∏

i=0

(X − Gi),
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which is called reduced (or modified) period polynomial. By Theorem 14 of [28] (see also
Theorem 10.10.6 of [3]), we have

F4(X) =
{

(X2 + 3p)2 − 4p(X − s)2 if p ≡ 5 mod 8,
(X2 − p)2 − 4p(X − s)2 if p ≡ 1 mod 8,

where p = s2 + t2 with s ≡ 1 mod 4.
In the following, we give the proof of the case p ≡ 5 mod 8 since that of the case p ≡ 1

mod 8 is similarly verified.
In the case of p ≡ 5 mod 8, we have

F4(X) =
(
X2 + 3p − 2

√
p(X − s)

) (
X2 + 3p + 2

√
p(X − s)

)
.

Note that η0+η2 = η
(2,p)

0 = 1
2 (

√
p−1) yields thatG0+G2 = 2

√
p, sinceGi = 4ηi +1.

Hence, we see that G0, G2 are roots of

X2 + 3p − 2
√

p(X − s) = 0.

Therefore, G1, G3 are roots of

X2 + 3p + 2
√

p(X − s) = 0.

It is straightforward that

G0 + G2 = 2
√

p, G0G2 = 3p + 2
√

ps,

G1 + G2 = −2
√

p, G1G3 = 3p − 2
√

ps.

Moreover, we obtain that

η0η2 = 1

16
(3p + 1 − 2

√
p(1 − s)),

η1η3 = 1

16
(3p + 1 + 2

√
p(1 − s)),

η20 + η22 = 1

8
(1 − p − 2

√
p(1 + s)),

η21 + η23 = 1

8
(1 − p + 2

√
p(1 + s)).

Consequently, we have

(η0 + η2)
2 = 1

4 (
√

p − 1)2, (η0 − η2)
2 = 1

2
(−√

ps − p),

(η1 + η3)
2 = 1

4 (
√

p + 1)2, (η1 − η3)
2 = 1

2
(
√

ps − p).

The desired conclusions follow from the facts that η0 + η2 = 1
2 (

√
p − 1) and η0 + η1 +

η2 + η3 = −1.

3.2 The proof of Theorem 1

Observe that a = 0 gives the zero codeword and the contribution to the complete weight
enumerator is wn

0 , where n = p−1
2 pm−1. This value occurs only once. Hence, we assume

that a ∈ F
∗
r for the rest of the proof.
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For ρ ∈ F
∗
p , we consider

A =
∑

x∈Fr

∑

y∈Fp

ζ
y2Tr(x)
p

∑

z∈Fp

ζ z Tr(ax2)−zρ
p .

Then, it is easy to see that

A = N0(ρ)p2 + (N(ρ) − N1(ρ))p
√

p∗, (4)

since

∑

y∈Fp

ζ
y2Tr(x)
p =

⎧
⎨

⎩

p if Tr(x) = 0,√
p∗ if Tr(x) ∈ Sq,

−√
p∗ if Tr(x) ∈ Nsq,

and

∑

z∈Fp

ζ z Tr(ax2)−zρ
p =

{
p if Tr(ax2) = ρ,

0 if Tr(ax2) �= ρ.

On the other hand, from Theorem 5.33 of [25] and (2), we get

A = r +
∑

y∈F∗
p

∑

x∈Fr

ζ
y2 Tr(x)
p +

∑

z∈F∗
p

ζ−zρ
p

∑

y∈Fp

∑

x∈Fr

ζ
Tr(azx2+y2x)
p

= r +
∑

z∈F∗
p

ζ−zρ
p

∑

y∈Fp

ζ
Tr(− y4

4az
)

p η(az)G(η)

= r + η(a)G(η)
∑

z∈F∗
p

ζ−zρ
p η(z)

∑

y∈Fp

ζ
− Tr(a−1)

4z y4

p . (5)

In the following, we calculate the valueA of (5) by distinguishing the cases of Tr(a−1) =
0 and Tr(a−1) �= 0.

Case 1 Tr(a−1) = 0.

In this case, from (5), we know that

A =
{

r − pη(a)G(η) if m even,
r + pη(a)η̂(−ρ)G(η)G(η̂) if m odd,

which leads to N(ρ) = N1(ρ) compared with (4) and Lemma 2. It follows from Lemma 3
that N(ρ) = p−1

2 pm−2. This value occurs pm−1 − 1 times.

Case 2 Tr(a−1) �= 0.
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Recall that p ≡ 3 mod 4. Thus, gcd(4, p − 1) = 2. From (5) and Lemma 1, we have

A = r + η(a)G(η)
∑

z∈F∗
p

ζ−zρ
p η(z)η̂

(

−Tr(a−1)

4z

)

G(η̂)

= r + η(a)G(η)η̂(−Tr(a−1))
∑

z∈F∗
p

ζ−zρ
p η(z)η̂(z)G(η̂)

=
{

r + η(a)η̂(ρ Tr(a−1))G(η)G(η̂)2 if m even,
r − η(a)η̂(−Tr(a−1))G(η)G(η̂) if m odd,

which also leads to N(ρ) = N1(ρ) from (4) and Lemma 2. It then follows from Lemma 3
that

N(ρ) =
{

p−1
2 pm−2 if η̂(ρ Tr(a−1)) = 1

p−1
2 pm−2 + η(a)(−1)

m
2 p

m−2
2 if η̂(ρ Tr(a−1)) = −1

for even m, and otherwise,

N(ρ) = p − 1

2
pm−2 + 1

2
η(a)(−1)

m−1
2 p

m−3
2 (pη̂(ρ) + η̂(Tr(a−1))).

Note that N(0) = p−1
2 pm−1 − ∑

ρ∈F∗
p
N(ρ). The desired conclusion then follows from

Lemmas 4 and 5.
This completes the proof of Theorem 1.

3.3 The proof of Theorem 2

By the proof of Theorem 1, we only need to consider the case Tr(a−1) �= 0 with a ∈ F
∗
r ,

since the cases of a = 0 and Tr(a−1) = 0 have already been determined. For this purpose,
we write (5) as

A = r + η(a)G(η)B, (6)

where

B =
∑

z∈F∗
p

ζ−zρ
p η(z)

∑

y∈Fp

ζ
− Tr(a−1)

4z y4

p . (7)

Let notations be as aforementioned and p ≡ 1 mod 4. When Tr(a−1) �= 0, the value B

of (7) can be determined by

B =
∑

z∈F∗
p

ζ−zρ
p η̂(z)

(

4η− Tr(a−1)
4z

+ 1

)

=
⎛

⎝
∑

z∈C0

+
∑

z∈C2

−
∑

z∈C1

−
∑

z∈C3

⎞

⎠ 4ζ−zρ
p η− Tr(a−1)

4z
+ η̂(−ρ)G(η̂)

=
⎛

⎝
∑

z∈C0

+
∑

z∈C2

−
∑

z∈C1

−
∑

z∈C3

⎞

⎠ 4ζ−zρ
p η− Tr(a−1)

4z
+ η̂(ρ)

√
p, (8)
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since m is odd. By (4), (6), and Lemma 3, we have
{

N(ρ) + N1(ρ) = pm−1 − pm−2 + η(a)p
m−3
2

(
η̂(ρ)p + η̂(Tr(a−1))

)
,

N(ρ) − N1(ρ) = η(a)
(
η̂(Tr(a−1))p

m−2
2 + p

m−3
2 B

)
.

(9)

Now, we assume that p ≡ 5 mod 8.
Clearly, −1 and 4 are both in C2. In the following, the value B of (8) will be computed

according to the choices of Tr(a−1) and ρ.

Case 1 Tr(a−1) ∈ C0, ρ ∈ C0.

In this case, by Lemma 6 and (8), we obtain

B = 4
(
2η0η2 − η21 − η23

)
+ √

p = 2p − √
p.

It follows from (9) that

N(ρ) = p − 1

2
pm−2 + 1

2
η(a)

(
3p

m−1
2 + p

m−3
2

)
,

N1(ρ) = p − 1

2
pm−2 − 1

2
η(a)

(
p

m−1
2 − p

m−3
2

)
.

Case 2 Tr(a−1) ∈ C0, ρ ∈ C1.

In this case, we deduce that

B = 4(η3η0 + η1η2 − η0η3 − η2η1) − √
p = −√

p,

which indicates that

N(ρ) = N1(ρ) = p − 1

2
pm−2 − 1

2
η(a)

(
p

m−1
2 − p

m−3
2

)
.

Case 3 Tr(a−1) ∈ C0, ρ ∈ C2.

In this case, we have

B = 4
(
η20 + η22 − 2η1η3

)
+ √

p = −2p − √
p,

which gives that

N(ρ) = p − 1

2
pm−2 − 1

2
η(a)

(
p

m−1
2 − p

m−3
2

)
,

N1(ρ) = p − 1

2
pm−2 + 1

2
η(a)

(
3p

m−1
2 + p

m−3
2

)
.

Case 4 Tr(a−1) ∈ C0, ρ ∈ C3.

In this case, we obtain

B = 4(η1η0 + η3η2 − η2η3 − η0η1) − √
p = −√

p.

As a consequence, we get

N(ρ) = N1(ρ) = p − 1

2
pm−2 − 1

2
η(a)

(
p

m−1
2 − p

m−3
2

)
.
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Moreover, for Tr(a−1) ∈ C0, the number of a satisfying η(a) = 1 is

#{a ∈ F
∗
r : η(a) = 1,Tr(a−1) ∈ C0} = 1

2
n1,1 = p − 1

8

(
pm−1 + p

m−1
2

)
,

by Lemma 4. In a similar way, the number of a satisfying η(a) = −1 is

#{a ∈ F
∗
r : η(a) = −1,Tr(a−1) ∈ C0} = 1

2
n−1,1 = p − 1

8

(
pm−1 − p

m−1
2

)
,

by Lemma 5.
There are sixteen cases all together to be considered. Other cases can be similarly

calculated, which are omitted here.
Note that the case of p ≡ 1 mod 8 can be analyzed in an analogous fashion. The proof

of Theorem 2 is finished.

3.4 The proof of Theorem 3

This proof is similar to that of Theorem 2 by observing that

B =
⎛

⎝
∑

z∈C0

+
∑

z∈C1

+
∑

z∈C2

+
∑

z∈C3

⎞

⎠ 4ζ−zρ
p η− Tr(a−1)

4z
− 1,

from (7), since m is even. Thus, we omit the details here.

4 Concluding remarks

Inspired by the original ideas of [15, 30], we constructed a class of three-weight linear codes.
By employing some mathematical tools, we presented explicitly their complete weight
enumerators and weight enumerators. Their punctured codes contain some almost optimal
codes. By Theorem 1, it is easy to check that

wmin

wmax

>
p − 1

p
,

for m � 4. Here wmin and wmax denote the minimum and maximum nonzero weights in
CD , respectively. Therefore, the code CD can be used for secret sharing schemes with inter-
esting access structures. We also mention that the complete weight enumerators, presented
in Theorems 1, 2 and 3, can be applied to compute the deception probabilities of certain
authentication codes constructed from linear codes. Furthermore, if r is large enough, these
authentication codes are asymptotically optimal. See [11, 15, 23].

Note that gcd(4, p − 1) = 4 if p ≡ 1 mod 4. This implies that we can prove Theorems
2 and 3 with a similar method used in Section 3.2. One can see that it works well though it
is indeed very complicated. However, we gave a simpler proof by employing Gauss periods
to determine the complete weight enumerator of CD for the case of p ≡ 1 mod 4.

To conclude this paper, we remark that the codes proposed in this paper can be extended
to a more general case, that is, for an integer t � 2, define

CD′ =
{(

Tr(a1x
2
1 + · · · + atx

2
t )
)

(x1,··· ,xt )∈D
: a1, · · · , at ∈ Fr

}

,

where

D′ = {
(x1, · · · , xt ) ∈ F

t
r : Tr(x1 + · · · + xt ) ∈ Sq

}
.
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For this kind of linear codes, it will be interesting to settle their complete weight
enumerators.
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