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Abstract A generic construction of linear codes over finite fields has recently received a
lot of attention, and many one-weight, two-weight and three-weight codes with good error
correcting capability have been produced with this generic approach. The first objective of
this paper is to establish relationships among some classes of linear codes obtained with this
approach, so that the parameters of some classes of linear codes can be derived from those
of other classes with known parameters. In this way, linear codes with new parameters will
be derived. The second is to present a class of three-weight binary codes and consider their
applications in secret sharing.
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1 Introduction

Throughout this paper, let p be a prime and let q = pm for some positive integer m. An
[n, κ, ω] linear code C over GF(p) is a κ-dimensional subspace of GF(p)n with minimum
(Hamming) distance ω. Let Ai denote the number of codewords with Hamming weight i

in a code C of length n. The weight enumerator of C is defined by 1 + A1z + A2z
2 +

· · · + Anz
n. A code C is said to be a t-weight code if the number of nonzero Ai in the

sequence (A1, A2, · · · , An) is equal to t .The sequence (1, A1, A2, · · · , An) is called the
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weight distribution of C. An [n, κ, ω] code C is called optimal if its parameters [n, κ, ω]
meet a bound on linear codes, and almost optimal if [n, κ, ω + 1] or [n, κ + 1, ω] meets a
bound on linear codes.

A generic construction of linear codes over finite fields has attracted a lot of attention
in the past eight years (see, for example, [8–11, 13, 14, 17]). Many classes of one-weight,
two-weight and three-weight codes were obtained with this approach. The first goal of this
paper is to establish a few relations among some classes of linear codes obtained with this
approach, so that the parameters of some classes of linear codes can be derived from those
of other classes with known parameters. In this way, linear codes with new parameters will
be derived. The second is to present a class of three-weight binary codes and consider their
applications in secret sharing.

2 Group characters in GF(q)

An additive character of GF(q) is a nonzero function χ from GF(q) to the set of nonzero
complex numbers such that χ(x + y) = χ(x)χ(y) for any pair (x, y) ∈ GF(q)2. For each
b ∈ GF(q), the function

χb(c) = εTr(bc)
p for all c ∈ GF(q) (1)

defines an additive character of GF(q), where and whereafter εp = e2π
√−1/p is a primitive

complex pth root of unity. When b = 0, χ0(c) = 1 for all c ∈ GF(q), and is called the
trivial additive character of GF(q). The character χ1 in (1) is called the canonical additive
character of GF(q). It is known that every additive character of GF(q) can be written as
χb(x) = χ1(bx) [16, Theorem 5.7].

3 A generic construction of linear codes

Let D = {d1, d2, . . . , dn} ⊆ GF(q), where again q = pm. Let Tr denote the trace function
from GF(q) onto GF(p) throughout this paper. We define a linear code of length n over
GF(p) by

CD = {(Tr(xd1),Tr(xd2), . . . ,Tr(xdn)) : x ∈ GF(q)}, (2)

and call D the defining set of this code CD . By definition, the dimension of the code CD is
at most m.

The code CD depends on the specific ordering of the elements in the defining set D.
However, up to column permutations, the codes obtained from different orderings are equiv-
alent with respect to coordinate permutations. Hence, in this paper, we do not specify the
specific ordering of the elements in D when we consider the code CD .

This construction is generic in the sense that many classes of known codes could be
produced by properly selecting the defining set D ⊆ GF(q). This construction technique
was employed in [8–11, 13, 14, 17] for obtaining linear codes with a few weights.

This construction is generic and can produce a lot of linear codes. The parameters of the
code CD depend on the selection of the defining set D. Linear codes with both poor and
good error-correcting capability can be obtained with this approach.

Many classes of linear codes with a few weights and good parameters have been already
obtained with this approach. In this paper, we will present a few relations among some
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subclasses of linear codes obtained with this approach. In this way, we are able to derive the
parameters of some other linear codes.

It is convenient to define for each x ∈ GF(q),

cx = (Tr(xd1), Tr(xd2), . . . , Tr(xdn)). (3)

The Hamming weight wt(cx) of cx is n − Nx(0), where

Nx(0) = |{1 ≤ i ≤ n : Tr(xdi) = 0}|
for each x ∈ GF(q).

It is easily seen that for any D = {d1, d2, . . . , dn} ⊆ GF(q) we have

pNx(0) =
n∑

i=1

∑
y∈GF(p)

e2π
√−1yTr(xdi )/p =

n∑
i=1

∑
y∈GF(p)

χ1(yxdi) = n +
∑

y∈GF(p)∗
χ1(yxD),

where χ1 is the canonical additive character of GF(q), aD denotes the set {ad : d ∈ D},
and χ1(S) := ∑

x∈S χ1(x) for any subset S of GF(q). Hence,

wt(cx) = n − Nx(0) = (p − 1)n − ∑
y∈GF(p)∗χ1(yxD)

p
. (4)

4 Shortening and expanding a linear code obtained from this construction

Let D ⊂ GF(q)∗ and D̂ = ED, where E is a subset of GF(p)∗ and

ED = {ed : e ∈ E and d ∈ D}.
Let n = |D|, n̂ = |D̂|, and � = |E|.
Our goal of this section is to establish a relation between the parameters of the two codes

CD and C
D̂

under the condition that |ED| = |E||D|. Specifically, we have the following
general result.

Theorem 1 Let symbols and notation be the same as above. Assume that n̂ = n�. Then CD

is an [n, k] linear code with weight enumerator
1 + A1z + A2z

2 + · · · + Anz
n

if and only if C
D̂
is an [n�, k] linear code with weight enumerator

1 + A1z
� + A2z

2� + · · · + Anz
n�.

Proof Note that Tr(zx) = zTr(x) for all z ∈ GF(p) and x ∈ GF(q). We have that Tr(zx) =
0 if and only if Tr(x) = 0 for all z ∈ GF(p)∗ and x ∈ GF(q).

Let E = {e1, e2, · · · , e�}. By assumption we have that |ED| = |E||D|. Up to column
permutations, every codeword ĉx in C

D̂
can be expressed as

ĉx = (e1cx, e2cx, · · · , e�cx),

where cx is the corresponding codeword in CD . It then follows that wt(ĉx) = �wt(cx). In
addition, ĉx is the zero codeword in C

D̂
if and only if cx is the zero codeword in CD . The

desired conclusions then follow.
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It should be noticed that the condition |ED| = |E||D| in Theorem 1 is necessary. With-
out this condition, there may be no specific relation among the parameters of the two codes
CD and C

D̂
.

Theorem 1 can be employed to derive parameters of a shortened or expanded code
of a linear code obtained from this generic construction in some special cases. We now
demonstrate this possibility in the rest of this section.

Corollary 1 Let D̂ = GF(q)∗, E = GF(p)∗, and let D be the coset representatives of
the quotient group GF(q)∗/GF(p)∗. Then D̂ = ED, and CD is a one-weight code with
parameters [(q − 1)/(p − 1),m] and weight enumerator 1 + (pm − 1)zpm−1

.

Proof Note that D̂ = GF(q)∗. For every x ∈ GF(q)∗, the codeword ĉx has Hamming
weight (p − 1)pm−1. Hence, C

D̂
is a [pm − 1,m] code over GF(p) with the only nonzero

weight (p − 1)pm−1. The desired conclusions on CD then follow from Theorem 1.

The code CD in Corollary 1 is the well-known simplex code. The purpose of presenting
this code is to demonstrate that it is a shortened version of the code C

D̂
obtained from the

generic construction. In addition, in the next corollary, we will show that this code can be
extended into many ways so that many one-weight linear codes can be obtained.

Corollary 2 Let D be the coset representatives of the quotient group GF(q)∗/GF(p)∗. Let
E be any subset ofGF(p)∗. Define D̃ = ED. Then C

D̃
is a one-weight code with parameters

[�(q −1)/(p−1),m] and weight enumerator 1+ (pm −1)z�pm−1
, where � is the cardinality

of E and 1 ≤ � ≤ p − 1.

Proof It was proved in Corollary 1 that CD is a one-weight code with parameters [(q −
1)/(p − 1),m] and weight enumerator 1+ (pm − 1)zpm−1

. By the definition of D, we have
that |ED| = |E||D|. The desired conclusions on the code C

D̃
then follow from Theorem 1.

The codes C
D̃
in Corollary 2 are extensions and generalizations of the codes from skew

sets presented in [9]. Since the total number of nonempty sets of GF(p)∗ is 2p−1 − 1, the
construction in Corollary 2 yields 2p−1 − 1 one-weight codes over GF(p).

We inform that the technique of shortening a linear code obtained from this generic
construction was already employed in [14]. Theorem 1 is a formal description and
generalization of this technique.

5 Combining two linear codes obtained from this generic construction

5.1 A method for combining two codes

Theorem 2 Let D1 ⊂ GF(q) and D2 ⊂ GF(q) with D1 ∩ D2 = ∅. Define D = D1 ∪ D2.
Let ni = |Di | for i ∈ {1, 2}. Assume that CD is an [n1 +n2, k] one-weight code over GF(p)

with nonzero-weight w, and CDi
has also dimension k for each i. Then CD1 has weight

enumerator
1 + A1z + A2z

2 + · · · + An1z
n1



Cryptogr. Commun. (2016) 8:525–539 529

if and only if CD2 has weight enumerator

1 + A1z
w−1 + A2z

w−2 + · · · + An1z
w−n1 .

Proof By assumption, D1 ∩ D2 = ∅. It follows that up to coordinate permutations every
codeword cx in CD can be expressed as

cx =
(
c(1)
x , c(2)

x

)
,

where c(i)
x is the codeword in CDi

. It then follows that wt(cx) = wt(c(1)
x ) + wt(c(2)

x ). By
the assumptions of this theorem, all three codes have the same dimension. Hence, cx is the
zero codeword in CD if and only if c(1)

x and c(2)
x are the zero codeword in CD1 and CD2

respectively. The desired conclusions then follow.

It should be pointed out that the condition D1 ∩ D2 = ∅ in Theorem 2 is necessary for
the correctness of the conclusion. This is implied by the proof of Theorem 2 above.

Let D ⊂ GF(q). Starting from now on, let D denote the complement GF(q) \ D of D.
As a corollary of Theorem 2, we have the following.

Corollary 3 Let D ⊂ GF(q). Assume that CD is an [n, m] linear code with
max
c∈CD

wt(c) < (p − 1)pm−1

and weight enumerator
1 + A1z + A2z

2 + · · · + Anz
n.

Then CD has parameters [q − n, m] and weight enumerator
1 + A1z

(p−1)pm−1−1 + A2z
(p−1)pm−1−2 + · · · + Anz

(p−1)pm−1−n.

Proof Note that CGF(q) is a [q, m] linear code over GF(p), and has the only nonzero weight
(p − 1)pm−1. By definition, up to column permutations, every codeword c in CGF(q) can be

expressed as c =
(
c(1)
x , c(2)

x

)
, where c(1)

x and c(2)
x are the corresponding codewords in CD

and CD , respectively. Since CD has dimension m, cx is the zero codeword in CGF(q) if and

only if c(1)
x is the zero codeword in CD . Note that CGF(q) is a one-weight code with nonzero

weight (p−1)pm−1 and maxc∈CD
wt(c) < (p−1)pm−1. cx is a nonzero codeword in CGF(q)

if and only if c(2)
x is a nonzero codeword in CD . We then deduce that the dimension of CD is

also m. The rest of the desired conclusions follows from Theorem 2.

It is noticed that the condition maxc∈CD
wt(c) < (p−1)pm−1 in Corollary 3 is necessary.

Without this condition, the dimension of CD may be less than m.
Corollary 3 could be employed to determine the weight enumerator of many classes of

linear codes CD from those of the code CD . In the next subsections, we will demonstrate
this with a few examples.

5.2 A class of one-weight and two-weight codes

Let f (x) be a function from GF(q) to GF(q). We define

D(f ) := {f (x) : x ∈ GF(q)} \ {0}.
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A polynomial f over GF(q) of the form

f (x) =
∑
i∈I

∑
j∈J

ai,j x
pi+pj

(5)

is called a quadratic form over GF(q), where ai,j ∈ GF(q), and I and J are subsets of
{0, 1, 2, . . . , m − 1}.

Note that GF(q) is a vector space of dimension m over GF(p). The rank of the quadratic
form f over GF(q) is defined to be the codimension of the GF(p)-vector space

Vf = {x ∈ GF(q) : f (x + z) − f (x) − f (z) = 0 for all z ∈ GF(q)}.
That is |Vf | = pm−r , where r denotes the rank of f .
It is still very difficult to determine the length nf of the code CD(f ) for general quadratic

forms f , let alone the weight distribution of the code CD(f ). However, under certain con-
ditions the weight distribution of CD(f ) can be worked out [9]. Below we derive a general
result on the code CD(f ) from known results on the code CD(f ).

Corollary 4 Let f be a quadratic form of rank r over GF(q) such that

– f (0) = 0 and f (x) �= 0 for all x ∈ GF(q)∗; and
– f is e-to-1 on GF(q)∗ (i.e. f (x) = u has either e solutions x ∈ GF(q)∗ or no solution

for each u ∈ GF(q)∗), where e is a positive integer.

If r is odd and e > 1, then CD(f ) is a one-weight code over GF(p) with parameters[
(e − 1)q + 1

e
,m,

(e − 1)(p − 1)q

ep

]
.

If r ≥ 2 is even and e > 1, then CD(f ) is a two-weight code over GF(p) with parameters[
(e − 1)q + 1

e
,m,

(p − 1)((e − 1)q − pm−r/2)

ep

]

and weight enumerator

1 + q − 1

2
z

(p−1)((e−1)q−pm−r/2)
ep + q − 1

2
z

(p−1)((e−1)q+pm−r/2)
ep .

Proof The parameters of the code CD(f ) were determined in [9]. In addition, it is easily
verified that the conditions of Corollary 3 were satisfied by CD(f ). The desired conclusions
on the code CD(f ) then follow from Corollary 3 and Theorem 3 in [9].

Example 1 f (x) = xp�+1 is a quadratic form over GF(q) satisfying the conditions of
Corollary 4, if e = gcd(q − 1, p� + 1) > 1.

Example 2 f (x) = x10 − ux6 − u2x2 is a quadratic form over GF(3m) satisfying the
conditions of Corollary 4, where u ∈ GF(3m), m is odd, and e = 2.

5.3 The parameters of some binary codes

Let f be a Boolean function from GF(2m) to GF(2). The support of f is defined to be

Df = {x ∈ GF(2m) : f (x) = 1} ⊆ GF(2m).



Cryptogr. Commun. (2016) 8:525–539 531

Recall that nf = |Df |.
TheWalsh transform of f is defined by

f̂ (w) =
∑

x∈GF(2m)

(−1)f (x)+Tr(wx) (6)

where w ∈ GF(2m). TheWalsh spectrum of f is the following multiset{{
f̂ (w) : w ∈ GF(2m)

}}
.

It is in general a very hard to determine the weight distribution of the binary code CDf

with length nf and dimension at most m. However, in a number of special cases, this can
be done. Below we describe the weight distribution of the code CDf

by making use of some
results on the binary code CDf

obtained in [9].
The main result of this section is described in the following corollary.

Corollary 5 Let symbols and notation be the same as above. If 2nf �= f̂ (w) for all w ∈
GF(2m)∗ and

max
w∈GF(2m)

f̂ (w) < 2(2m − nf ), (7)

then CDf
is a binary linear code with length 2m − nf and dimension m, and its weight

distribution is given by the following multiset:{{
2(2m − nf ) − f̂ (w)

4
: w ∈ GF(2m)∗

}}
∪ {{0}} . (8)

Proof According to Theorem 9 in [9], the code CDf
has dimension m and the maximum

nonzero Hamming weight of codewords in CDf
is

max
w∈GF(2m)

2nf + f̂ (w)

4
< 2m−1

due to the condition of (7). The desired conclusions then follow from Corollary 3 and
Theorem 9 in [9].

For all the two-weight and three-weight codes CDf
from bent, semibent and almost bent

functions described in [9], the corresponding binary codes CDf
are also two-weight and

three-weight codes with the weight distribution given in Corollary 5. We omit the details of
the weight distributions here.

5.4 A class of ternary codes

In this subsection, we determine the parameters of a class of ternary codes.
Our main result of this section is the following.

Theorem 3 Let h be an odd positive integer and let m = 3h ≥ 3. Let � = 32h − 3h + 1.
Define

D =
{
αt : Tr3m/3(α

t + αt�) = 0, 0 ≤ t ≤ (3m − 3)/2
}

, (9)

where α is a generator of GF(3m)∗.



532 Cryptogr. Commun. (2016) 8:525–539

Then the ternary code CD has parameters[
5 × 33h−1 + 1

2
, 3h, 5 × 33h−2 − 32h−2

]

and the weight distribution of Table 1.

Proof According to Theorem 15 in [9], the ternary code CD has dimension m = 3h and the
maximum nonzero Hamming weight of codewords in CDf

is

33h−2 + 32h−2 < 2 × 33h−1.

The desired conclusions then follow from Corollary 3 and Theorem 15 in [9].

We remark that the code CD of Theorem 3 has more than three nonzero weights if h is
even.

5.5 Other two-weight and three-weight codes

Corollary 3 can be employed to obtain many linear codes with a few weights. For instances,
it can be applied to all the codes in [13, 14, 17] to obtain two-weight and three-weight codes.

6 A class of binary linear codes and their parameters

The objective of this section is to present a class of three-weight binary codes and consider
their application in secret sharing. In this section, let p = 2 and we consider only binary
codes CD within the generic construction of this paper.

6.1 The description of the codes

In this subsection, we only describe the binary codes and introduce their parameters, but
will present the proofs of their parameters in the next subsection.

In this subsection, the defining set D of the code CD of (2) is given by

D = {x ∈ GF(2m)∗ : Tr(x3 + x) = 0}. (10)

Since 0 �∈ D, the minimum distance d⊥ of the dual code C⊥
D of CD cannot be 1. Note

that the elements in D are pairwise distinct, the minimum distance d⊥ of the dual code C⊥
D

cannot be 2. Hence, we have the following lemma.

Lemma 1 The minimum distance d⊥ of the dual code C⊥
D ofCD is at least 3 if n = |D| ≥ 3.

Table 1 The weight distribution
of the codes of Theorem 3 Weight w Multiplicity Aw

0 1

5 × 33h−2 + 32h−2 32h + 3h

5 × 33h−2 33h − 2 × 32h − 1

5 × 33h−2 − 32h−2 32h − 3h
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Table 2 The weight distribution
of the codes CD of Theorem 4 Weight w Multiplicity Aw

0 1

2m−2 +
[
(−1)

m2−1
8 − 1

]
2

m−3
2 2m−2 + 2

m−3
2 − 1

2 [1 + (−1)
m2−1

8 ]
2m−2 + (−1)

m2−1
8 2

m−3
2 2m−1

2m−2 +
[
(−1)

m2−1
8 + 1

]
2

m−3
2 2m−2 − 2

m−3
2 + 1

2 [−1 + (−1)
m2−1

8 ]

Theorem 4 Let m ≥ 5 be odd, and let D be defined in (10). Then the set CD of (2) is a

[2m−1 − 1 + (−1)
m2−1

8 2
m−1
2 ,m] binary code with the weight distribution in Table 2. The

dual code C⊥
D has parameters[
2m−1 − 1 + (−1)

m2−1
8 2

m−1
2 , 2m−1 − 1 + (−1)

m2−1
8 2

m−1
2 − m, d⊥

]
,

where d⊥ ≥ 3.

Example 3 Let m = 5. Then the code CD has parameters [11, 5, 4] and weight enumerator
1 + 10z4 + 16z6 + 5z8. This code is optimal. Its dual C⊥

D has parameters [11, 6, 3] and is
almost optimal.

Example 4 Let m = 7. Then the code CD has parameters [71, 7, 32] and weight enumerator
1 + 35z32 + 64z36 + 28z40. Its dual C⊥

D has parameters [71, 64, 3] and is optimal.

Theorem 5 Let m ≥ 4 be even, and let D be defined in (10). Then the set CD of (2) is a
[2m−1 − 1,m] binary code with the weight distribution in Table 3 when m ≡ 2(mod 4),
and a [2m−1 − 1 − 2

m
2 (−1)

m
4 ,m] binary code with the weight distribution in Table 4 when

m ≡ 0(mod 4).
The dual code C⊥

D has parameters [2m−1 − 1, 2m−1 − 1 − m, d⊥ ≥ 3] when m ≡
2(mod 4), and parameters

[2m−1 − 1 − 2
m
2 (−1)

m
4 , 2m−1 − 1 − 2

m
2 (−1)

m
4 − m, d⊥ ≥ 3]

when m ≡ 0(mod 4).

Example 5 Let m = 6. Then the code CD has parameters [31, 6, 12] and weight enumerator
1 + 10z12 + 47z16 + 6z20. Its dual C⊥

D has parameters [31, 25, 3] and is almost optimal.

Table 3 The weight distribution
of the codes CD of Theorem 5
when m ≡ 2(mod4)

Weight w Multiplicity Aw

0 1

2m−2 3 · 2m−2 − 1

2m−2 + 2
m−2
2 2m−3 − 2

m−4
2

2m−2 − 2
m−2
2 2m−3 + 2

m−4
2
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Table 4 The weight distribution
of the codes CD of Theorem 5
when m ≡ 0(mod 4)

Weight w Multiplicity Aw

0 1

2m−2 − (−1)
m
4 2

m−2
2 3 · 2m−2

2m−2 − [(−1)
m
4 + 1]2 m−2

2 2m−3 + 2
m−4
2 + 1

2 [(−1)
m
4 − 1]

2m−2 − [(−1)
m
4 − 1]2 m−2

2 2m−3 − 2
m−4
2 − 1

2 [(−1)
m
4 + 1]

Example 6 Let m = 10. Then the code CD has parameters [511, 10, 240] and weight
enumerator 1 + 136z240 + 767z256 + 120z272. Its dual C⊥

D has parameters [511, 501, 3].

Example 7 Let m = 4. Then the code CD has parameters [11, 4, 4] and weight enumerator
1+ 2z4 + 12z6 + z8. This code is almost optimal. Its dual C⊥

D has parameters [11, 7, 3] and
is optimal.

Example 8 Let m = 8. Then the code CD has parameters [111, 8, 48] and weight enumer-
ator 1 + 36z48 + 192z56 + 27z64. Its dual C⊥

D has parameters [111, 103, 3] and is almost
optimal.

6.2 The proofs of Theorems 4 and 5

For any a and b in GF(q), we define the following exponential sum

S(a, b) =
∑

x∈GF(q)

χ1

(
ax3 + bx

)
. (11)

To prove the weight distributions of the codes in Theorems 4 and 5, we need the values
of the sum S(a, b).

We now define a constant as follows. Let

n0 =
∣∣∣{x ∈ GF(q) : Tr

(
x3 + x

)
= 0

}∣∣∣ .
By definition, the length n of the code CD of (2) is equal to n0 − 1. We have

n0 = 1

2

∑
y∈GF(2)

∑
x∈GF(q)

(−1)yTr(x
3+x)

= 1

2

∑
y∈GF(2)

∑
x∈GF(q)

χ1(yx3 + yx)

= 2m−1 + 1

2

∑
x∈GF(q)

χ1(x
3 + x). (12)

To prove Theorems 4 and 5, we also define the following parameter

Nb =
∣∣∣{x ∈ GF(q) : Tr

(
x3 + x

)
= 0 and Tr(bx) = 0

}∣∣∣ ,
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where b ∈ GF(q)∗. By definition and the basic facts of additive characters, for any b ∈
GF(q)∗ we have

Nb = 1

4

∑
x∈GF(q)

⎛
⎝ ∑

y∈GF(2)

(−1)yTr(x
3+x)

⎞
⎠

⎛
⎝ ∑

z∈GF(2)

(−1)zTr(bx)

⎞
⎠

= 1

4

∑
x∈GF(q)

(−1)Tr(bx) + 1

4

∑
x∈GF(q)

(−1)Tr(x
3+x)

+1

4

∑
x∈GF(q)

(−1)Tr(x
3+(b+1)x) + 2m−2

= 1

4

⎛
⎝ ∑

x∈GF(q)

(
χ1(x

3 + x) + χ1(x
3 + (b + 1)x)

)
+ 2m

⎞
⎠ . (13)

For any b ∈ GF(q)∗, the Hamming weight wt(cb) of the following codeword

cb = (Tr(bd1),Tr(bd2), . . . ,Tr(bdn)) (14)

of the code CD of (2) is equal to n0 − Nb.
Let m ≥ 4 be odd. It is well known that Tr(x3) is a semibent function from GF(q) to

GF(2). Thus, we have ∑
x∈GF(q)

χ1(x
3 + (b + 1)x)) ∈ {0, 2m+1

2 ,−2
m+1
2 } (15)

for each b ∈ GF(q)∗.
The following lemma is proved in Theorem 2 of [5].

Lemma 2 When m is odd, we have

S(1, 1) =
∑

x∈GF(q)

χ1

(
x3 + x

)
= (−1)

m2−1
8 2

m+1
2 .

We are now ready to prove Theorem 4. Let m ≥ 4 be odd.
It follows from (12) and Lemma 2 that the length n of the code CD in Theorem 4 is equal

to 2m−1 + (−1)
m2−1

8 2
m−1
2 − 1, as n0 = 2m−1 + (−1)

m2−1
8 2

m−1
2 .

It follows from (13), (15) and Lemma 2 that

Nb ∈
{
2m−2 + (−1)

m2−1
8 2

m−3
2 , 2m−2 + [(−1)

m2−1
8 ± 1]2m−3

2

}
for any b ∈ GF(q)∗. Hence, the weight wt(cb) of the codeword cb in (14) satisfies

wt(cb) = n0 − Nb ∈
{
2m−2 + (−1)

m2−1
8 2

m−3
2 , 2m−2 + [(−1)

m2−1
8 ∓ 1]2m−3

2

}
.

Define

w1 = 2m−2 + (−1)
m2−1

8 2
m−3
2 ,

w2 = 2m−2 +
[
(−1)

m2−1
8 − 1

]
2

m−3
2 ,

w3 = 2m−2 +
[
(−1)

m2−1
8 + 1

]
2

m−3
2 .
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We now determine the number Awi
of codewords with weight wi in CD . By Lemma 1,

the minimum weight of the dual code C⊥
D is at least 3. The first three Pless Power Moments

[15, p.260] lead to the following system of equations:⎧⎨
⎩

Aw1 + Aw2 + Aw3 = 2m − 1,
w1Aw1 + w2Aw2 + w3Aw3 = n2m−1,

w2
1Aw1 + w2

2Aw2 + w2
3Aw3 = n(n + 1)2m−2,

(16)

where n = 2m−1 + (−1)
m2−1

8 2
m−1
2 − 1. Solving the system of equations in (16) yields

the weight distribution of Table 2. The dimension of the code CD is m, as wt(cb) > 0 for
each b ∈ GF(q)∗. The conclusions on the dual code C⊥

D then follow on the length and the
dimension of CD and Lemma 1. This completes the proof of Theorem 4.

Below we prove Theorem 5
Let m ≥ 4 be even. To prove Theorem 5, we need the next two lemmas proved by

Coulter [6].

Lemma 3 Let m ≥ 4 be even and a ∈ GF(q)∗. Then

S(a, 0) =
{

(−1)
m
2 2

m
2 if a �= g3t for any t,

−(−1)
m
2 2

m
2 +1 if a = g3t for some t,

where g is a generator of GF(q)∗.

Lemma 4 Let m ≥ 4 be even, b ∈ GF(q)∗, f (x) = a2x4 + ax ∈ GF(q)[x], and let g be a
generator of GF(q)∗. There are the following two cases.

(i) If a �= g3t for any t , then f is a permutation polynomial of GF(q). Let x0 be the
unique element satisfying f (x0) = b2. Then

S(a, b) = (−1)
m
2 2

m
2 χ1

(
ax3

0

)
= (−1)

m
2 2

m
2 (−1)

Tr
(
ax30

)
.

(ii) If a = g3t for some t , then S(a, b) = 0 unless the equation f (x) = b2 is solvable. If
this equation is solvable, with solution x0 say, then

S(a, b) =
⎧⎨
⎩ −(−1)

m
2 2

m
2 +1(−1)

Tr
(
ax30

)
if Tr(a) = 0,

(−1)
m
2 2

m
2 (−1)

Tr
(
ax30

)
if Tr(a) �= 0,

where Tr is the trace function from GF(q) onto GF(2).

According to [7, p.29], the following lemma can be easily proved.

Lemma 5 Let m ≥ 4 be even and f (x) = a2x4 + ax ∈ GF(q)[x]. If a = 1 = g3t for
some t , then the equation f (x) = 1 is solvable if and only if m ≡ 0(mod 4), where g is a
generator of GF(q)∗.

The next lemma will be employed later.

Lemma 6 Let m ≥ 4 be even. Then

S(1, 1) =
{
0 if m ≡ 2 (mod 4),
−(−1)

m
4 2

m
2 +1 if m ≡ 0 (mod 4).
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Proof Let m ≥ 4 be even. It is well known that gcd(3, 2m − 1) = 3. Hence, there exists
t = 2m−1

3 such that g3t = 1. Note that TR(1) = 0, as m is even. It then follows from
Lemmas 4 and 5 that

S(1, 1) =
{
0 if m ≡ 2 (mod 4)

−2
m
2 +1(−1)

Tr
(
x30

)
if m ≡ 0 (mod 4)

=
{
0 if m ≡ 2 (mod 4)
−2

m
2 +1(−1)

m
4 (mod 2) if m ≡ 0 (mod 4)

=
{
0 if m ≡ 2 (mod 4),
−2

m
2 +1(−1)

m
4 if m ≡ 0 (mod 4),

where x0 is a solution of the equation x4 + x = 1 when m ≡ 0(mod 4). This completes the
proof.

We are now ready to prove Theorem 5. Recall that m ≥ 4 is even. It follows from (12)
and Lemma 6 that the length n of the code CD in Theorem 5 is given by

n =
{
2m−1 − 1 if m ≡ 2 (mod 4),
2m−1 − 2

m
2 (−1)

m
4 − 1 if m ≡ 0 (mod 4).

(17)

Since gcd(3, 2m − 1) = 3, there exists t = 2m−1
3 such that g3t = 1. Note that Tr(1) = 0,

as m is even. It follows from Lemmas 3 and 4 that

S(1, b + 1) ∈
{
0, ±(−1)

m
2 2

m
2 +1

}
(18)

for any b ∈ GF(q)∗.
It then follows from (13), (18) and Lemma 6 that

Nb ∈ {u1, ± u2 + u1}
when m ≡ 2 (mod 4), and

Nb ∈
{
u1 − (−1)

m
4 u2, (−(−1)

m
4 ± 1)u2 + u1

}
when m ≡ 0 (mod 4), for any b ∈ GF(q)∗, where u1 = 2m−2 and u2 = 2

m
2 −1. Hence, the

weight wt(cb) of the codeword of (14) satisfies

wt(cb) = n0 − Nb ∈
{ {u1, u1 ± u2} if m ≡ 2(mod 4)

{u1 − (−1)
m
4 u2, u1 − ((−1)

m
4 ± 1)u2} if m ≡ 0(mod 4)

and the code CD has all the three weights in the set above.
Define u1 = 2m−2, u2 = 2

m
2 −1, u = u1 − (−1)

m
4 u2 and{

w1 = u1, w2 = u1 + u2, w3 = u1 − u2 if m ≡ 2 (mod 4)
w1 = u, w2 = u − u2, w3 = u + u2 if m ≡ 0 (mod 4).

We now determine the number Awi
of codewords with weight wi in CD . By Lemma 1,

the minimum weight of the dual code C⊥
D is at least 3. The first three Pless Power Moments

[15, p.260] lead to the following system of equations:⎧⎨
⎩

Aw1 + Aw2 + Aw3 = 2m − 1,
w1Aw1 + w2Aw2 + w3Aw3 = n2m−1,

w2
1Aw1 + w2

2Aw2 + w2
3Aw3 = n(n + 1)2m−2,

(19)

where n is given in (17). Solving the system of equations in (19) proves the weight distri-
bution of the code CD in Tables 3 and 4. The dimension of the code CD is m, as wt(cb) > 0
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for each b ∈ GF(q)∗. The conclusions on the dual code C⊥
D then follow on the length and

the dimension of CD and Lemma 1. This completes the proof of Theorem 5.

6.3 Applications of the binary codes in secret sharing

Any linear code over GF(p) can be employed to construct secret sharing schemes [1, 4, 18].
In order to obtain secret sharing schemes with interesting access structures, one would like
to have linear codes C such that wmin/wmax >

p−1
p

[18], where wmin and wmax denote the
minimum and maximum nonzero weight of the linear code.

When m ≡ 2 (mod 4) and m ≥ 6, the code CD of Section 6.1 satisfies that

wmin

wmax
= 2m−2 − 2(m−2)/2

2m−2 + 2(m−2)/2
>

1

2
.

When m ≡ 4 (mod 8) and m > 4, the code CD of Section 6.1 satisfies that

wmin

wmax
= 2m−2

2m−2 + 2m/2
>

1

2
.

When m ≡ 0 (mod 8) and m ≥ 8, the code CD of Section 6.1 satisfies that

wmin

wmax
= 2m−2 − 2m/2

2m−2
>

1

2
.

When m ≡ ±1 (mod 8) and m ≥ 7, the code CD of Section 6.1 satisfies that

wmin

wmax
= 2m−2

2m−2 + 2(m−1)/2
>

1

2
.

When m ≡ ±3 (mod 8) and m > 5, the code CD of Section 6.1 satisfies that

wmin

wmax
= 2m−2 − 2(m−1)/2

2m−2
>

1

2
.

Hence, the linear codes CD of Section 6.1 satisfy the condition thatwmin/wmax > 1
2 when

m ≥ 6, and can thus be employed to obtain secret sharing schemes with interesting access
structures using the framework in [18]. Note that binary linear codes can be employed for
secret sharing bit by bit. Hence, a secret of any size can be shared with a secret sharing
scheme based on a binary linear code. We remark that the dimension of the code CD of
this paper is small compared with its length and this makes it suitable for the application in
secret sharing.

7 Concluding remarks

In this paper, we established a few relations among the parameters of a few subclasses
of linear codes CD (i.e., Theorem 1, Corollaries 1 and 2, Theorem 2, Corollary 5). With
these relations, a number of classes of one-weight, two-weight and three-weight codes
are derived from some known classes of one-weight, two-weight and three-weight codes.
Instead of writing down all these codes, we documented a few classes of them as exam-
ples in this paper. We also constructed a class of three-weight binary codes described in
Theorems 4 and 5.

The codes presented in this paper are interesting, as one-weight codes, two-weight codes
and three-weight codes have applications in secret sharing [1, 4, 18], authentication codes
[12], combinatorial designs and graph theory [2, 3], and association schemes [2].
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Every linear code over a finite field is generated by a generator matrix. Different ways
of constructing the generator matrix give different constructions of linear codes. Similarly,
different ways of constructing the defining set D for the generic constriction of linear codes
in this paper are different constructions of the linear codes CD . There are a huge number
of ways of constructing the defining D, and thus many different constructions of the codes
CD . The difficulty is the selection of D so that the code CD has good parameters. Note that
the generic construction of linear codes CD of this paper is different from the one in [4].
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