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Abstract Recent developments in word-based stream ciphers present the study on multi-
sequences. The joint linear complexity and k-error joint linear complexity are fundamental
concepts for the assessment of multisequences. The k-error joint linear complexity spec-
trum contains all the information about how the joint linear complexity of a multisequence
decreases as the number k of allowed bit changes increases. In this paper, we present an
efficient algorithm by which the k-error joint linear complexity spectrum for a t-fold pn-
periodic binary multisequence can be entirely determined usingO(tpn logp) bit operations,
where p is an odd prime, 2 is a primitive root modulo p2 and n is a positive integer.
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1 Introduction

The linear complexity and the k-error linear complexity of periodic sequences over finite
fields are important randomness measures for pseudorandom sequence generators employed
in stream ciphers. The linear complexity of a sequence is the length of the shortest
linear feedback shift register (LFSR) which generates the sequence. If the shortest LFSR
has length of l, then 2l consecutive bits of the output can determine its feedback polynomial
in terms of Berlekamp-Massey algorithm [1, 2]. In other words, if the linear complexity
of a sequence is l, then the Berlekamp-Massey algorithm requires just 2l bits to recover
the whole sequence. Therefore, to resist known-plaintext attack, the linear complexity of
a sequence must be enough large. But the sequence with large linear complexity may
not be difficult to predict. If the linear complexity of a sequence immediately decreases
as few bits in one period are changed, then the sequence is still cryptographically weak
because we can at least determine a sequence which coincides with the correct sequence
in all but a “small” number of positions. Thus the linear complexity of a sequence should
also remain large even if some of its terms are changed. This observation leads to the
study of the k-error linear complexity. The k-error linear complexity of a sequence s with
period N is the minimal linear complexity that can be obtained for s by modifying up to
k terms in one period (and modifying all other periods in the same way). This notion was
defined in [3] and is closely related to previously defined notions of sphere complexity
[4] and weight complexity [5]. In [6], Niederreiter showed that there is a class of peri-
odic sequences which possesses large linear complexity and large k-error linear complexity
simultaneously.

There exist several efficient algorithms [3, 7–9] which compute the linear complexity and
k-error linear complexity of a given periodic sequence. Stamp and Martin [3] extended the
Games-Chan algorithm [7] to compute the k-error linear complexity of a binary sequence
of period l = 2n using O(l log l) bit operations. The Stamp and Martin algorithm can be
used to compute entirely linear complexity spectrum of a period l = 2n sequence using
O(l2 log l) bit operations. Further, Lauder and Paterson [10] showed that the whole error
linear complexity spectrum (i.e., the k-error linear complexity for each value of k) of a
binary sequence of period l = 2n can be computed using O(l(log l)2) bit operations.
The k-error linear complexity spectrum contains all the information about how the lin-
ear complexity of a sequence decreases as the number k of allowed bit changes increases.
However, it remains a challenging open problem to devise an algorithm which efficiently
computes the error linear complexity spectrum of a binary sequence of general period.
Recent developments in stream ciphers point towards an interest in word-based (or vec-
torized) stream ciphers [11–17]. The theory of such stream ciphers requires the study
of the complexity measures for multisequences, i.e., for parallel streams of finite many
sequences. In this direction, joint linear complexity and k-error joint linear complexity of
multisequences have been investigated [13–17]. Let F2 be the finite field with 0,1 elements,
and let t and N be positive integers. An t-fold N -periodic multisequences S over F2 is
of the form S = (S[1], S[2], · · · , S[t]), where S[λ] = (S[λ, 0], S[λ, 1], · · · , S[λ, N −
1])∞ is an N -periodic sequence with bits in F2 for each λ = 1, 2, · · · , t .Actually,
(S[λ, 0], S[λ, 1], · · · , S[λ, N − 1])∞ denotes constantly duplication of successive N terms
in the firstly period of sequence S[λ]. By N -periodic we note that N is a period length
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of the sequence, but not necessarily the least period length. The joint linear complexity
LC(S) is the least order of a linear recurrence relation that S[1], S[2], · · · , S[t] satisfy
simultaneously, with LC(S) = 0 if S is the zero multisequence. For multisequences, the
definition of k-error joint linear complexity was presented in [14–16]. For an integer k

with 0 ≤ k ≤ tN , the k-error joint linear complexity of t-fold N -periodic multisequence
is defined by LCk(S) = min

T
LC(T), where the minimum is taken over all N -periodic

t-fold multisequences T with term distance d(S,T) ≤ k. The term distance d(S,T) is
defined to be the number of terms in S that are different from the corresponding terms in
T. Especially, for k = 0, k-error joint linear complexity is its joint linear complexity for a
multisequence. The paper [15] marks the beginning of the theory of k-error joint linear com-
plexity measures for multisequences. As suggested in that paper, an interesting task would
be to find analogs of all major results on the k-error linear complexity of single sequences
for the case of multisequences. Sethumadhavana et al. presented an algorithm (see in [17])
to compute the k-error joint linear complexity of 2n-periodic multisequence over F2. We
presented an algorithm (See [16]) to compute the k-error joint linear complexity of a pn-
periodic multisequence over Fq , where p is an odd prime, q a primitive root modulo p2.
The k-error joint linear complexity spectrum contains all the information about how the
joint linear complexity of a multisequence decreases as the number k of allowed bit changes
increases.

In this paper, we present an efficient algorithm by which the k-error joint linear com-
plexity spectrum for a pn-periodic binary multisequence can be entirely determined, where
p is an odd prime, 2 a primitive root modulo p2 and n a positive integer. On one hand, our
main results in Section 3, when reduced to the case of single sequence, i.e., if t = 1, are
actually further generalization of results in [10]; On the other hand, although the algorithm
[16] can also be used to determine entirely the k-error joint linear complexity spectrum of
a pn-periodic binary multisequence, it requiresO(t (p − 1)pn logpn) bit operations, where
p is an odd prime and 2 a primitive root modulo p2. This paper’s contribution is to accom-
plish the same task, i.e., compute entirely the k-error joint linear complexity spectrum, using
O(tpn logp) bit operations by presenting an algorithm.

This paper is organized as follows. In Section 2, we give necessary definitions and
present some preliminary results, and explain the concept of cost binary multisequences.
Section 3 contains pseudo-code for the main algorithm of the paper, as well as a proof of
the correctness and an analysis of the computational complexity of this algorithm, which
compute the k-error joint linear complexity spectrum of a binary multisequence S by com-
puting the k-error joint linear complexity spectrum of its costed binary multisequence
S = (S, σ, l). Section 4 concludes this paper by presenting an interesting open problem.

2 Definitions and basic results

Let S = (S[1], S[2], · · · , S[t]) be a binary multisequence with length l, where S[λ] =
(s[λ, 0], s[λ, 1], · · · , s[λ, l − 1]), 1 ≤ λ ≤ t denote the λth single sequence of S. Let σ =
(σ [1], σ [2], · · · , σ [t]) is a nonnegative real multisequence with length l, where σ [λ] =
(σ [λ, 0], σ [λ, 1], · · · , σ [λ, l − 1]), 1 ≤ λ ≤ t ; and l is a positive integer. Let triple S =
(S, σ, l). We call the triple S = (S, σ, l) a costed binary multisequence and σ the cost
multisequence of S. In this paper, our main algorithm is carried out step by step. In fact,
σ [λ, j ] is intended to measure the cost of changing the current one bit s[λ, j ], 0 ≤ j ≤ l−1
without disturbing the results of any previous step. The cost is the contribution to error.
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Especially, when σ [λ, i] = 1 for all λ and i, 1 ≤ λ ≤ t, 0 ≤ i ≤ l − 1, the cost is
the Hamming weight of error vector. The notation is similar to the cost of single sequence
which is introduced firstly in [1].

Now, we suppose that the period of a binary multisequence is l = pn, where p is an odd
prime, 2 a primitive root modulo p2 and n a positive integer. In fact, l = pn can be compre-
hended to be initial value of variable l. We define the two maps B(S) = (B(S), B(σ ), l

p
)

and D(S) = (D(S),D(σ), l
p
).

The pseudo-code definitions of B(S) = (B(S), B(σ ), l
p
) and D(S) = (D(S),D(σ), l

p
)

are as follows:

(1) The B map:

Input S = (S, σ, l)

Output B(S) = (B(S), B(σ ),
l

p
)

For 0 ≤ i <
l

p

B(S)[λ, i] =
p−1∑
j=0

s[λ, i + j
l

p
]

B(σ)[λ, i] = min{σ [λ, i + j
l

p
] : j = 0, 1, · · · , p − 1}

(2) The D map:

Input S = (S, σ, l)

Output D(S) = (D(S),D(σ),
l

p
)

For 0 ≤ i <
l

p
, 1 ≤ λ ≤ t

Tλ,i0 =
p−1∑
j=0

σ [λ, i + j
l

p
](s[λ, i + j

l

p
] ⊕ 1)

Tλ,i1 =
p−1∑
j=0

σ [λ, i + j
l

p
](s[λ, i + j

l

p
])

if s[λ, i] = s[λ, i + l

p
] = · · · = s[λ, i + (p − 1)

l

p
]

D(S)[λ, i] = s[λ, i];D(σ)[λ, i] =
p−1∑
j=0

σ [λ, i + j
l

p
]

else

if Tλ,i0 > Tλ,i1

D(S)[λ, i] = 0,D(σ)[λ, i] = Tλ,i0 − Tλ,i1

else

D(S)[λ, i] = 1,D(σ)[λ, i] = Tλ,i1 − Tλ,i0
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Now, we can present two important results in [16] into the forms of Lemmas 1 and 2 as
follows.

Lemma 1 [16] Let S be a t-fold binary multisequence with period pn, where p is an odd
prime and 2 is a primitive root modulo p2. Then
LC(S) = LC(D(S)), if s[λ, i] = s[λ, i + l

p
] = · · · = s[λ, i + (p − 1) l

p
], 1 ≤ λ ≤ t, 0 ≤

i ≤ l
p

− 1; else, LC(S) = (p − 1)pn−1 + LC(B(S)).

Definition 2 Let S = (S, σ, l) be a costed binary multisequence and E =
(E[1], E[2], · · · , E[t]) be a binary multisequence with length l, where E[λ] =
(e[λ, 0], e[λ, 1], · · · , e[λ, l−1]), 1 ≤ λ ≤ t . Set cost (S → S⊕E) = ∑

e[λ,i]=1 σ [λ, i] and
then the k-error joint linear complexity of the costed binary multisequence S is defined as

LCk(S) = min
cost (S→S⊕E)≤k

LC(S ⊕ E)

where E is called the error multisequence of S = (S, σ, l).

If σ [λ, i] = 1 for all λ and i, then the k-error joint linear complexity of S given here
agrees with the k-error joint linear complexity S for a binary multisequence in [14, 15].

On the basis of the definition of two maps B and D, by Lemma 1, the algorithm 2 in [16]
can be expressed in the following form.

Lemma 2 [16] Let S = (S, σ, l) be a costed binary multisequence, where l = pn, p is

an odd prime, and 2 is a primitive root modulo p2. Let Tλ,i0 =
p−1∑
j=0

σ [λ, i + j l
p
](s[λ, i +

j l
p
] ⊕ 1), and Tλ,i1 =

p−1∑
j=0

σ [λ, i + j l
p
]s[λ, i + j l

p
], T =

t∑
λ=1

l−1∑
i=0

min{Tλ,i0, Tλ,i1}. Then
the k-error joint linear complexity of multisequence S is as follows

(1) LCk(S) = (p − 1)pn−1 + LCk(B(S)), for 0 ≤ k < T ;

(2) LCk(S) = LCk−T (D(S)), for k ≥ T .

Remark 1 Actually, readers can directly prove Lemma 2 by using the method of Lemma
3 in [10]. However, it is found that process of proof for multisequence may be extremely
tedious without any technical improvements by using the method in [10]. Here, we present
an alternative method to redisplay Lemma 2 on the basis of our results in [16].

Remark 2 By Lemma 1, the joint linear complexity does not increase if and only if s[λ, i] =
s[λ, i + l

p
] = · · · = s[λ, i + (p − 1) l

p
], for every λ and i, 1 ≤ λ ≤ t, 0 ≤ i ≤ l − 1. If

we add k allowable errors to a binary multisequence so as to force s[λ, i] = s[λ, i + l
p
] =

· · · = s[λ, i + (p − 1) l
p
], for every λ and i, 1 ≤ λ ≤ t, 0 ≤ i ≤ l − 1, then the number of

k bits is at least T =
t∑

λ=1

l−1∑
i=0

min{Tλ,i0, Tλ,i1}.
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Definition 3 Let S = (S, σ, l) be a costed binary multisequence. The k-error joint lin-
ear complexity spectrum (EJLCS) of S is defined as the k-error joint linear complexity
sequence of S:

LC0(S), LC1(S), · · · , LCcost (S→0)(S).

The spectrum is actually composed by the set of the ordered list of {(k, LCk(S)) : 0 ≤ k ≤
cost (S → 0)}, where cost (S → 0) is actually cost (S → S ⊕ S) on the basis of Definition
2.

Note that we do not restrict k to be an integer, so the EJLCS of S is not a finite set.
However, it is clear from Definition 3 that LCk(S) takes on only finitely many values, so
the EJLCS of S can be visualized as a graph with axes for cost and joint linear complexity
and with points (k, LCk(S)), 0 ≤ k ≤ cost (S → 0).

Lemma 3 Let S = (S, σ, pn) be a costed binary multisequence, where p is an
odd prime and 2 a primitive root modulo p2. Let B(S) = (B(S), B(σ ), pn−1)

with T =
t∑

λ=1

pn−1−1∑
i=0

min{Tλ,i0, Tλ,i1} and D(S) = (D(S),D(σ), pn−1) with

U = cost (D(S) → 0). Then the EJLCS of multisequence S is

{(k, LCk(B(S)) + (p − 1)pn−1) : 0 ≤ k < T }
⋃

{(T + k, LCk(D(S))) : 0 ≤ k ≤ U}.

Proof By Definition 3 of the EJLCS of multisequence S , we immediately obtain the
correctness of Lemma 3 from Lemma 2.

Definition 4 Let (k, LCk(S)) be a point on the EJLCS of the costed binary multisequence
S . We say that (k, LCk(S)) is critical if for all points (k

′
, LC

k
′ (S) of the EJLCS with k

′
< k

we have that LC
k
′ (S) > LCk(S).

In others words, critical points are the points on the graph of the EJLCS where a decrease
in the k-error joint linear complexity occurs. The sublist of all critical points in the EJLCS
of S is called the critical error joint linear complexity spectrum (CEJLCS) of S . We observe
that the EJLCS of S contains the point (0, LC(S)). Because the joint linear complexity of
S ⊕ E can take on only finitely many different values, the CEJLCS of S contains a finite
number of points.‘We observe that the EJLCS of S contains the point (0, LC(S)).Note that
the CEJLCS of a costed binary multisequence entirely determines its EJLCS and vice verse,
and we use the terminology “critical” here. In Example 1 below text, the CEJLCS of the
period 27 binary multisequence S is the set

{(0, 27), (1, 26), (2, 25), (3, 24), (4, 8), (6, 7), (9, 6), (13, 2), (21, 1), (33, 0)}.

Lemma 4 Let S = (S, σ, pn) be a costed binary multisequence, where p is an
odd prime and 2 a primitive root modulo p2. Let B(S) = (B(S), B(σ ), pn−1)

with T =
t∑

λ=1

pn−1−1∑
i=0

min{Tλ,i0, Tλ,i1} and D(S) = (D(S),D(σ), pn−1) with

U = cost (D(S) → 0). Let the CEJLCS of B(S) be {(ki, LCki
(B(S))) : 0 ≤ i ≤ m}

for some m, where k0 = 0 and km = T , and the CEJLCS of D(S) be
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{(Ki, LCKi
(D(S))) : 0 ≤ i ≤ u} for some u, where K0 = 0 and Ku = U .

Then the CEJLCS of S is

{(k0, LCk0(B(S)) + (p − 1)pn−1), · · · , (km−1, LCkm−1(B(S)) + (p − 1)pn−1)}

⋃
{(T + K0, LCK0(D(S))), · · · , (T + Ku,LCKu(D(S)))}.

Proof Note that the CEJLCS of B(S) and D(S) are their respective critical point list.
By Definition 4, we can suppose all critical points of B(S) are (k0, LCk0(B(S)) + (p −
1)pn−1), · · · , (km−1, LCkm−1(B(S)) + (p − 1)pn−1), where ki ≤ T , i = 0, 1, · · · , m − 1;
and all critical points ofD(S) are (K0, LCK0(D(S))), · · · , (Ku, LCKu(D(S))), where 0 ≤
Ki ≤ U . From Lemma 3, we obtain immediately the result.

3 Computing CEJLCS of a costed binary multisequence

In this subsection we present an algorithm for computing the CEJLCS of a costed binary
multisequence with period pn, where p is an odd prime and 2 a primitive root modulo p2.
The algorithm is recursive, calling itself with progressively shorter costed multisequences
as input. It can be thought of as exploring a binary tree where a node at depth i (0 ≤
i ≤ n) corresponds to a costed binary multisequence of length pn−i and the two edges
emanating from a node correspond to the two mappings B and D that can be applied to this
multisequence (Fig. 1).

As well as a costed binary multisequence S = (S, σ, pn), the algorithm has three integers
tsf, lim, and c as inputs. We now explain briefly the three variable functions tsf, lim, and
c . At any stage in the execution of the algorithm, the variable tsf is set to the total cost of

Fig. 1 The graph of the CEJLCS of multisequence S = (S, σ, 27)
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changes made to the multisequence so far, and the variable lim denotes a limit to the total
cost of changes one should consider when searching a particular part of the tree.

Theorem 1 Algorithm CEJLCS ((S, σ, l), tsf, lim, 0)), where tsf ≤ lim, outputs the
following list of points:{

(tsf + k0, c + LCk0(S)), (tsf + k1, c + LCk1(S)), · · · , (tsf + ku, c + LCku(S))
}

where (k0, LCk0(S)), · · · , (ku, LCku(S)) are the critical points of S = (S, σ, l) whose first
coordinates lie in the range [0, lim − tsf ].

Proof Firstly, we prove the algorithm CEJLCS ((S, σ, l), tsf, lim, c)), where tsf ≤ lim,
outputs the following list of points{

(tsf + k0, c + LCk0(S)), (tsf + k1, c + LCk1(S)), · · · , (tsf + ku, c + LCku(S))
}

where (ki, LCki
(S)), ki ∈ [0, lim− tsf ], 0 ≤ i ≤ u are the critical points of S = (S, σ, l).

For l = 1, there exist two cases as follows

(1) (s[1, 0], s[2, 0], · · · , s[t, 0]) = 	0, i.e., cost (S → 0) = 0. Note that there is the single
critical point (0, 0). The algorithm outputs (tsf, c) as required.

(2) s[1, 0], s[2, 0], · · · , s[t, 0]) 
= 	0, i.e., cost (S → 0) > 0. If
t∑

λ=1
σ [λ, 0] ≤ lim − tsf ,

then there exist two critical points (0, 1) and

(
t∑

λ=1
σ [λ, 0], 0

)
. The algorithm outputs

(tsf, c + 1) and

(
tsf +

t∑
λ=1

σ [λ, 0], c
)
as required. If

t∑
λ=1

σ [λ, 0] > lim − tsf , there

exists the single point (0, 1). The algorithm outputs (tsf, c + 1) as required.

Suppose now that the algorithm is correct for all the costed binary multisequence of length
pn′

with n′ < n. Then the computation of the CEJLCS of a costed binary multisequence
S = (S, σ, pn) calls the two subroutines as follows
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(1) CEJLCS ((B(S), B(σ ), (p −1)pn−1), tsf,min{tsf +T −1, lim}, c + (p −1)pn−1),

where T =
t∑

λ=1

l−1∑
i=0

min{Tλ,i0, Tλ,i1}. Note that T > 0, we have tsf ≤ min(tsf +T −
1, lim).

(2) If tsf +T ≤ lim, we have the CEJLCS ((D(S),D(σ), (p−1)pn−1), tsf +T , lim, c),

where T =
t∑

λ=1

l−1∑
i=0

min{Tλ,i0, Tλ,i1}. Note that min{tsf + T − 1, lim} = tsf + T − 1

and the inductive hypothesis subroutine (1), the following points list

{(tsf +k0, c+(p−1)pn−1+LCk0(B(S))), · · · , (tsf +kv, c+(p−1)pn−1+LCkv (B(S)))}
are the critical points of B(S), where (ki, LCki

B(S)), ki ∈ [0,min{T − 1, lim −
tsf }], 0 ≤ i ≤ v. By Lemma 4, if lim − tsf ≤ T − 1, then these are the all points
of the required output. Similarly, by Lemma 4, if lim − tsf ≥ T , then this is the first
portion of the required output. In terms of subroutine (2), the remained critical points
are described as follows

{((tsf + T ) + k0, c + LCk0(D(S))), · · · , ((tsf + T ) + ku, c + LCku(D(S)))},
where (ki, LCki

(D(S))), ki ∈ [0, lim − (tsf + T )], 0 ≤ i ≤ u.

Thus, algorithm CEJLCS ((S, σ, l), tsf, lim, c)), where tsf ≤ lim, outputs the list of
points

{(tsf + k0, c + LCk0(S)), (tsf + k1, c + LCk1(S)), · · · , (tsf + ku, c + LCku(S))}
where (ki, LCki

(S)), ki ∈ [0, lim−tsf ], 0 ≤ i ≤ u. These points are all the critical points
over CEJLCS of S = (S, σ, l). Especially, Algorithm CEJLCS ((S, σ, pn), 0, N, 0), where
N = cost (S → 0), correctly outputs the critical error joint linear complexity of S.

Proposition 1 Let S = (S, σ, l) be a costed binary multisequence and write N =
cost (S → 0). Then the algorithm CEJLCS ((S, σ, pn), 0, N, 0) correctly outputs the
critical error joint linear complexity spectrum S .

Proof By Theorem 1, as this input, the algorithm outputs the critical points of S = (S, σ, l)

whose first coordinates lie between 0 and N . This is the complete critical error joint linear
complexity spectrum of S because cost (S → 0) = N implies that the critical point with
the highest first coordinate is (N, 0).

Remark 3 In Algorithm 1, the conditions T > 0 and tsf + T ≥ lim are overlapped. A
node can be divided into two nodes when two conditions are simultaneously satisfied. Else,

the number of subsequent nodes is only one. Moreover, the conditions
t∑

λ=1
σ [λ, 0] > 0

and tsf +
t∑

λ=1
σ [λ, 0] ≤ lim are also overlapped. When two conditions are simultaneously

satisfied, two critical points can be output. Else, there exits a single critical point.
Now we consider the computational complexity of Algorithm 1. For simplicity, we

assume that the entries in the cost vectors are scaled and quantized to be nonnegative
integers rather than real numbers.

Remark 4 Algorithm 1 explores part of a binary tree with each node at depth i having
bit operations of O[t (p − 1)pn−i (logM + i logp) + tpn−i logM)], where M denotes a
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maximal integer in entries of the cost multisequence σ . Hence, taking into account the
possible doubling in size of the components of the cost multisequences at each depth in the
tree, the total bit operations are

O

⎧⎨
⎩

∑
0≤i≤n

2i[t (p − 1)pn−i (logM + i logp) + tpn−i logM]
⎫⎬
⎭ .

By taking M = 1, Algorithm CEJLCS can correctly output the entire critical
error joint linear complexity spectrum of a binary multisequence with period pn in
O(tpn logp) bit operations, where p is an odd prime and 2 a primitive root modulo
p2.

If directly using the algorithm in [16] to compute the entire error joint linear com-
plexity spectrum of a pn-periodic multisequence, O(t (p − 1)pn logpn) bit operations are
required.

Example 1 Let S= (S27
1 , S27

2 )= (101101101101101101101101011; 101010101101010101
101010011) be a 27-periodic binary multisequence. Then the result for computing
the CEJLCS of S is a list of points as follows {(0, 27), (1, 26), (2, 25), (3, 24), (4, 8),
(6, 7), (9, 6), (13, 2), (21, 1), (33, 0)}. The execution of Algorithm CEJLCS (S, 0, 33, 0) is
in Fig. 2.

Fig. 2 Schematic execution of Algorithm CEJLCS (S,0,33,0 )
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4 Conclusions

In this paper, we present an efficient algorithm by which the k-error joint linear complex-
ity spectrum for a pn-periodic binary multisequence can be completely determined using
O(tpn logp) bit operations, where p is an odd prime, 2 is a primitive root modulo p2, and
n is a positive integer. Although the algorithm in [16] can also be used to complete the same
task, it requires O(t (p − 1)pn logpn) bit operations. Moreover, our results are the further
generalization of results in [10]. How to efficiently compute the k-error joint linear com-
plexity spectrum of multisequences with general period remains to be an interesting open
problem.
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